首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Global sea level rise (SLR) will significantly alter coastal landscapes through inundation and erosion of low-lying areas. Animals that display area fidelity and rely on fringing coastal habitats during multiple life stages, such as diamondback terrapins (Malaclemys terrapin Schoepff 1793), are likely to be particularly vulnerable to SLR-induced changes. We used a combination of empirical nest survey data and results from a regional SLR model to explore the long-term availability of known nesting locations and the modeled availability of fringing coastal habitats under multiple SLR scenarios for diamondback terrapin in the MD portion of Chesapeake Bay and the MD coastal bays. All SLR scenarios projected the rapid inundation of historically used nesting locations of diamondback terrapins with 25%–55% loss within the next 10 years and over 80% loss by the end of the century. Model trajectories of habitat losses or gains depended on habitat type and location. A key foraging habitat, brackish marsh, was projected to decline 6%–94%, with projections varying spatially and among scenarios. Despite predicted losses of extant beach habitats, future gains in beach habitat due to erosion and overwash were projected to reach 40%–600%. These results demonstrate the potential vulnerability of diamondback terrapins to SLR in Chesapeake Bay and underscore the possibility of compounding negative effects of SLR on animals whose habitat requirements differ among life stages. More broadly, this study highlights the vulnerability of species dependent on fringing coastal habitats and emphasizes the need for a long-term perspective for coastal development in the face of SLR.  相似文献   

2.
We studied variation in bird assemblages with plant associations for three different coastal marshes from Southeastern South America (SESA) and assessed how marsh bird assemblages related to nearby upland bird assemblages. We surveyed bird species and plant structure along the tidal gradient of each locality from the low tide level to the upper habitats bordering coastal marshes. Twenty species frequently used coastal marshes, including relatively few migratory species. We found that birds occurring in SESA coastal marshes do not have distributions constrained to coastal marshes. Nonetheless, four bird assemblages were recognized in association with vegetation types and/or sites. Among the recorded coastal marsh species, the bay-capped wren-spinetail (Spartonoica maluroides) is both the most frequent and the most habitat constrained. Bird richness increases steadily along the tidal gradient associated with the increase in vegetation structure, suggesting that bird richness is directly explained by vegetation and indirectly by the physical conditions influencing vegetation structure. Results highlight the importance of SESA middle marshes as habitat for conservation of some threatened SESA grassland birds.  相似文献   

3.
Tidal freshwater sections of the Cooper River Estuary (South Carolina) include extensive wetlands, which were formerly impounded for rice culture during the 1,700s and 1,800s. Most of these former rice fields are now open to tidal exchange and have developed into productive wetlands that vary in bottom topography, tidal hydrography and vegetation dominants. The purpose of this project was to quantify nitrogen (N) transport via tidal exchange between the main estuarine channel and representative wetland types and to relate exchange patterns to the succession of vegetation dominants. We examined N concentration and mass exchange at the main tidal inlets for the three representative wetland types (submerged aquatic vegetation [SAV], floating leaf vegetation, and intertidal emergent marsh) over 18-21 tidal cycles (July 1998–August 2000). Nitrate + nitrite concentrations were significantly lower during ebb flow at all study sites, suggesting potential patterns of uptake by all wetland types. The magnitude of nitrate decline during ebb flow was negatively correlated with oxygen concentration, reflecting the potential importance of denitrification and nitrate reduction within hypoxic wetland waters and sediments. The net tidal exchange of nitrate + nitrite was particularly consistent for the intertidal emergent marsh, where flow-weighted ebb concentrations were usually 18–40% lower than during flood tides. Seasonal patterns for the emergent marsh indicated higher rates of nitrate + nitrite uptake during the spring and summer (> 400 μmol N m-2 tide-1) with an annual mean uptake of 248 ± 162 μmol m–2 tide–1. The emergent marsh also removed ammonium through most of the year (207 ± 109 μmol m–2 tide–1), and exported dissolved organic nitrogen (DON) in the fall (1,690 ± 793 μmol m–2 tide–1), suggesting an approximate annual balance between the dissolved inorganic N uptake and DON export. The other wetland types (SAV and floating leaf vegetation) were less consistent in magnitude and direction of N exchange. Since the emergent marsh site had the highest bottom elevation and the highest relative cover of intertidal habitat, these results suggest that the nature of N exchange between the estuarine waters and bordering wetlands is affected by wetland morphometry, tidal hydrography, and corresponding vegetation dominants. With the recent diversion of river discharge, water levels in the upper Cooper estuary have dropped more than 10 cm, leading to a succession of wetland communities from subtidal habitats toward more intertidal habitats. Results of this study suggest that current trends of wetland succession in the upper Cooper River may result in higher rates of system-wide inorganic N removal and DON inputs by the growing distributions of intertidal emergent marshes.  相似文献   

4.
Mid Atlantic coastal salt marshes contain a matrix of vegetation diversified by tidal pools, pannes, and creeks, providing habitats of varying importance to many species of breeding, migrating, and wintering waterbirds. We hypothesized that changes in marsh elevation were not sufficient to keep pace with those of sea level in both vegetated and unvegetatedSpartina alterniflora sites at a number of mid lagoon marsh areas along the Atlantic Coast. We also predicted that northern areas would suffer less of a deficit than would southern sites. Beginning in August 1998, we installed surface elevation tables at study sites on Cape Cod, Massachusetts, southern New Jersey, and two locations along Virginia's eastern shore. We compared these elevation changes over the 4–4.5 yr record with the long-term (>50 yr) tidal records for each locale. We also collected data on waterbird use of these sites during all seasons of the year, based on ground surveys and replicated surveys from observation platforms. Three patterns of marsh elevation change were found. At Nauset Marsh, Cape Cod, theSpartina marsh surface tracked the pond surface, both keeping pace with regional sea-level rise rates. In New Jersey, the ponds are becoming deeper while marsh surface elevation remains unchanged from the initial reading. This may result in a submergence of the marsh in the future, assuming sea-level rise continues at current rates. Ponds at both Virginia sites are filling in, while marsh surface elevation rates do not seem to be keeping pace with local sea-level rise. An additional finding at all sites was that subsidence in the vegetated marsh surfaces was less than in unvegetated areas, reflecting the importance of the root mat in stabilizing sediments. The implications to migratory waterbirds are significant. Submergence of much of the lagoonal marsh area in Virginia and New Jersey over the next century could have major negative (i.e., flooding) effects on nesting populations of marsh-dependent seaside sparrowsAmmodramus maritimus, saltmarsh sharp-tailed sparrowsAmmodramus caudacutus, black railsLaterallus jamaicensis, clapper railsRallus longirostris. Forster's ternsSterna forsteri, common ternsSterna hirundo, and gull-billed ternsSterna nilotica. Although short-term inundation of many lagoonal marshes may benefit some open-water feeding ducks, geese, and swans during winter, the long-term ecosystem effects may be detrimental, as wildlife resources will be lost or displaced. With the reduction in area of emergent marsh, estuarine secondary productivity and biotic diversity will also be reduced.  相似文献   

5.
Destruction of tidal wetlands has led to a growing interest in the restoration and creation of new wetland habitat. However, while natural stands of vegetation have been successfully duplicated, less is understood about the establishment of faunal communities in created or restored tidal marshes. Infauna, which may form an important link between detrital production and commercially important finfish and decapods, have received limited attention in vegetated marsh habitats. We examined the infauna, changes in vegetation composition, and selected physical parameters in created marshes of different ages. Infauna were sampled using standard core sampling techniques. Vegetation composition and changes in relative abundance were observed using plot-point techniques. Vegetation plots indicated ongoing replacement ofSpartina alterniflora bySchoenoplectus robustus, a pattern supported by comparisons of vegetation at one of the sites to that reported in a previous study. Infauna exhibited significant differences between sites of different ages, with the intermediate-age site having intermediate densities for several taxa. These results suggest that both infauna and vegetation in created marshes undergo long-term change (ongoing after 10–20 yr), with both the plant and infaunal communities having qualitatively similar overall species composition to natural marsh areas.  相似文献   

6.
Currently, mangroves dominate the tidal wetlands of Tampa Bay, Florida, but an examination of historic navigation charts revealed dominance of tidal marshes with a mangrove fringe in the 1870s. This study's objective was to conduct a new assessment of wetland change in Tampa Bay by digitizing nineteenth century topographic and public land surveys and comparing these to modern coastal features at four locations. We differentiate between wetland loss, wetland gain through marine transgression, and a wetland conversion from marsh to mangrove. Wetland loss was greatest at study sites to the east and north. Expansion of the intertidal zone through marine transgression, across adjacent low-lying land, was documented primarily near the mouth of the bay. Generally, the bay-wide marsh-to-mangrove ratio reversed from 86:14 to 25:75 in 125?years. Conversion of marsh to mangrove wetlands averaged 72?% at the four sites, ranging from 52?% at Old Tampa Bay to 95?% at Feather Sound. In addition to latitudinal influences, intact wetlands and areas with greater freshwater influence exhibited a lower rate of marsh-to-mangrove conversion. Two sources for nineteenth century coastal landscape were in close agreement, providing an unprecedented view of historic conditions in Tampa Bay.  相似文献   

7.
We evaluated the biogeomorphic processes of a large (309 ha) tidal salt marsh and examined factors that influence its ability to keep pace with relative sea-level rise (SLR). Detailed elevation data from 1995 and 2008 were compared with digital elevation models (DEMs) to assess marsh surface elevation change during this time. Overall, 37 % (113 ha) of the marsh increased in elevation at a rate that exceeded SLR, whereas 63 % (196 ha) of the area did not keep pace with SLR. Of the total area, 55 % (169 ha) subsided during the study period, but subsidence varied spatially across the marsh surface. To determine which biogeomorphic and spatial factors contributed to measured elevation change, we collected soil cores and determined percent and origin of organic matter (OM), particle size, bulk density (BD), and distance to nearest bay edge, levee, and channel. We then used Akaike Information Criterion (AICc) model selection to assess those variables most important to determine measured elevation change. Soil stable isotope compositions were evaluated to assess the source of the OM. The samples had limited percent OM by weight (<5.5 %), with mean bulk densities of 0.58 g cm-3, indicating that the soils had high mineral content with a relatively low proportion of pore space. The most parsimonious model with the highest AICc weight (0.53) included distance from bay's edge (i.e., lower intertidal) and distance from levee (i.e., upper intertidal). Close proximity to sediment source was the greatest factor in determining whether an area increased in elevation, whereas areas near landward levees experienced subsidence. Our study indicated that the ability of a marsh to keep pace with SLR varied across the surface, and assessing changes in elevation over time provides an alternative method to long-term accretion monitoring. SLR models that do not consider spatial variability of biogeomorphic and accretion processes may not correctly forecast marsh drowning rates, which may be especially true in modified and urbanized estuaries. In light of SLR, improving our understanding of elevation change in these dynamic marsh systems will play a crucial role in forecasting potential impacts to their sustainability and the survival of these ecosystems.  相似文献   

8.
Deltaic landscapes, such as the Mississippi River Delta, are sites of extensive conversion of wetlands to open water, where increased fetch may contribute to erosion of marsh edges, increasing wetland loss. A field experiment conducted during a storm passage tested this process through the observations of wave orbital and current velocities in the fringe zone of a deteriorating saltmarsh in Terrebonne Bay, Louisiana. Incident waves seaward of the marsh edge and wave orbital and current velocities immediate landward of the marsh edge were measured. Through a dimensional analysis, it shows that the current and orbital velocities in the marsh fringe were controlled by the incident waves, inundation depth, submergence ratio, and vegetation density. Similarly, it is shown that the longshore currents in the inundated saltmarsh fringe depended on the local wave-induced momentum flux, vegetation submergence, and vegetation density in the fringe zone. The cross-shore current showed the presence of a return flow in the lower region of the velocity profile. A high correlation between the current direction and the local flow-wave energy ratio as well as the vegetation submergence and density is found, indicating the important role of surface waves in the fringe flow landward of an inundated wetland under storm conditions. The field observations shed light on the potential ecological consequences of increased wave activities in coastal saltmarsh wetlands owing to subsidence, sea level rise, limited sediment supply, increases in wind fetch, and storm intensity.  相似文献   

9.
Three coastal salt marshes were surveyed independently by two teams of biologists to determine the upper limit of marsh. Distribution of species and species assemblages were related to surveyed elevations for South Beach marsh, Yaquina River estuary; Drift Creek marsh, Alsea River estuary; and Bandon marsh, Coquille River estuary. A transition zone between marsh and upland was identified by strong dominance ofPotentilla pacifica and the presence ofAchillea millefolium, Angelica lucida, Aster subspicatus, Oenanthe sarmentosa, Trifolium wormskjoldii, andVicia gigantea. Mean elevation of the lower boundary of the transition zone was 1.38 m above National Geodetic Vertical Datum (N.G.V.D.) and the upper boundary of the transition zone was 1.54 m above N. G. V. D. Relation of the upper limit of marsh to tidal datums varied with marsh. Mean elevation of the upper and lower limit of the transition zone was 0.58 m above MHW and 0.36 m above MHW, respectively. The two teams of biologists using the same biological criteria for defining the upper limit of marsh, independently agreed on the elevational position of the upper limit of marsh. Additional research and testing of the definition of the upper limit of marsh is warranted.  相似文献   

10.
Small-scale armoring placed near the marsh-upland interface to protect single-family homes is widespread but understudied. Using a nested, spatially blocked sampling design on the coast of Georgia, USA, we compared the biota and environmental characteristics of 60 marshes adjacent to either a bulkhead, a residential backyard with no armoring, or an intact forest. We found that marshes adjacent to bulkheads were at lower tidal elevations and had features typical of lower elevation marsh habitats: high coverage of the marsh grass Spartina alterniflora, high density of crab burrows, and muddy sediments. Marshes adjacent to unarmored residential sites had higher soil water content and lower porewater salinities than the armored or forested sites, suggesting that there may be increased freshwater input to the marsh at these sites. Deposition of Spartina wrack on the marsh-upland ecotone was negatively related to elevation at armored sites and positively related at unarmored residential and forested sites. Armored and unarmored residential sites had reduced densities of the high marsh crab Armases cinereum, a species that moves readily across the ecotone at forested sites, using both upland and high marsh habitats. Distance from the upland to the nearest creek was longest at forested sites. The effects observed here were subtle, perhaps because of the small-scale, scattered nature of development. Continued installation of bulkheads in the southeast could lead to greater impacts such as those reported in more densely armored areas like the northeastern USA. Moreover, bulkheads provide a barrier to inland marsh migration in the face of sea level rise. Retaining some forest vegetation at the marsh-upland interface and discouraging armoring except in cases of demonstrated need could minimize these impacts.  相似文献   

11.
The salt marsh surface is not a homogeneous environment. Rather, it contains a mix of different microhabitats, which vary in elevation, microtopography, and location within the estuarine system. These attributes act in concert with astronomical tides and meteorological and climatological events and result in pulses of tidal flooding. Marsh hydroperiod, the pattern of flooding events, not only controls nekton access to marsh surface habitats directly but may also mediate habitat exploitation through its influence on other factors, such as prey abundance or vegetation stem density. The relative importance of factors affecting marsh hydroperiod differ between the southeast Atlantic and northern Gulf of Mexico coasts. Astronomical tidal forcing is the primary determinant of hydroperiod in Atlantic Coast marshes, whereas predictable tides are often overridden by meteorological events in Gulf Coast marshes. In addition, other factors influencing coastal water levels have a proportionately greater effect on the Gulf Coast. The relatively unpredictable timing of marsh flooding along the Gulf Coast does not seem to limit habitat utilization. Some of the highest densities of nekton reported from salt marshes are from Gulf Coast marshes that are undergoing gradual submergence and fragmentation caused by an accelerated rise in relative sea level. Additional studies of habitat utilization are needed, especially on the Pacific and Atlantic coasts. Investigations should include regional comparisons of similar microhabitats using identical quantitative sampling methods. Controlled field experiments are also needed to elucidate the mechanisms that affect the habitat function of salt marshes.  相似文献   

12.
We investigated the historical ecology of Elkhorn Slough, a 1,200 ha tidal wetland system in central California. The goal of this study was to identify patterns of change in the extent and distribution of wetland habitats during a 150-yr period and to investigate the causes of these changes. Using a geographic information system (GIS), we interpreted historic maps, charts, and aerial photographs. We created a series of summary maps to illustrate and quantify changes in tidal flow and habitat types at six representative historical periods. With the aid of custom software tools, we performed semi-automated spatial analysis of historic aerial photographs to quantify changes in marsh cover at fixed quadrats and tidal creek width at fixed cross sections. Our multiscale analysis documents dramatic shifts in the distribution of habitat types resulting from anthropogenic modifications to the hydrology of the slough. More than half of the marshlands were diked, and more than two thirds have either degraded or been converted to other habitat types. The construction of an artificial mouth abruptly transformed the wetland system from depositional to highly erosional, enlarging channels, widening creeks, and converting marsh to intertidal mudflat or open water. Increased tidal amplitude and velocity are the likely causes. In recent decades, levee failure and intentional breaching have restored the acreage under tidal influence to nearly historic levels, but recolonization of former wetlands by salt marsh vegetation has been minimal. Degraded former marshland and unvegetated mudflat are now the dominant habitat types at Elkhorn Slough. The rate of habitat change remains high, suggesting that a new equilibrium may not be reached for many decades. This study can help tidal wetland managers identify patterns and mechanisms of habitat change and set appropriate conservation and restoration goals.  相似文献   

13.
Evaluations of tidal wetland restoration efforts suffer from a lack of appropriate reference sites and standardized methods among projects. To help address these issues, the National Estuarine Research Reserve System (NERRS) and the NOAA Restoration Center engaged in a partnership to monitor ecological responses and evaluate 17 tidal wetland restoration projects associated with five reserves. The goals of this study were to (1) determine the level of restoration achieved at each project using the restoration performance index (RPI), which compares change in parameters over time between reference and restoration sites, (2) compare hydrologic and excavation restoration projects using the RPI, (3) identify key indicator parameters for assessing restoration effectiveness, and (4) evaluate the value of the NERRS as reference sites for local restoration projects. We found that the RPI, modified for this study, was an effective tool for evaluating relative differences in restoration performance; most projects achieved an intermediate level of restoration from 2008 to 2010, and two sites became very similar to their paired reference sites, indicating that the restoration efforts were highly effective. There were no differences in RPI scores between hydrologic and excavation restoration project types. Two abiotic parameters (marsh platform elevation and groundwater level) were significantly correlated with vegetation community structure and thus can potentially influence restoration performance. Our results highlight the value of the NERRS as reference sites for assessing tidal wetland restoration projects and provide improved guidance for scientists and restoration practitioners by highlighting the RPI as a trajectory analysis tool and identifying key monitoring parameters.  相似文献   

14.
Changes in groundwater tables brought about by sea level increases in the Delaware River Basin (near Philadelphia) about 2,500 years B.P., initiated wetland development at the Princeton-Jefferson Branch of the Woodbury Creek marshes. Continual increases in sea level pushed groundwater tables further upward, and by approximately 800 years B.P., groundwater tables had risen to the upper limits for woody vegetation at the site. By the time European settlers arrived in the late 1600s nontidal sedge marshes dominated the site. Upon arriving colonists began manipulating the hydrology of the Delaware River Basin by constructing dams and dikes for flood control. Soon many areas were cut off from direct contact with the river. During the next one and one-half centuries sea level continued to rise, and because of channelization of the Delaware River the tidal range doubled. During the early 1900s flood control structures began to fail allowing tidal waters to periodically inundate these protected sites. At that time the site was dominated by a Quercus-Castanea swamp forest with hummocks of Cyperaceae interspersed throughout. In 1940 the dike surrounding the Princeton-Jefferson marsh collapsed and the site was immediately inundated with tidal waters on a regular basis. Within a short period of time tidal freshwater marsh developed and has continued to the present day. It is clear from this investigation that changes in hydrology brought about by cultural modifications have been directly responsible for the ontogeny of this tidal marsh. The influence cultural impacts have had on wetland development at the Princeton-Jefferson marsh suggest that it may be necessary to reevaluate the extent humans have modified the development and structure of the present day upper Delaware River estuary. Although the ability to discern historic vegetation zonation patterns is limited, these marshes can record individual events that have shaped these wetlands through time. Due to differences in the structure of the plant community, rates of decomposition, and processes of accretion, Redfield’s model (1972) of tidal salt marsh development does not apply to the Princeton-Jefferson marsh. Along a submerging coast, the development of tidal freshwater marsh in many estuaries may be necessary for the establishment of brackish and salt marshes by creating and maintaining a suitable habitat for the eventual colonization of more salt-tolerant plant species. The roles these wetlands have played in the development of the estuaries has been underestimated in the past.  相似文献   

15.
Sea level rise is causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, including species of concern, such as the saltmarsh sparrow (Ammodramus caudacutus). We present a climate change adaptation strategy (CCAS) adopted by scientific, management, and policy stakeholders for managing coastal marshes and enhancing system resiliency. A common adaptive management approach previously used for restoration projects was modified to identify climate-related vulnerabilities and plan climate change adaptive actions. As an example of implementation of the CCAS, we describe the stakeholder plans and management actions the US Fish and Wildlife Service and partners developed to build coastal resiliency in the Narrow River Estuary, RI, in the aftermath of Superstorm Sandy. When possible, an experimental BACI (before-after, control-impact) design, described as pre- and post-sampling at the impact site and one or more control sites, was incorporated into the climate change adaptation and implementation plans. Specific climate change adaptive actions and monitoring plans are described and include shoreline stabilization, restoring marsh drainage, increasing marsh elevation, and enabling upland marsh migration. The CCAS provides a framework and methodology for successfully managing coastal systems faced with deteriorating habitat, accelerated sea level rise, and changes in precipitation and storm patterns.  相似文献   

16.
A 115-year-old railroad levee bisecting a tidal freshwater marsh perpendicular to the Patuxent River (Maryland) channel has created a northern, upstream marsh and a southern, downstream marsh. The main purpose of this study was to determine how this levee may affect the ability of the marsh system to gain elevation and to determine the levee’s impact on the marsh’s long-term sustainability to local relative sea level rise (RSLR). Previously unpublished data from 1989 to 1992 showed that suspended solids and short-term sediment deposition were greater in the south marsh compared to the north marsh; wetland surface elevation change data (1999 to 2009) showed significantly higher elevation gain in the south marsh compared to the north (6?±?2 vs. 0?±?2 mm year?1, respectively). However, marsh surface accretion (2007 to 2009) showed no significant differences between north and south marshes (23?±?8 and 26?±?7 mm year?1, respectively), and showed that shallow subsidence was an important process in both marshes. A strong seasonal effect was evident for both accretion and elevation change, with significant gains during the growing season and elevation loss during the non-growing season. Sediment transport, deposition and accretion decreased along the intertidal gradient, although no clear patterns in elevation change were recorded. Given the range in local RSLR rates in the Chesapeake Bay (2.9 to 5.8 mm year?1), only the south marsh is keeping pace with sea level at the present time. Although one would expect the north marsh to benefit from high accretion of abundant riverine sediments, these results suggest that long-term elevation gain is a more nuanced process involving more than riverine sediments. Overall, other factors such as infrequent episodic coastal events may be important in allowing the south marsh to keep pace with sea level rise. Finally, caution should be exercised when using data sets spanning only a couple of years to estimate wetland sustainability as they may not be representative of long-term cumulative effects. Two years of data do not seem to be enough to establish long-term elevation change rates at Jug Bay, but instead a decadal time frame is more appropriate.  相似文献   

17.
The purpose of this investigation was to examine storm surge and wave reduction benefits of different environmental restoration features (marsh restoration and barrier island changes), as well as the impact of future wetland degradation on local surge and wave conditions. Storm surge simulations of two representative hurricanes were performed using the ADCIRC storm surge model with the inclusion of radiation stress gradients from the STWAVE nearshore wave model. Coupled model simulations were made for a number of landscape configurations that involved both restored and degraded wetland features. The impact of barrier island condition on hurricane surge and waves was also evaluated. Effects of landscape features were represented by changes in elevation and frictional resistance. Restoration and degradation of marsh resulted in decreases (for restoration cases) and increases (for degradation cases) in both surge and waves. The magnitude of change was correlated with the magnitude of the horizontal extent and elevation changes in the marsh. In general, the wave change patterns are consistent with the water level changes. Deflation of the Chandeleur Islands (barrier island chain) resulted in slightly increased surge. Results suggest that coastal marsh does have surge and wave reduction potential. Results also indicate that the impact of the landscape features is amplified in areas where there are levee “pockets.” Barrier islands and coastal ridges reduce wave heights, even if in a degraded condition and thus can reduce wave energy in wetland areas, protecting them from erosion.  相似文献   

18.
The 4th IPCC report highlights the increased vulnerability of the coastal areas from floods due to sea-level rise (SLR). The existing coastal flood control structures in Bangladesh are not adequate to adapt these changes and new measures are urgently necessary. It is important to determine the impacts of SLR on flooding to analyse the performance of the existing structures and corresponding impact to plan for suitable adaptation and mitigation measures to reduce the impacts of floods on coastal zone. The study aims to develop a comprehensive understanding of the possible effects of SLR on floods in the coastal zone of Bangladesh. A hydrodynamic model, which is a combination of surface and river parts, was utilized for flood simulation. The tool was applied under a range of future scenarios, and results indicate both spatial variability of risk and changes in flood characteristics between now and under SLR. Estimated impact on population, infrastructure and transportation is also exposed. These types of impact estimation would be of value to flood plain management authorities to minimize the socio-economic impact.  相似文献   

19.
Fish communities in tidal tributaries have received considerable attention, but the relative value of nontidal tributaries (having a tidal amplitude of <?5 cm) may represent an under-valued habitat. A multi-gear sampling approach was used to collect fish and macroinvertebrates from one tidal and two nontidal tributaries to describe and compare the respective nekton communities and habitat use patterns. Nekton communities in tidal and nontidal tributaries were markedly different even though habitats were similar (e.g., temperature, DO, depths, shoreline vegetation). While catch-per-unit-effort (CPUE) of estuarine-dependent species (e.g., red drum, spot, common snook) was lower in nontidal tributaries, the overall nekton CPUE was twice that of the tidal tributary, and the community was comprised mostly of freshwater marsh species (e.g., eastern mosquitofish, sailfin molly, bluefin killifish). Based on the life histories of the fishes that differed between tributary types, the proximity of coastal inlets and availability of effective larval transport mechanisms for estuarine-dependent species may be greater determinants of community differences than factors related to tributary size or shoreline habitat type. These results recognize smaller nontidal tributaries as undervalued nursery habitats and suggest the function as secondary nursery habitats is a critical service to the overall estuarine community.  相似文献   

20.
Hummock-hollow microtopography is characteristic of many freshwater wetland systems. It is comprised of elevated, vegetated hummocks and lower elevation hollows; the latter are usually unvegetated, with reducing conditions in sediments unfavorable for plant growth. This microtopography is also often found in interior regions of brackish marshes, where flood duration is high and salinity fluctuations are prominent. Previous investigation showed this spatial patterning to be relatively stable over time and suggested that these microenvironments are produced by the plants themselves. This study investigates the possible mechanisms and controlling factors of this microtopography and considers the effect of different salinity regimes. We examined microtopographic variability of vegetation and sediment biogeochemistry in two interior tidal marshes, a freshwater-oligohaline marsh and a mesohaline marsh, both of which exhibited fine-scale spatial variability. Within a 2-yr period, the freshwater-oligohaline site demonstrated a labile response of both vegetation and sediment chemistry to interannual variability in salinity and sulfide concentrations, whereas the microscale spatial variability of the mesohaline system persisted. Geochronological assessment of the mesohaline marsh, where microtopographic variability was relatively stable, supported the hypothesis that the formation of the hummock-hollow topography is driven by the plants, rather than developing as a result of underlying physical variability. We propose that brackish marsh vegetation alters the sedimentary environment in such a way as to maximize growth under high-stress, variable conditions. The adaptive advantage of this strategy was illustrated in the accretion rates measured at the higher salinity marsh, which were indistinguishable between the interior hummock sediments and those of an adjacent homogeneous bank marsh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号