首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.

The majority of the diamond mines in Botswana were discovered as a direct consequence of soil sampling for indicator minerals such as garnet and picroilmenite. Over the past 60 years the application of soil sampling for indicator minerals as a primary exploration tool has declined while aeromagnetic surveys have increased in popularity. The rate of kimberlite discovery in Botswana has declined significantly. The obvious magnetic kimberlites have been discovered. The future of new kimberlite discoveries is once again dependent on soil sampling for kimberlite indicator minerals. It is essential to have an in depth understanding of the transport mechanism of kimberlite indicator minerals from the kimberlite to the modern day surface of the Kalahari Formation, which is solely via termite bioturbation. Field observations indicate that the concentration of indicator minerals at surface is directly dependent on the physical characteristics and capabilities as well as behavioural patterns of the particular termite species dominant in the exploration area. The discovery of future diamond mines in Botswana will be closely associated with an in depth understanding of the relationship between size and concentration of kimberlite indicator minerals in surface soils and the seasonal behaviour, depth penetration capabilities, earthmoving efficiencies and mandible size of the dominant termite species within the exploration area. Large areas in Botswana, where kimberlite indicator minerals recovered from soil samples have been described as distal from source or background, will require re-evaluation. Without detailed termite studies the rate of discovery will continue to decline.

  相似文献   

2.
Sixteen kimberlite boulders were collected from three sites on the Munro and Misema River Eskers in the Kirkland Lake kimberlite field and one site on the Sharp Lake esker in the Lake Timiskaming kimberlite field. The boulders were processed for heavy-mineral concentrates from which grains of Mg-ilmenite, chromite, garnet, clinopyroxene and olivine were picked, counted and analyzed by electron microprobe. Based on relative abundances and composition of these mineral phases, the boulders could be assigned to six mineralogically different groups, five for the Kirkland Lake area and one for the Lake Timiskaming area. Their indicator mineral composition and abundances are compared to existing data for known kimberlites in both the Kirkland Lake and Lake Timiskaming areas. Six boulders from the Munro Esker form a compositionally homogeneous group (I) in which the Mg-ilmenite population is very similar to that of the A1 kimberlite, located 7–12 km N (up-ice), directly adjacent to the Munro esker in the Kirkland Lake kimberlite field. U–Pb perovskite ages of three of the group I boulders overlap with that of the A1 kimberlite. Three other boulders recovered from the same localities in the Munro Esker also show some broad similarities in Mg-ilmenite composition and age to the A1 kimberlite. However, they are sufficiently different in mineral abundances and composition from each other and from the A1 kimberlite to assign them to different groups (II–IV). Their sources could be different phases of the same kimberlite or—more likely—three different, hitherto unknown kimberlites up-ice of the sample localities along the Munro Esker in the Kirkland Lake kimberlite field. A single boulder from the Misema River esker, Kirkland Lake, has mineral compositions that do not match any of the known kimberlites from the Kirkland Lake field. This suggests another unknown kimberlite exists in the area up-ice of the Larder Lake pit along the Misema River esker. Six boulders from the Sharp Lake esker, within the Lake Timiskaming field, form a homogeneous group with distinct mineral compositions unmatched by any of the known kimberlites in the Lake Timiskaming field. U–Pb perovskite age determinations on two of these boulders support this notion. These boulders are likely derived from an unknown kimberlite source up-ice from the Seed kimberlite, 4 km NW of the Sharp Lake pit, since indicator minerals with identical compositions to those of the Sharp Lake boulders have been found in till samples collected down-ice from Seed. Based on abundance and composition of indicator minerals, most importantly Mg-ilmenite, and supported by U–Pb age dating of perovskite, we conclude that the sources of 10 of the 16 boulders must be several hitherto unknown kimberlite bodies in the Kirkland Lake and Lake Timiskaming kimberlite fields.  相似文献   

3.
西村岩管是在苏北地区发现的第一个金伯利岩管,颠覆了苏北地区无金伯利岩的历史。从岩石学、地球化学和伴生矿物等方面分析了西村岩管的地质特征,并进一步探讨其金刚石找矿意义。从区域背景和金刚石形成条件看,西村地区具备了金伯利岩侵位和金刚石矿形成的基本地质条件,而西村岩管为金刚石矿就位提供了母岩条件;西村金伯利岩与山东、辽宁金伯利岩具有相似的地球化学特征,是幔源岩浆低程度部分熔融的产物,且在岩浆上升过程中普遍遭受了壳源物质的混染,后期碳酸盐化现象普遍发育;其相容元素含量与山东金伯利角砾岩相似,均为典型的金伯利岩型配分模式,稀土元素表现为轻、重稀土元素强烈分馏的特征;伴生指示矿物主要为榴辉岩型含铬镁铝榴石、富铬透辉石和富镁铬尖晶石,其特征均表现出含矿金伯利岩的特点。  相似文献   

4.
Mosaic diamonds from the Zarnitsa kimberlite (Daldyn field, Yakutian diamondiferous province) are morphologicaly and structurally similar to dark gray mosaic diamonds of varieties V and VII found frequently in placers of the northeastern Siberian craton. However, although being similar in microstructure, the two groups of diamonds differ in formation mechanism: splitting of crystals in the case of placer diamonds (V and VII) and growth by geometric selection in the Zarnitsa kimberlite diamonds. Selective growth on originally polycrystalline substrates in the latter has produced radial micro structures with grains coarsening rimward from distinctly polycrystalline cores. Besides the formation mechanisms, diamonds of the two groups differ in origin of mineral inclusions, distribution of defects and nitrogen impurity, and carbon isotope composition. Unlike the placer diamonds of varieties V and VII, the analyzed crystals from the Zarnitsa kimberlite enclose peridotitic minerals (olivines and subcalcic Cr-bearing pyropes) and have total nitrogen contents common to natural kimberlitic diamonds (0 to 1761 ppm) and typical mantle carbon isotope compositions (-1.9 to -6.2%c 513C; -4.2%c on average). The distribution of defect centers in the Zarnitsa diamond samples fits the annealing model implying that nitrogen aggregation decreases from core to rim.  相似文献   

5.
A statistical analysis was carried out to investigate spatial associations between natural seismicity and faults in southeastern Ontario and north-central New York State (between 73°18′ and 77°00′W and 43°30′ and 45°18′N). The study area is situated to the west of the seismically active St. Lawrence fault zone, and to the east of the Lake Ontario basin where recently documented geological and geophysical evidence points to possible neotectonic faulting. The weights of evidence method was used to judge the spatial associations between seismic events and populations of faults in eight arbitrarily defined orientation groups. Spatial analysis of data sets for seismic events in the periods 1930–1970 and post-1970 suggest stronger spatial associations between earthquake epicentres and faults with strikes that lie in the NW–SE quadrants, and weaker spatial associations of epicentres with faults that have strikes in the NE–SW quadrants. The strongest spatial associations were determined for groups of faults with strikes between 101° and 146°. The results suggest that faults striking broadly NW–SE, at high angles to the regional maximum horizontal compressive stress, are statistically more likely to be spatially associated with seismic events than faults striking broadly NE–SW. If the positive spatial associations can be interpreted as indicating genetic relationships between earthquakes and mapped faults, then the results may suggest that, as a population, NW–SE trending faults are more likely to be seismically active than NE–SW striking faults. Detailed geological studies of faults in the study area would be required to determine possible neotectonic displacements and the kinematics of the displacements.  相似文献   

6.
First data on the geologic and geochemical compositions of kimberlites from nine kimberlite pipes of southwestern Angola are presented. In the north of the study area, there are the Chikolongo and Chicuatite kimberlite pipes; in the south, a bunch of four Galange pipes (I–IV); and in the central part, the Ochinjau, Palue, and Viniaty pipes. By geochemical parameters, these rocks are referred to as classical kimberlites: They bear mantle inclusions of ultrabasites, eclogites, various barophilic minerals (including ones of diamond facies), and diamonds. The kimberlite pipes are composed of petrographically diverse rocks: tuffstones, tuff breccias, kimberlite breccias, autolithic kimberlite breccias, and massive porphyritic kimberlites. In mineralogical, petrographic, and geochemical compositions the studied kimberlites are most similar to group I kimberlites of South Africa and Fe-Ti-kimberlites of the Arkhangel’sk diamondiferous province. Comparison of the mineralogical compositions of kimberlites from southwestern Angola showed that the portion of mantle (including diamondiferous) material of depth facies in kimberlite pipes regularly increases in the S-N direction. The northern diamond-bearing kimberlite pipes are localized in large destructive zones of NE strike, and the central and southern diamond-free pipes, in faults of N-S strike.  相似文献   

7.
王思琪  郑建平  韩双  王俊烈 《地质学报》2020,94(9):2676-2686
辽南金伯利岩岩区是我国最大的原生金刚石矿产区,该区金刚石主要寄主岩石类型为斑状金伯利岩。橄榄石是金伯利岩中最重要的造岩矿物,根据其结构特征可以分为橄榄石粗晶、橄榄石斑晶以及基质中微细粒三个世代。本文将岩相学特征和前人研究成果相结合,构建辽南斑状金伯利岩岩浆起源、上升、喷发和成岩模型,探讨各世代矿物的形成过程。具体包括:深部交代地幔部分熔融,形成初始碳酸盐岩浆;初始岩浆上升过程中捕获的岩石圈地幔橄榄岩不断溶解(形成橄榄石粗晶),岩浆成分发生改变,成为金伯利岩岩浆;金伯利岩岩浆迅速上升侵位,至地表处爆破喷发,最后冷却固结形成包含粗晶及其他两个世代橄榄石的斑状金伯利岩。  相似文献   

8.
Discovery of diamondiferous kimberlites in the Mainpur Kimberlite Field, Raipur District, Chhattisgarh in central India, encouraged investigation of similar bodies in other parts of the Bastar craton. The earlier known Tokapal ultramafic intrusive body, located beyond the 19-km milestone in Tokapal village along the Jagdalpur–Geedam road, was reinterpreted as crater-facies kimberlite. Its stratigraphic position in the Meso-Neoproterozoic intracratonic sedimentary Indravati basin makes it one of the oldest preserved crater-facies kimberlite systems. Ground and limited subsurface data (dug-, tube-wells and exploratory boreholes) have outlined an extensive surface area (>550 ha) of the kimberlite. The morphological and surface color features of this body on enhanced satellite images suggest that there is a central feeder surrounded by a collar and wide pyroclastic apron. Exploration drilling indicates that the central zone probably corresponds to a vent overlain by resedimented volcaniclastic (epiclastic) rocks that are surrounded by a 2-km-wide spread of pyroclastic rocks (lapilli tuff, tuff/ash beds and volcaniclastic breccia). Drill-holes also reveal that kimberlitic lapilli tuffs and tuffs are sandwiched between the Kanger and Jagdalpur Formations and also form sills within the sedimentary sequence of the Indravati basin. The lapilli tuffs are commonly well stratified and display slumping. Base surges and lava flows occur in the southern part of the Tokapal system. The geochemistry and petrology of the rock correspond to average Group I kimberlite with a moderate degree of contamination. However, the exposed rock is intensely weathered and altered with strong leaching of mobile elements (Ba, Rb, Sr). Layers of vesicular fine-grained glassy material represent kimberlitic lava flows. Tuffs containing juvenile lapilli with pseudomorphed olivine macrocrysts are set in a talc–serpentine–carbonate matrix with locally abundant spinel and sphene. Garnet has not been observed, and phlogopite is very rare. Very limited microdiamond testing (two 18-kg samples) proved negative; however, the composition of chromite grains indicate crystallization in the diamond stability field.  相似文献   

9.
贵州镇远马坪"东方一号"岩体为中国最早发现的原生金刚石矿,受当时只有金伯利岩才含金刚石矿及后来西澳阿盖尔钾镁煌斑岩型金刚石原生矿等的影响,先后定名为金伯利岩、钾镁煌斑岩、金云火山岩等。最近专题调查分析研究表明,镇远马坪地区含金刚石母岩,其岩石学矿物学和地球化学特征均更接近澳大利亚典型金伯利岩,白坟地区岩体则类似于澳大利亚典型钾镁煌斑岩,建议将镇远马坪地区"东方一号"等岩类定名为角砾凝灰质金伯利岩,白坟地区岩类定名为钾碱镁闪石-透辉石-金云母钾镁煌斑岩,镇远地区兼有金伯利岩和钾镁煌斑岩的特征,与西澳大利亚极其类似,镇远地区乃至黔东地区具有较大的金刚石原生矿找矿勘查潜力和研究意义。  相似文献   

10.
Over the past fifteen years the original data on the kimberlites of South Africa have been supplemented with a wealth of information on the kimberlites of the U.S.S.R., the U.S.A., and various parts of Africa. From their distribution pattern, it can now be shown that kimberlites are virtually confined to the old Precambrian cratons and that the diamond-bearing kimberlites exist on the older cratonic nuclei that have not been deformed for the past 2,500 m years. The kimberlite dykes infill major, deep-seated fractures that cross the cratons on a geometrical pattern. The kimberlite that infilled these fractures was a hot fluid that penetrated to within 2–3 km of the surface before there was explosive breakthrough to the surface with subsequent formation and infilling of the high-level diatremes by a gas-solid fluidisation process. The kimberlites can vary widely texturally, from the fragmental variety found in the diatremes, to massive varieties found within the hypabyssal dykes or skills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号