首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The spatial distribution and geoaccumulation indices of four heavy metals were investigated in very shallow marine sediments of southwestern Spain. Surface sediments were collected from 43 sites with water depth ranging from 3 to 20 m. High to very high pollution levels (I geo > 4 for zinc, lead and copper) were detected near the end of the Huelva bank, whereas chromium shows a more hazardous distribution in the southwestern Spanish littoral. Low to moderate heavy metal contents (mainly zinc and lead) were also observed in other two areas at different water depths (Isla Cristina-Piedras River: 10–18 m water depth; Mazagón–Matalascañas: <10 m water depth), whereas unpolluted to moderately polluted sediments were detected in the very shallow zones (<8 m water depth) located between the mouths of the Guadiana and the Piedras Rivers. A regional scenario indicates a strong pollution of the adjacent marine areas by polluted inputs derived from the Tinto–Odiel rivers, with a partial transport of heavy metals by W–E littoral currents even 40 km eastward. The Guadiana River is an additional source of zinc–lead contamination near the Spanish–Portuguese border, mainly at water depths up to 10 m. All these rivers are affected by acid mine drainage processes, derived from millennial mining activities. This pollution affects the sediment quality even 40 km eastward.  相似文献   

2.
The Daliao River System (DRS) is one of the major river systems in the northeastern China and receives substantial discharges from industrial, municipal, and agricultural effluents. In this study, the contents and partition of toxic trace elements in the DRS sediments were evaluated in terms of contamination levels and ecological risks using geoaccumulation index (Igeo), relative enrichment factor (REF), sediment pollution index (SPI), and potential effect concentration quotient (PECQ). Fourteen samples were collected and measured for trace and major elements and sediment properties. The following concentration ranges (mg kg?1) of toxic trace elements were found: As, 1.6–18.0; Cd 0.1–0.9; Co 3.8–23.4; Cr 12.9–151.6; Cu 4.6–86.1; Hg 0.01–0.35; Ni 8.4–64.4; Pb 11.6–67.1; Sb 0.13–1.77; V 18.5–153.3; and Zn 20.4–211.3. The proportions of soluble and exchangeable trace metals were less than 1 %, while the proportions of trace metals bound to carbonate, amorphous oxides, organic matter, and crystalline oxides were usually each <10 %. However, 28.8 % of Cd, on average, was associated with carbonate. The average proportions of trace metals in the residual fraction ranged 57.3 % for Cd to 85.4 % for Cr, indicating low mobility and bioavailability. Cr, Ni, V, and Co in the sediments mainly originated from natural sources, while Cd, As, Pb, Sb, and Hg partially originated from anthropogenic sources. The Igeo, REF, SPI, and PECQ values of the heavy metals in the sediment were not in agreement with each another. The average REF values of Cd and As were higher than those of the other metals. However, the average PECQ value was higher for Cr and Ni than for the other metals, indicating that these two metals would cause higher adverse biological effects than the other metals. In addition, the sediments located adjacent to cities were more contaminated. Therefore, it is suggested that future management and pollution control within the DRS might focus on As, Cd, Cr, and Ni in the sediments, particularly in the sediments adjacent to cities.  相似文献   

3.
This study examines the sediment particle size distribution and the trace metal concentrations from a dammed-river watershed (Nestos River) to its deltaic zone in NE Greece. The study area is relatively unpolluted. The distribution of trace metals (Cu, Cr, Cd, Ni, Pb, Hg) in sediments throughout the catchment area showed selective “trapping” of certain elements behind the two artificial dams (Thissavros and Platanovrisi dams) in the watershed and a sudden reduction downstream (83% for Cd, 81% for Cr, 94% for Cu, 90% for Ni, 86% for Hg and 33% for Pb). Marked sediment particle separation is observed at the upstream dam (Thissavros), where coarse material including sand is trapped (coarse fraction 12.9–49.3%). Fine-grained material (<63 μm) is trapped behind the Platanovrisi dam (68.1%), and the reservoir showed elevated metal concentrations, especially for Cu and Cd (16.3 and 0.5 μg/g, respectively). Lead exhibited a homogenous distribution throughout the watershed (20.1–32.3 μg/g). All other trace metals (Cu, Cr, Cd, Ni and Hg) decline sharply downstream of the dam complex. In the delta system, nearshore sediments consist of shallow deposits in the vicinity of river mouth and are enriched in Cr (4.4–53.0 μg/g) and Ni (2.6–44.3 μg/g), while the further offshore and slightly deeper (20–40 m) sediments illustrate elevated Hg (0–0.07 μg/g), Cd (0.09–0.18 μg/g), Cu (11.5–18.3 μg/g) and Ni (38–54.5 μg/g).  相似文献   

4.
The heavy metal burden of Akkulam–Veli Lake, a shallow lake in southern part of India, is investigated through the analysis of surface sediments. The average concentrations of heavy metals such as lead, chromium, nickel, copper, zinc, cobalt, iron, and manganese were determined at selected stations. The degree of contamination of selected stations was evaluated using indices such as enrichment factor, contamination factor, and pollution load index and compared with sediment quality guidelines. Statistical analysis is carried out by correlation analysis and hierarchical clustering analysis to identify relatively homogeneous groups of cases. The results of this study indicate severe contamination at most of the stations selected. The degree of contamination of the lake could be rated as ‘moderate’ to ‘strong’. The average pollution load index shows progressive deterioration of sediment quality indicating ‘risk’ on the aquatic environment and ecosystems of the lake.  相似文献   

5.
Heavy metal pollution in the surficial sediments derived from the estuary in Daliao River and Yingkou Bay is investigated to assess environmental quality, pollution level, bioavailability and toxicity. The ranges of Pb, Co, Zn and Cu concentrations in the surficial sediments are: 16.57–39.18, 3.61–16.02, 16.53–39.18, 2.77–43.80 mg/kg. Results of the geoaccumulation index (I geo) show that the pollution levels of four metals are in the “unpolluted” class except for Pb in 15 sampling sites. The pollution level of the study area assessed by pollution load index (PLI) shows that except for the moderately polluted region of sites 1, 2, 3, 8, 12 and 13, other sites belong to unpolluted state. The sequence of pollution extent of different heavy metals is: Pb > Zn > Co > Cu. At all sampling sites, the grades of potential ecological risk of Co, Cu, Pb and Zn are “light”. The order of potential ecological risk is: Pb > Co > Cu > Zn. Sequential extraction of the metals indicates that the states of Pb, Cu, Co and Zn in the sediment are relatively stable at most sites of the estuary in Daliao River and Yingkou Bay, which means that there is a low source of pollution arriving in this area. While only at several sites, Co, Pb and Zn are labile, which are considered as anthropogenically originated.  相似文献   

6.
This study was carried out in order to determine the concentration of heavy metals, e.g., lead (Pb), cadmium (Cd), copper (Cu), zinc (Zn), iron (Fe), manganese (Mn), nickel (Ni) and chromium (Cr) in road dust in Kuala Lumpur’s city centre. Samples were collected from four sampling locations, each of which had four sampling points and three replications. Heavy metals from different fractions of particles separated by different diameter sizes: d < 63 μm (Fraction A), 63 < d < 125 μm (Fraction B) and 125 < d < 250 μm (Fraction C) were analyzed using inductively coupled plasma mass spectrometry. The results from this study showed that concentration of heavy metals was dominated by the smallest particle size: <63 μm and that Fe was the most abundant heavy metal overall, followed by Cu > Mn > Zn > Pb > Ni > Cr > Cd. The fact that Cd had the highest enrichment factor value (EF) for all particle sizes indicates that anthropogenic activities contributed to the presence of this metal. There was also a higher EF value for heavy metals in small particle (Fraction A), compared to Fraction B and C, which suggests that fine particles were being produced through anthropogenic activities. Cluster analysis and principal component analysis demonstrated the likelihood of the heavy metals detected in the road dust, originating from road traffic and industrial activities.  相似文献   

7.
The nature of Al Batinah coast beach sediments in the Sultanate of Oman was investigated by the analysis of grain size and mineralogy. The beach sediments, mostly light-medium gray green, were predominantly fine sands, with the average grain size of all samples about 200 μm. Some of the particles were gravel (2–16 mm), and some were even larger pebble-size particles (16–256 mm). Some mud (sediment <63 μm) was present, mostly in the sub-tidal sediments. The majority of the samples were skewed to the coarse size with coarse tail partly due to the presence of shell fragments. Approximately 50 % of the beach sediments were quartz with different varieties based on shape and size. The second major component of beach sediment was calcium carbonate which varied from 10 to 65 %. The other components in decreasing order consisted of microbreccia, feldspar, pyroxene, igneous rock fragments, biotite flakes, and heavy minerals. The levels of carbonate were lower in NW Al Batinah coast from Harmul to Al Khaburah but were higher in the SE from Al Khaburah to Al Ghubrah. This could be attributed to either lower carbonate production or more sediment input by wadis along the north-western part of Al Batinah coast. The unique and complex nature of these sediments is largely due to the geology of the terrestrial source area in the Hajar Mountains which contains the famous Samail ophiolite complex and the weak sorting along the shoreline in these tide-modified beaches.  相似文献   

8.
Environmental geochemical studies were carried out to find out the extent of contamination in sediments due to heavy metals in Balanagar industrial area, Hyderabad, Andhra Pradesh, India. The industrial area consisting of 350 small and large industries manufacturing battery, steel planting, pharmaceutical chemicals, metal plating, etc. The present study was undertaken on sediment contamination in Balanagar industrial area, to determine extent and distribution of heavy metals (Cu, Cr, Ni, Pb, Zn, As) and to delineate the source. There is no treatment plant in the industrial area, and many industries release the effluents into nearby nalas and lakes. Solid waste from the industries is also being dumped along the roads and near the open grounds due to which heavy metals migrate from solid waste to the groundwater. The sediments samples were collected from the study area in clean polythene covers and were analyzed for their heavy metals by X-ray fluorescence spectrometry. The concentration ranges of different heavy metals were Cr, 96.2–439.6 mg/kg; Cu, 95.7–810 mg/kg; Ni, 32.3–13,068.2 mg/kg; Pb, 59.2–512 mg/kg; Zn, 157.1–4,630.5 mg/kg; Co, 1.8–48.3 mg/kg; and V, 35.2–308.5 mg/kg. High concentration of heavy metals in sediments can be attributed to some pharmaceutical and metal industries in the study area. Based on the results obtained, suitable remedial measures can be adopted such as phytoremediation and bio-remediation for reduction of heavy metals in sediments.  相似文献   

9.
Dynamics of heavy metals in the surface sediments of Mahanadi river estuarine system were studied for three different seasons. This study demonstrates that the relative abundance of these metals follows in the order of Fe > Mn > Zn > Pb > Cr > Ni ≥ Co > Cu > Cd. The spatial pattern of heavy metals supported by enrichment ratio data, suggests their anthropogenic sources possibly from various industrial wastes and municipal wastes as well as agricultural runoff. The metal concentrations in estuarine sediments are relatively higher than in the river due to adsorption/accumulation of metals on sediments during saline mixing, while there is a decreasing trend of heavy metal concentrations towards the marine side. The temporal variations for metals, such as Fe, Mn, Zn, Ni and Pb exhibit higher values during monsoon season, which are related to agricultural runoff. Higher elemental concentrations are observed during pre-monsoon season for these above metals (except Ni) at the polluted stations and for metals, such as Cr, Co and Cd at all sites, which demonstrate the intensity of anthropogenic contribution. R-mode factor analysis reveals that “Fe–Mn oxy hydroxide”, “organic matter”, “CaCO3”, and “textural variables” factors are the major controlling geochemical factors for the enrichment of heavy metals in river estuarine sediment and their seasonal variations, though their intensities were different for different seasons. The relationships among the stations are highlighted by cluster analysis, represented in dendrograms to categorize different contributing sites for the enrichment of heavy metals in the river estuarine system.  相似文献   

10.
Sediments and surface water contamination by the industrial effluents containing heavy metals is the most detrimental environmental impact. Therefore, the present work attempts to determine the status of eight heavy metal distribution in sediments and water samples, and their ecological risks’ assessment in the studied area. The distribution pattern of heavy metals in the water and sediment follows the sequences: Zn > Cu > Pb > Cr > Mn > Ni > As > Cd and Mn > Zn > Cr > Pb > Cu > Ni > As > Cd, respectively. Gross water pollution is observed at different sampling points of Dhalai Beel and Bangshi River. The comparison of sedimentary mean metal concentrations with several environmental contamination monitoring parameters, viz, threshold effect level (TEL), probable effect level (PEL), and severe effect lever (SEL) indicates that the metal levels are less than PEL except Cr. Moreover, the level of contamination degree (C d) and modified degree of contamination (mC d) indicates ‘low’ and ‘nil to low’ degree of contamination, respectively. Pollution load indices (PLI) of the studied area are lower than unity, indicates no pollution. Furthermore, a toxic-response factor is applied to assess the potential ecological risk of these heavy metals into the water body. The results of this study exhibit a low potential ecological risk of heavy metals. The Pearson’s correlation and cluster analysis are also performed to assess the heavy metal interactions in water and sediment samples.  相似文献   

11.
Remediation of heavy-metal-contaminated sediment is often hampered by the availability of heavy metals to the added chemical agents because the heavy metals are often shielded by the sediment matrix. Effective heavy-metal extraction technique becomes an important factor in enhancing the treatment efficiency. A novel extraction/washing technique utilizing chelating agent and elevated pressure in consecutive cycles of compression and decompression has been developed for heavy-metal-contaminated sediment washing in the presence of chelating agent. In this study, the optimal operational conditions of pressure-assisted cyclic washing of Cu-contaminated sediments (initial Cu concentration = 23.177 mg/kg) were determined in a laboratory-scale system. The control factors included applied pressure level, washing time, applied chelant [ethylenediamine-tertraacetic (EDTA)] concentration (0.01–0.5 M), pressure times, and application of consecutive batches washing. Results from the bench-scale study showed that up to 70 % of Cu can be removed from the sediments when 10 atm of pressure was applied for washing. The efficiency dropped to 55 % when the pressure dropped to 6 atm. Under the same operational conditions, the optimal cyclic washing time was 60 min. Results from the particle size analyses indicate that the mean particle size dropped from 100 to 50 μm after the pressure-assisted cyclic washing. Thus, cyclic pressure caused the fracture of sediment aggregates resulting in the exposure of Cu to chelating agents. With the assistance of pressure cyclic system, the total washing time and the amount of added chemical agent used can be significantly reduced.  相似文献   

12.
Heavy metals in nearshore sediments of Kalpakkam,southeast coast of India   总被引:1,自引:1,他引:0  
Kalpakkam, a tiny fishing hamlet dotting the east coast, halfway between Chennai and Pondicherry has become prominent due to the Madras Atomic Power Station. The present study aims at assessing the spatial and temporal distribution pattern of heavy metals (Cd, Pb, Zn, Cu, Ni, Cr, and Fe) from 12 stations along the inner shelf of Bay of Bengal, India, during pre-monsoon (PRM), monsoon, and post-monsoon (POM) seasons. The order of occurrence of the metals in sediments of Kalpakkam is Cr > Zn > Ni > Cu > Pb > Cd (excluding Fe since unit is in %) and exhibits a unique seasonal pattern with the highest values (average) during POM except for Cd which shows highest (average) concentration during PRM. In order to determine the sample association according to their geochemical composition and their granulometric characteristics, a correlation matrix was generated and sediment pollution indices viz., sediment enrichment factor and geoaccumulation index were computed. The results confirm anthropogenic input of Cd to nearshore sediments of Kalpakkam. Sources of Cd can be attributed to dredging activities at Edaiyur, direct dumping and sewage sludge from anthropogenic activities, which reach the study area through the Buckingham Canal opening at the backwaters—Sadras and Edaiyur, and extreme use of antifouling paints by fishing trawlers.  相似文献   

13.
为了解防城港近岸海域表层沉积物重金属分布及污染特征,系统采集了19件研究区的表层沉积物样品,检测了7种重金属元素的含量.测试结果表明:研究区表层沉积物中Cu、Pb、Zn、Cd、Cr、Hg和As含量均符合政府制定的海洋功能区划要求.单因子潜在生态危害指数法评价结果显示,不同重金属潜在生态危害排序为Hg>Cu>Cd>As>...  相似文献   

14.
沿海表层沉积物中重金属的有效结合态   总被引:13,自引:0,他引:13       下载免费PDF全文
以浙江沿海表层沉积物为研究对象,系统地研究了重金属有效结合态与沉积环境、矿物组成和人为排放等环境因素之间的相互关系.结果表明:沿海表层沉积物中重金属的积累数量,呈现出潮汐河口沉积物>沿海沉积物>强潮汐河口沉积物的趋势,这反映了不同沉积类型对重金属富集作用的差异;重金属的有效结合态,总体上以铁锰氧化物结合态>碳酸盐结合态>硫化物及有机结合态>可交换态的顺序存在,但是不同的重金属或同种重金属在不同的采点,主要有效结合态的比例存在明显的差异,这不仅与重金属的地球化学性质、沉积环境和沉积物中的粘土矿物组成有关,更受到重金属污染物的人为排放量的影响.  相似文献   

15.
In the “Sea Diamond” shipwreck, it is estimated that almost 1.7 tons of batteries/accumulators and approximately 150 cathode ray tube technology televisions have gone to the bottom of the sea. Under these circumstances, all the aforementioned materials will eventually undergo severe accelerated corrosion. Consequently, a variety of heavy metals will either be released in seawater or precipitate in the form of salts resulting in contamination of the sea sediments. According to the ship data, and the aforementioned quantities of batteries and televisions, it is estimated that approximately 75–80 g of mercury, 630–1,050 g of cadmium and 1.14–1.26 tons of lead exist in the wreck only due to the electrical and electronic equipment present in the ship, not to mention the significant amount of heavy metals such as copper, nickel, ferrous and chromium that exist in the hulk. Four series of seawater sampling (n = 85) were conducted in different stations surrounding the wreck area in order to assess the overall impact from the release of heavy metals in the surrounding aquatic environment. The analysis indicated that there were stations where lead, zinc and cadmium were present in concentrations higher than the permissible limits set by the Unites States Environmental Protection Agency for seawater. Furthermore, the analysis of three series of sediment sampling (n = 31) from the wreck area showed elevated but expected concentration values for ferrous and manganese, considering the geological background of the area and contamination with lead, copper and cadmium.  相似文献   

16.
Algal species which are ubiquitous along the coastlines of many countries reflect the environmental conditions of the coastal seawater and may serve as useful biomonitors of anthropogenic pollution. Heavy metal concentrations of ten elements (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) of potential environmental concern were determined in seawater, sediments and twelve species of benthic marine macroalgae from four locations (Glenelg, Port Adelaide, Port Broughton and Port Pirie) along the South Australian coastline. The four sites chosen represented varying degrees of metal contamination, where the capacity for benthic macroalgae to accumulate heavy metals from the environment was evaluated. Spatial differences in heavy metal concentration in both seawaters and sediments were observed at all sites with the highest concentrations of heavy metals including Cd (125 μg g?1), Pb (2,425 μg g?1) and Zn (7,974 μg g?1) found in the finer sediment fractions (<250 μm) of Port Pirie. While all algal species studied (Acrosorium polyneurum, Anotrichium tenue, Cystophora Cephalornithos Cystophora monillifera, Cystophora monilliformis, Dictyopteris australis, Gelidium micropterum, Gracilaria, Hormophysa Cuneiformis, Sargassum cinctum, Scaberia agardhii and Ulva lactuca) accumulated metals to varying degrees, Blindigia marginata was a good biomonitor species for a number of metals including Cd, Co, Cr, Fe, Pb and Zn, exhibiting both relatively high total metal concentrations and significant concentration factors.  相似文献   

17.
Concentration and distribution of heavy metals (Cd, Cr, Cu, Hg, Ni, Pb and Zn) in surface sediments collected from five stations located along the southwest coast of India were investigated seasonally to assess whether there is insidious buildup of heavy metals. Spatial variation was in accordance with textural characteristics and organic matter content. The concentration of the metals in sediments of the study area followed the order: Zn > Cr > Ni > Cu > Pb > Cd > Hg. The use of geochemical tools and sediment quality guidelines to account for the magnitude of heavy metal contamination revealed high contamination in monsoon and impoverishment during post-monsoon. Estimated total metal concentrations in the present investigation were comparable with other studies; however, concentrations of Ni and Zn were higher than that of other coastal regions. Concentrations of metals in sediment largely exceed NOAA effects range:low (e.g., Cu, Cr, Hg) or effects range:median (e.g., Ni) values. This means that adverse effects for benthic organisms are highly probable.  相似文献   

18.
In this study, the concentrations of seven heavy metals (As, Cd, Cu, Cr, Ni, Pb, and Zn) in the water, sediments, and nine tissues of eight fish species in Chaohu Lake were detected. And the ecological risk of sediments and food safety caused by heavy metals were evaluated. The mean concentrations of metals (As: 8.21, Cd: 0.58, Cu: 2.56, Cr: 0.50, Ni: 26.47, Pb: 3.51, Zn: 23.05 μg/L) in the water were found lower than the threshold values for the first-grade water quality (China environmental quality standards for surface water). The mean concentrations of Cr, Cu, Ni, Pb, and Zn in the sediments were 41.79, 19.31, 7.61, 7.09, and 102.85 μg/g, respectively, while the concentration of As and Cd was recorded below the detection limit. The ecological risk assessment demonstrated that metals in the sediments posed low ecological risk. The bioaccumulation of metals in fish tissues showed relatively high concentrations in liver, brain, kidney, and intestines while low levels of metals were detected in muscle. A fascinating phenomenon was firstly noticed that all metals highly existed in fish brain and exhibited an especially significant positive correlation with the metal concentrations in sediment, indicating a health risk for Chinese due to their consumption favor of fish head.  相似文献   

19.
铜陵矿区水系沉积物中重金属存在形态特征研究   总被引:11,自引:0,他引:11  
通过对铜陵水系沉积物重金属形态分析实验,研究了重金属各种形态在沉积物中分布特征。分析结果显示,矿区水系沉积物中Cu、Pb、Zn、Cd等重金属含量都显著的高于对照样品,水系已经受到重金属的污染。提出了防治和改善铜陵地表水环境污染的措施。  相似文献   

20.
The urbanized coastal zones are frequently faced to various pollutant discharges mainly in the shoreline. The quantification of the pollution level was mainly based on sea-water analysis. However, in this environment, the sediment characterization, using quality indicators, may constitute an accurate approach. The latter can be particularly appropriate to define heavy metals pollution degree. Chemical analyses of Cd, Cu, Zn, and Fe were undertaken for a total of 45 surface marine sediment samples of Gabes city coast. There is a significant extension of pollution, strongly influenced by the dominant longshore current. The studied sediments were found usually enriched with Cu, Cd, and Zn. These anthropogenic heavy metals have identical behavior and similar distribution. These metals did not show any correlations with Fe chosen as natural tracer. The multi-element indices used permitted to conclude that 70% of sampling sites are highly affected by heavy metal contamination and associated with very high ecological risk. These indices use a simple contamination factor, which, however, would not take account of the sedimentary inputs and the complex sediment behavior. Consequently, modified indices, employing enrichment factor, were used and demonstrated better to assess pollution and ecological risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号