首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
This study aims at identifying multi-source heavy metal pollution from natural and anthropogenic sources using a regression model, principal component analysis, and five different indices (geo-accumulation index (I geo), the modified degree of contamination, pollution load index (PLI), enrichment factor, and ecological risk factor. Results revealed that: (1) although the average concentrations of soil heavy metals (Cu, Cr, Pb, Hg, As, Zn) were generally low, Hg, As, and Cr concentrations exceeded national standard values by approximately 0.91, 1.84, and 0.91 times with maximum concentrations up to 0.41, 78.6, and 175.2 μg/g, respectively; (2) PLI results showed that the industrial park and Wucaiwan open coal mining area were the most polluted (PLI of 1.98, 1.71). The potential ecological hazards index indicated that the E i r of three heavy metals (Cu, Hg, As) in the soil were relatively high, presenting potential ecological risk factors of 74.89, 16.71, 4.15%, respectively; (3) stepwise regression model and principal component analysis suggest that Cu and Zn were primarily effected by the natural geological condition and atmospheric dust fall. Cr, Hg, Pb are mainly derived from anthropogenic sources, particularly coal mining activities and industrial sources. Results of this research have some significant implications for heavy metal pollution prevention and the sustainable development of the economy and ecology of arid regions in China.  相似文献   

2.
Heavy metals are introduced in human tissue through breathing air, food chain and human skin. They can cause damage to the nervous system and internal organs. In the present study, sixty street dust samples were collected from the central area of Tehran and were digested in the laboratory to determine the content of Zn, Ni, Cd, Cr, Cu and Pb, using inductively coupled plasma optical emission spectrometry (ICP-OES). The level of contamination with the analyzed metals was determined according to the following indices: geo-accumulation index (I geo), enrichment factor (EF), pollution index (PI), integrated pollution index (IPI) and potential ecological risk index (RI). The average concentration of heavy metals found was in the order of Zn > Cu > Pb > Ni > Cr > Cd. The average I geo values for Cd, Cr, Cu, Ni, Pb and Zn were 1.53, ?1.88, 2.68, ?0.67, 1.62 and 2.70, respectively. Among the investigated heavy metals, zinc and copper had the maximum average EF values and were placed into the “very severe enrichment” class. Potential ecological risk factor (E r) also indicated that Cd had the highest risk, and it was classified as of considerable potential ecological risk. Therefore, it is necessary to pay more attention to the appearance of Cd in the human environment. The calculated potential ecological risk index values also illustrated that the street dust samples presented a “moderate ecological risk.” The calculated IPI values showed that the pollution levels of the street dust samples ranged from high to extremely high.  相似文献   

3.
In this study, data on several metals (Cd, Pb, Zn and Cu) in soil and isopod Porcellio laevis taken at 21 sites from the most important industrial areas in Tunisia (Bizerte, Nabeul, Zaghouan, Sfax and Gabes) were presented. Heavy metal concentrations in both soil samples and isopods were determined using atomic absorption spectrometry. Soil contamination was estimated using the contamination factor (CF). On the other hand, the bioaccumulation factor (BAF) was determined to estimate metal accumulation in isopods. The CF values show that the level of contamination varies between sampled soils, which may be due to the source of pollution at each site. The BAF values allow defining the order of accumulation in P. laevis which was classified for the majority of the sampled sites as a macro-concentrator of Cu and Zn and a deconcentrator of Cd with some exceptions. A principal component analysis (PCA) was conducted between soil properties (pH, OM and CaCO3) and metal concentrations in soils. Through PCA, we obtained four groups in which soils were distinguished by their physicochemical properties and their metal concentrations. Moreover, linear multiple regressions with a downward stepwise procedure were conducted to test the relationships between the physicochemical parameters and metal concentrations in both soils and isopods. Thus, positive correlations (0.78 < R 2 < 0.99) were obtained for Pb considering dataset from the groups 1, 2 and for Zn with data of groups 2 and 3. Finally, results showed that P. laevis could be used as a bio-indicator for monitoring and reducing the impact of pollution in terrestrial ecosystems.  相似文献   

4.
Mining and milling of metal ores coupled with industries have bequeathed many countries the legacy of wide distribution of metal contaminants in sediments. The aim of this study was to assess potential sediment contamination via useful screening methods (XRF, CHNS, TGA/MS). The sediments were collected from the water reservoir Krompachy Eastern Slovakia in April 2015. Within the frame of evaluation it was found that the concentrations of the study elements (Cu, Zn, As, Pb, Cr, Ni, Cd) exceeded some of the MPC, TV and IV values. Sample c was the most polluted by metals, which evident according to it’s the highest CHNS proportion as well as the highest clay and silt proportion. In the samples studied the best correlation was confirmed between weight losses in the temperature range (400–620 °C) and the following metal concentrations: Cu (r = 0.89), Zn (r = 0.88), As (r = 0.93), Hg (r = 0.83), Pb (r = 0.87). The greatest proportions of m/z 44, m/z 18 were detected at temperatures (400–620 °C) associated with decomposition of minerals such as siderite, barite, and exothermic loss of more refractory aromatic C took also place.  相似文献   

5.
This study reported the first comprehensive research on identification of metal concentrations (Fe, Mg, Mn, Pb, Cd, Cr) in order to provide baseline data for future studies, identify possible sources, determine degree of pollution, and identify potential ecological risks of metals in surface sediments from Iran’s Choghakhor Wetland. The order of metal concentration was as follows: Fe > Mg > Mn > Pb > Cd > Cr, with mean concentrations of 6140.35, 1647.32, 289.03, 1.10, and 0.45 µg/g of dry weight, respectively. These results reveal that Choghakhor Wetland is not heavily polluted compared to other regions. The results of enrichment factor (EF) and geoaccumulation index (I geo) showed that Fe, Pb, Mg, Cr, and Mn presented low levels of contamination and probably originated from natural sources. On the other hand, the results of EF and I geo indices suggested that Cd concentrations in sediments of Choghakhor Wetland originated from anthropogenic sources. Based on the results of three sets of sediment quality guidelines, only Cd concentration in sediments of Choghakhor Wetland is a threat for aquatic organisms of Choghakhor Wetland. The results of multivariate analysis such as principal component analysis and cluster analysis showed that Fe–Mn, Cr–Mg, and Pb groups originated from natural sources, while Cd concentrations in sediments of Choghakhor Wetland originated from both natural and anthropogenic sources (mainly chemical fertilizers). To our knowledge, this is the first study about metal concentrations in sediments of Choghakhor Wetland, and because of low levels of these metals, these concentrations can be considered background levels for future investigation.  相似文献   

6.
The accumulation efficiency of selected trace elements in the leaves of Melandrium album and Robinia pseudoacacia grown on heavy metal contaminated sites in comparison with a non-contaminated one was evaluated. The study was undertaken to calculate air pollution tolerance index and to determine the contents of selected metabolites: glutathione, non-protein thiols, ascorbic acid, chlorophyll and the activity of antioxidant enzymes: guaiacol peroxidase and superoxide dismutase. Such estimations can be useful in better understanding of plants defense strategies and potential to grow in contaminated environments. The results in the most contaminated site revealed higher contents of metals in M. album leaves, especially Zn, Cd and Pb (3.4, 6 and 2.3 times higher, respectively) in comparison with the R. pseudoacacia. Better accumulation capacity found in M. album was shown by metal accumulation index values. The plants could be used as indicators of Zn, Cd (both species) and Pb (M. album) in the soil. Glutathione content (in both species) and peroxidase activity (in M. album), general markers of heavy metals contamination, were increased in contaminated sites. In most cases in contaminated areas R. pseudoacacia had decreased ascorbic acid and chlorophyll levels. Opposite tendency was recorded in M. album leaves, where similar or higher contents of the above-mentioned metabolites were found. In our study, M. album and R. pseudoacacia proved to be sensitive species with the air pollution tolerance index lower than 11 and can be recommended as bioindicators.  相似文献   

7.
The technique of diffusive gradients in thin films (DGT) was applied to obtain high-resolution vertical profiles of trace metals in sediment porewater of a eutrophic lake, Lake Chaohu. All sampling sediments were under anaerobic conditions with Eh values below 0, the redox potential profile in M4 was relatively stable, and higher Eh values in M4 than that in M1 were observed due to hydrodynamic effects. Fe, Mn and As exhibited closely corresponding profiles due to the co-release of Fe and Mn oxides and the reduction of As. Higher Fe and Mn concentrations and lower As concentrations were observed in M1 of the western half-lake than those in M4 of the eastern half-lake due to different sources and metal contamination levels in the two regions. Cu and Zn showed increasing concentrations similar to Mn and Fe at 1–2 cm depth of sediments, while DGT measured Co, Ni, Cd and Pb concentrations decreased down to 3–4 cm in the profiles. Co, Ni, Cu, Zn, Cd and Pb showed insignificant regional concentration variances in the western and eastern half-lakes. According to the R(C DGT/C centrifugation) values, the rank order of metal labilities decrease as follows: Fe (>1) > Cu, Pb, Zn (>0.9) > Co, Ni, Cd (>0.3) > Mn, As (>0.1).  相似文献   

8.
In order to study the heavy metal accumulation and distribution in the roots, stems, and leaves of Spartina alterniflora, we collected S. alterniflora samples and the associated sediments along three transects at the Andong tidal flat, Hangzhou Bay. Co, Ni, Cd, Pb, Cu, and Zn were mainly accumulated in the aerial parts (stems and leaves) of the plants, and their distributions depended on their mobility and their roles during the metabolism processes of S. alterniflora. The concentrations of Cu, Zn, Cd, Hg, and Pb were significantly enhanced with the increasing of heavy metal concentrations in the sediments, while those of Co and Ni remained relatively constant. Bioaccumulation factors results showed that the serious heavy metal contamination in the sediments from the transect A may overwhelm the accumulation capability of the plants. In addition, the physicochemical properties of the sediments and the pore water therein also play a role in the heavy metal concentrations and accumulations in the plants, because they can influence the behaviors and bioavailabilities of heavy metals during nutrition and bioaccumulation processes of the plants. The sediments with vegetation did not show significantly decreased heavy metal concentration with respect to the unvegetated sediments, although the plants did absorb heavy metals from the sediments. Principal component analysis and correlation analyses indicated that Co–Ni, Cu–Cd–Hg behaved coherently during accumulation, which may be ascribed to their similar accumulation mechanisms. This work provided essential information on the heavy metal accumulation by plants in a tidal flat, which will be useful for the environmental control through phytoremediation at estuaries.  相似文献   

9.
The behavior of trace elements under conditions of partial melting of granitoid rocks has been studied. The element’s partition coefficients between minerals and the melt Dimin/melt depends, in the first place, on the composition of the primary melt. In biotite the HREE Di are a little below 1, while those of LREE, especially Di for Ce, are 1–3 orders of magnitude less. This leads to an efficient differentiation of REEs in anatexic melts especially when biotite is the main mineral phase of restite. On the contrary, there are feldspars, the Di of which cannot provide such a magnitude of differentiation. Unlike garnets and pyroxenes, whose stability in restite permits enrichment of anatexic melts produced in migmatization zones with Nb, Ti, and Cr, the presence of biotite in restite causes depletion of melts with those elements as well as with Rb. Feldspars, under conditions of their fractional crystallization or during differentiation of an anatexic melt, deplete the latter with Sr, Ba, and Rb, but enrich it with Nb, Ti, Cr, Y, Zr, and V.  相似文献   

10.
The study was intended to investigate the heavy metal contamination in the agricultural soils of the copper mining areas in Singhbhum shear zone, India. The total concentrations of the metals were determined by inductively coupled plasma-mass spectrometer (ICPMS). Pollution levels were assessed by calculating enrichment factor (EF), geo-accumulation index (\(I_\mathrm{geo}\)), contamination factors (CF), pollution load index (PLI), Nemerow index and ecological risk index (\(R_{I}\)). The metal concentrations in the soil samples exceeded the average shale values for almost all the metals. Principal component analysis resulted in extraction of three factors explaining 82.6% of the data variability and indicated anthropogenic contribution of Cu, Ni, Co, Cr, Mn and Pb. The EF and \(I_\mathrm{geo}\) values indicated very high contamination with respect to Cu followed by As and Zn in the agricultural soils. The values of PLI, \(R_{I}\) and Nemerow index, which considered the overall effect of all the studied metals on the soils, revealed that 50% of the locations were highly polluted with respect to metals. The pollution levels varied with the proximity to the copper mining and processing units. Consequently, the results advocate the necessity of periodic monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号