首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
自动识别多期断层擦痕的一种应力反演算法   总被引:2,自引:0,他引:2       下载免费PDF全文
单业华  李志安  林舸 《地球学报》2003,24(2):181-186
由于地质历史上构造应力场的演变,多期断层擦痕数据的存在是应力反演所面临的普遍性问题。以往提出处理多期断层擦痕的应力反演算法都基于硬划分,忽视了数据自身的不确定性,并且一些只是传统的、处理一期断层擦痕的算法的简单延拓。在Fry(1999)的sigma空间里,同期断层擦痕向量具有统一的线性分布趋势,多期断层擦痕向量具有不同的线性分布趋势。在此基础上,本文提出利用模糊线性聚类法来识别多期断层擦痕向量的线性结构。这种算法不仅可以弥补以往算法的上述缺陷,还具有自动、直接、有效,且计算量也较小的优点。  相似文献   

2.
Dating of fracture-filling calcite with U-Pb geochronology is becoming a rapidly adopted technique for determining the absolute timing of brittle deformation in the upper crust.Slickenfibre calcite is a desirable target,as it precipitates between individual fault slip displacement events,and provides additional kinematic information.Here we present a case study of slickenfibres formed on the O?kov thrust in the Lower Palaezoic Prague Basin,Bohemian Massif,utilising a combination of petrographic and in situ methods.We demonstrate that slickenfibre external textures can be preserved,whilst internally primary textures are removed by fluid infiltration and recrystallization,leading to variable U and Pb mobilisation.One slickenfibre yielded a date of ca.250 Ma,which we interpret as recording fault slip along the O?kov thrust.Another cross-cutting slickenfibre yielded more scattered U-Pb data,with an imprecise apparent age around ca.95 Ma.This slickenfibre is recrystallised,destroying the primary textures,and exhibits element mobility.The meaning of this younger apparent age is therefore questionable;whereas it likely reflects Cretaceous U and Pb mobility assisted by fluid-flow along the fault plane,it may not reflect a period of fault slip.Our results demonstrate that slickenfibre-based U-Pb dates do not unequivocally relate to fault motion,and that petrographic and elemental analyses are important requirements for interpreting calcite U-Pb data.  相似文献   

3.
The Vienna Basin Transfer Fault (VBTF) is a slow active fault with moderate seismicity (I max~8–9, M max~5.7) passing through the most vulnerable regions of Austria and Slovakia. We use different data to constrain the seismic potential of the VBTF including slip values computed from the seismic energy release during the 20th century, geological data on fault segmentation and a depth-extrapolated 3-D model of a generalized fault surface, which is used to define potential rupture zones. The seismic slip of the VBTF as a whole is in the range of 0.22–0.31 mm/year for a seismogenic fault thickness of 8 km. Seismic slip rates for individual segments vary from 0.00 to 0.77 mm/year. Comparing these data to geologically and GPS-derived slip velocities (>1 mm/year) proofs that the fault yields a significant seismic slip deficit. Segments of the fault with high seismic slip contrast from segments with no slip representing locked segments. Fault surfaces of segments within the seismogenic zone (4–14 km depth) vary from 55 to 400 km2. Empirical scaling relations show that these segments are sufficiently large to explain both, earthquakes observed in the last centuries, and the 4th century Carnuntum earthquake, for which archeo-seismological data suggest a magnitude of M ≥ 6. Based on the combination of all data (incomplete earthquake catalog, seismic slip deficits, locked segments, potential rupture areas, indications of strong pre-catalog earthquakes) we argue, that the maximum credible earthquake for the VBTF is in the range M max = 6.0–6.8, significantly larger than the magnitude of the strongest recorded events (M = 5.7).  相似文献   

4.
A new approach for paleostress analysis using the multiple inverse method with calcite twin data including untwinned e-plane was performed in the East Walanae fault (EWF) zone in South Sulawesi, Indonesia. Application of untwinned e-plane data of calcite grain to constrain paleostress determination is the first attempt for this method. Stress states caused by the collision of the south-east margin of Sundaland with the Australian microcontinents during the Pliocene were successfully detected from a combination of calcite-twin data and fault–slip data. This Pliocene NE–SW-to-E–W-directed maximum compression activated the EWF as a reverse fault with a dextral component of slip with pervasive development of secondary structures in the narrow zone between Bone Mountain and Walanae Depression.  相似文献   

5.
Microstructures of deformed calcite in marble from the Bergell Alps are studied by using a microfocused polychromatic synchrotron X-ray beam. The high spatial resolution, together with orientation and strain resolutions, reveals twin plane orientation, multiple twin lamellae, and strain distributions associated with the twins. Single and multiple mechanical twins on e = { 01[`1] 8 } e = \left\{ {01\overline{1} 8} \right\} systems are confirmed. Residual stresses are derived from the strain tensor that is derived from Laue diffraction patterns. Average lattice strains from several hundred to over one thousand microstrains are detected in a deformed marble from the Bergell Alps. Such strains suggest 60–120 MPa residual stresses. A detailed study of strain components shows that shear stresses on twin planes are completely released.  相似文献   

6.
The Jiashian earthquake (ML 6.4) occurred on 4 March 2010. It was the largest inland event in southern Taiwan of 2010. The mainshock location was unexpected since it occurred in an area with relatively low background seismicity. In addition, reports of earthquake focal mechanisms do not fit with any known active fault geometry. In order to understand the origin of this earthquake, especially its rupture process, we perform a joint source inversion by using teleseismic body wave, GPS coseismic displacements and near field ground motion data. In this study, we considered a northwest–southeast trending fault with a northeast dip retrieved from GPS coseismic data and aftershocks distribution. To analyze the detailed slip distribution in space and time, we used near field 3D Green’s functions provided by spectral-element method and a full time–space inversion technique. We find a complex rupture process with several slip patches distributed inside two main asperities. The slip map reveals a mean slip of 12.9 cm for a maximum slip of 27.3 cm leading to a Mw 6.47 for this event. The rupture initiates in the deepest portion of the fault at 20 km depth, and propagated upward up to 2 km depth to form the two asperities. The source time function of this event revealed two pulses corresponding to the two asperities, for a total duration time of about 16 s. Most aftershocks occurred near the upper boundary of the deepest asperity while no aftershocks are located close to the shallowest one. We infer that the locations of these slip patches are related to the surrounding fault systems that may have restricted the rupture propagation during the earthquake.  相似文献   

7.
Incorporation of incomplete fault-slip data into stress tensor inversion   总被引:1,自引:0,他引:1  
Katsushi Sato   《Tectonophysics》2006,421(3-4):319-330
A fault-slip datum used in the stress tensor inversion techniques is composed of fault orientation, slip orientation and the sense of slip. Sometimes the latter two items are not available. This paper proposes a method to deal with such incomplete fault-slip data. Firstly, the constraints on stress state from full and incomplete data are theoretically specified. The admissible stresses are expressed by the probability distributions in the parameter space. The objective function of inversion is given by superposing the probability distributions for all data including full and incomplete ones. Finally, the peaks of the objective function are detected to enumerate possible solutions. The validity of the present method is tested by simulated data. The incorporation of incomplete data can enhance the detectability of stress states and expands the applicability of stress tensor inversion.  相似文献   

8.
Teleseismic and strong-motion data are inverted to determine the rupture process during the November 1999 Düzce earthquake in NW Turkey. The fault geometry, rise time and rupture velocity are determined from the aftershock distribution and preliminary inversions of the teleseismic data. Joint inversion of the teleseismic and strong-motion data is then carried out for the slip distribution. We obtain the strike 264°, dip 64°, rake −172°, seismic moment 5.0×1019 N m (Mw 7.1), and average stress drop 7 MPa. This earthquake was characterized by bilateral fault rupture and asymmetric slip distribution. Two asperities (areas of large slip) are identified, the eastern one being 1.5 times larger than the western one. The derived slip distribution is consistent with the aftershock distribution, surface rupture and damage. The point of rupture initiation in this Düzce earthquake coincided with the eastern tip of the aftershock distribution of the August 1999 Izmit earthquake.  相似文献   

9.
During two distinct earthquakes occurred on March 7, 1867 and October 6, 1944, tsunami waves were also observed at some localities around the Gulf of Edremit, NE Aegean Sea. The first event (M w = 6.8) mostly affected the city of Mitilini of Lesvos Island while the Gulf of Edremit-Ayvacık earthquake (M S = 6.8) largely affected the northern and eastern coastal areas of the Gulf of Edremit. In 1944 earthquake, numerous surface cracks and water gushes were reported. The coastal neighborhoods of the town of Ayvalık in the east were flooded by tsunami waves. At the WSW extend of the main fault observed on land, which is parallel to the present-day slip vectors, some normal-oblique faults were observed close and subparallel to the northern coast. On the basis of historical documents, reports, interviews, geological setting, field observations and marine seismic reflection data, the 1944 earthquake was not triggered by one of the main fault segments but by a secondary fault or fault group which was described in this study. Depending on the distribution of tensional and compressional forces in the region, which rotates clockwise under the control of the middle strand of the North Anatolian fault, secondary fault groups become important. The moment tensor parameters of such small-size events have been determined and have obtained consistent results with the faults proposed in this study.  相似文献   

10.
This paper reports a preliminary investigation of CO2 sequestration and seal integrity at Teapot Dome oil field, Wyoming, USA, with the objective of predicting the potential risk of CO2 leakage along reservoir-bounding faults. CO2 injection into reservoirs creates anomalously high pore pressure at the top of the reservoir that could potentially hydraulically fracture the caprock or trigger slip on reservoir-bounding faults. The Tensleep Formation, a Pennsylvanian age eolian sandstone is evaluated as the target horizon for a pilot CO2 EOR-carbon storage experiment, in a three-way closure trap against a bounding fault, termed the S1 fault. A preliminary geomechanical model of the Tensleep Formation has been developed to evaluate the potential for CO2 injection inducing slip on the S1 fault and thus threatening seal integrity. Uncertainties in the stress tensor and fault geometry have been incorporated into the analysis using Monte Carlo simulation. The authors find that even the most pessimistic risk scenario would require ∼10 MPa of excess pressure to cause the S1 fault to reactivate and provide a potential leakage pathway. This would correspond to a CO2 column height of ∼1,500 m, whereas the structural closure of the Tensleep Formation in the pilot injection area does not exceed 100 m. It is therefore apparent that CO2 injection is not likely to compromise the S1 fault stability. Better constraint of the least principal stress is needed to establish a more reliable estimate of the maximum reservoir pressure required to hydrofracture the caprock.  相似文献   

11.
《Journal of Structural Geology》1999,21(8-9):1065-1070
If faulting is treated as a stress-controlled phenomenon, the generation of a single fault set, or two sets in conjugate arrangement are inevitably predicted implying plane strain. Alternatively, considering faulting as a strain-controlled process, multiple-set patterns can be predicted. The analysis of multiple-set patterns requires identifying the type of fault pattern from four possibilities: Coulomb, isolated, orthorhombic and complex fault patterns.There are techniques that permit a unique solution of strain tensor for Coulomb and orthorhombic fault patterns. For isolated fault patterns, the principal paleostress directions could be used to approximate the principal strain directions. In this case, we need to assume a homogeneous stress field, independence between faults, and parallelism between shear stress and slip vector on the sliding plane.For complex fault patterns, it is not possible to uniquely determine the total strain tensor without knowledge of all the slip planes. Furthermore, inverting fault-slip data to determine the stress tensor is not correct because the assumptions of the inversion methods are not satisfied. Only a rough approximation is possible assuming that strain produced by major faults represents the total strain tensor.  相似文献   

12.
何书  赵奎  朱忠  吴开兴 《岩土力学》2012,33(11):3414-3418
利用Aleksandrowski推导的断层擦痕侧伏角公式,提出了一种改进的构造应力张量反演法。根据不同应力比值下构造应力与断层擦痕侧伏角的关系,利用最小二乘法,详细推导了构造应力张量的反演方法,最后利用Matlab软件编制程序实现了该计算过程。在此基础上,现场调查了江西武山铜矿北矿带的断层滑动数据,利用上述改进方法反演了该地区的构造应力张量方向特征。将上述反演结果与由震源机制解获得的最新构造应力场结果进行对比分析,并结合研究区断层的展布特征及所在的地质构造背景,获得了该地区自晚侏罗世以来的构造应力场特征,表明该地区构造应力场具有一定的稳定性。改进后的构造应力张量求解过程及工程应用表明,将Aleksandrowski的图示法和Etchecopar等的反演法结合起来反演构造应力张量,是对已有方法的改进,具有更加简单、实现容易等特点,计算结果比较符合实际。  相似文献   

13.
We estimated the stress fields of the aftershocks of the 2000 western Tottori earthquake (Mw 6.6) and the northern Hyogo swarm (max Mw 5.2) by a stress tensor inversion of moment tensor solutions reported from the National Research Institute for Earth Science and Disaster Prevention (Japan). The maximum principal stress direction of the western Tottori sequence was estimated as N107°E with a strike–slip regime. In the northern Hyogo swarm, the orientations of the principal stress directions could not be well constrained by the observed data, but after examining the detailed characteristics of the solution, we obtained a most probable solution of N113°E for the σ1 direction. These solutions are consistent with the maximum horizontal directions roughly estimated from the strike directions of large earthquakes occurring geographically between these two seismic activities. We measured the angle between each fault–slip direction and maximum principal stress direction to investigate the frictional properties of earthquakes. The distribution of the angles was forward modeled to estimate the coefficient of friction and the stress ratio, assuming uniformly distributed fault orientations. For the western Tottori sequence, a homogeneous stress field with a coefficient of friction less than 0.4 was estimated. A high stress level was also suggested because very little change occurred in the stress field during the mainshock. For the northern Hyogo sequence, the coefficient of friction was estimated to be between 0.5 and 1.0.  相似文献   

14.
To answer the question ??Whether the North-Tehran tectonic wedge is a dynamic tectonic wedge or not??? we applied paleostress techniques to investigate fault slip data. The mean reduced stress tensor is defined for all stabilized stress regions. Unscaled Mohr??s circles drawn for fault slip data were used to obtain the relative slip tendency of clusters on diagrams. It showed that the slip tendency in the vicinity of fault junction is much lower than expected. The mean??1 defined for a combination of fault slip data trends N14°E nearly parallel with the overall pressure in Iranian crust at the latitude of Central Alborz. This trend suggests the least effect of boundary faults and the wedge between them on stress orientations inside the wedge. Finally, the stress trajectory map was prepared showing the configuration and relative intensity of ??1. The map did not illustrate any convergence in ??1 trajectories and the consequent concentration of stress and seismic potential in fault junction. That is a direct evidence for disagreeing the dynamicity of this tectonic wedge.  相似文献   

15.
《Tectonophysics》2007,429(3-4):165-181
The Dead Sea fault is among the largest active strike–slip fault of the world. This study is focused on the southern part of this fault, from the Sea of Galilee to the Gulf of Aqaba, as monitored mainly by the Jordanian and Israeli seismic networks. The data of arrival times and polarities allowed relocation of earthquakes with a better azimuthal coverage and computation of focal mechanisms. This last step has been realized by inverting the polarities to determine a unique stress tensor for the region and the compatible focal mechanisms. Inversion with different subsets of the data set, based on tectonic regionalization, has also been performed to evaluate the impact of each cluster of earthquakes on the global solution. The population of focal mechanisms is clearly dominated by strike–slip events, with the notable exception of a cluster of earthquakes, south of the Dead Sea, which displays several normal focal mechanisms. This last cluster forces σ1 to be vertical and σ2 to be horizontal. A large number of fault planes, however, are close to the vertical, inhibiting the action of the vertical component of the stress tensor, and acting like under strike–slip stress regime. We observed a good agreement between the location of the earthquakes and the active faults, based on geological data. In addition, there is a good agreement between the fault plane solutions and the orientation of the active faults.  相似文献   

16.
Sedimentary records of Lake Edward in Central Africa from the late Holocene era exhibit submillennial-scale periodicities in magnesium (Mg) and stable isotope compositions of endogenic calcite. Using multitaper spectral analysis, Russell et al. (Geology 31(8):677–680, 2003) detected a 725-yr cycle in the Mg data. We have analyzed the Mg data using a continuous wavelet transform and observed temporal variations in the submillennial periodicities. These temporal variations can be discerned from a time-period representation of the wavelet power spectrum by visual inspection. The multi-taper spectral analysis is based on the traditional Fourier transform, which is a purely frequency domain technique, and therefore cannot detect temporal variability of the spectrum, if any. In contrast, wavelet analysis offers a spectral-temporal approach by which both the dominant periodicities and their time variations can be identified. In this regard, the results of our wavelet analysis extend those of Russell et al. (Geology 31(8):677–680, 2003). Our analysis reveals dominant periodicities around the 785-yr and 660-yr cycles, but these cycles persist over different time spans within the late Holocene era. The 725-yr period identified by Russell et al. (Geology 31(8):677–680, 2003) with multitaper spectral analysis is very close to the average of the periods of these two cycles. For the purpose of accurately reconstructing the climate history in Central Africa using Mg as a proxy, it would be important to take into consideration the temporal variations of the submillennial periodicities.  相似文献   

17.
In this study 50 seismic events, preceding and accompanying the eruptions occurring in 1981 and 1983, have been considered. Seismic moments, fault radii, stress drops and seismic energies have been calculated using Brune’s model (J Geophys Res 75:4997–5009, 1970; J Geophys Res 76:5002, 1971); site, anelastic attenuation along the propagation path, geometrical spreading and interaction with the free surface effects are taken into account. For each event we have also estimated the equivalent Wood–Anderson magnitude (MWAeq) (Scherbaum and Stoll in Bull Seism Soc Am 73:1321–1343, 1983); relations among all these source parameters have been determined. Furthermore, the hypothesis of self-similarity (Aki in J Geophys Res 72:1217–1231, 1967) is not verified for events with seismic moments <1012 N-m: in fact the relationship between log-stress drop and log-moment is linear up to a moment of 1012 N-m (events of 1981 eruption), while for higher moments (events of 1983 eruption) the slope of the regression line is not significantly different from zero. We suppose that such a behaviour is related to a heterogeneous medium with barriers on the faults. Finally, the main conclusion is that eruptions of 1981 and 1983 differ from one another both in eruptive and seismic aspects; analysis of seismic energies indicates an increase in Mt. Etna’s activity, confirmed by studies performed on the following lateral eruption of 1991–1993 (Patanè et al. in Bull Volcanol 47:941–952, 1995), occurring on the same structural trend.  相似文献   

18.
Yehua Shan  Ge Lin  Zian Li 《Tectonophysics》2004,387(1-4):205-215
An inverse method is developed to determine the optimal stress inversion from imperfect fault data. It is specifically designed to process fault data at variable division—either with observed slip directions or with observed fault/slip senses or with both. The method has the flexibility of processing data with a few fault/slip senses incorrectly determined—a case we occasionally meet in the field. A vast number of artificial 10-datum examples are processed to illustrate the reliability of the method and to examine the effects of the data set at variable division on stress estimation. The results show that the precision of solution decreases with the increase in either of two factors, the percentage of the data limited to slip sense and the range of measurement error, both resulting in a broader dispersion of estimated stress vectors relative to the assigned stress vector in the sigma space. Thus, in order to keep the dispersion within a range of 5° requires the percentage of data for which only slip sense is known to be less than about 20%. This in turn allows for a measurement error range in the data of 10° in real space, much larger than real measurement errors. We believe that the proposed method would be of practical value for stress inversion of fault/slip data.  相似文献   

19.
We have studied the focal mechanisms of the 1980, 1997 and 1998 earthquakes in the Azores region from body-wave inversion of digital GDSN (Global Digital Seismograph Network) and broadband data. For the 1980 and 1998 shocks, we have obtained strike–slip faulting, with the rupture process made up of two sub-events in both shocks, with total scalar seismic moments of 1.9 × 1019 Nm (Mw = 6.8) and 1.4 × 1018 Nm (Mw = 6.0), respectively. For the 1997 shock, we have obtained a normal faulting mechanism, with the rupture process made up of three sub-events, with a total scalar seismic moment of 7.7 × 1017 Nm (Mw = 5.9). A common characteristic of these three earthquakes was the shallow focal depth, less than 10 km, in agreement with the oceanic-type crust. From the directivity function of Rayleigh (LR) waves, we have identified the NW–SE plane as the rupture plane for the 1980 and 1998 earthquakes with the rupture propagating to the SE. Slow rupture velocity, about of 1.5 km/s, has been estimated from directivity function for the 1980 and 1998 earthquakes. From spectral analysis and body-wave inversion, fault dimensions, stress drop and average slip have been estimated. Focal mechanisms of the three earthquakes we have studied, together with focal mechanisms obtained by other authors, have been used in order to obtain a seismotectonic model for the Azores region. We have found different types of behaviour present along the region. It can be divided into two zones: Zone I, from 30°W to 27°W; Zone II, from 27°W to 23°W, with a change in the seismicity and stress direction from Zone I. In Zone I, the total seismic moment tensor obtained corresponded to left-lateral strike–slip faulting with horizontal pressure and tension axes in the E–W and N–S directions, respectively. In Zone II, the total seismic moment tensor corresponded to normal faulting, with a horizontal tension axis trending NE–SW, normal to the Terceira Ridge. The stress pattern for the whole region corresponds to horizontal extension with an average seismic slip rate of 4.4 mm/yr.  相似文献   

20.
The reactivation of faults induced by natural/human induced fluid pressure increases is a major concern to explain subsurface fluid migration and to estimate the risk of losing the integrity of reservoir/seal systems. This study focusses on paleo-fluid migration in a strike slip fault with >100 m long, affecting a Toarcian shale (Causses Basin, France). A high calcite concentration is observed in a 5 cm thick zone at the boundary between the fault core and damage zone. Cumulated displacements in this zone are of millimeter-to-centimeter-scale offsets and different dilatant deformation textures are observed. The zone is affected by thin slip planes containing gouge. Cathodo-luminescence observations indicate that two phases of vein formation occurred. The first phase coincides with the fluid migration along this centimeter thick dilatant zone. The second one is associated to re-shear along the millimeter thick slip planes that results in more localized mineralization, but also in a better hydrologic connection through the shale formation. These results show that in shales fluids may migrate off a slipping surface in centimeter scale dilatant volumes, at first controlled by the intact shale anisotropy related to bedding and then favored by brecciating, structures re-orientation and strengthening processes induced by calcite sealing effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号