首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
通过进行地裂缝与斜交地铁隧道的物理模型试验,研究地铁列车荷载作用下地裂缝与斜交马蹄形地铁隧道的动力相互作用特性。试验结果表明:地铁行驶产生的振动在土层中各个方向传播时会有不同程度的衰减,地裂缝对地铁振动具有阻隔作用;地裂缝附近隧道下方土层的振动要比上部土层强烈;地铁隧道的拱底部位相比拱腰和拱顶部位振动响应更强烈。地裂缝未活动时,隧道底部与土体的接触附加压力较大;地裂缝上盘下降时,位于地裂缝附近的下盘隧道底部和上盘隧道顶部与土体的接触附加压力较大。地裂缝未活动时,激振作用产生的隧道顶部和底部的附加应变均较小;地裂缝上盘下降后,位于上盘的隧道顶部和位于下盘的隧道底部产生负的附加应变,位于下盘的隧道顶部和位于上盘的隧道底部产生正的附加应变,且随上盘下降量的增大,附加应变逐渐变大。  相似文献   

2.
以西安地铁工程为背景,设计了穿越地裂缝隧道——地层动力响应试验模型,开展了地铁振动作用下穿越地裂缝隧道——地层相互作用的动力模型试验,揭示了地裂缝活动及地铁列车振动时对位于地裂缝处地层的动力响应规律。试验结果表明:在地裂缝未活动时,隧道拱顶位置的加速度响应与拱底相比,其值相对较小,表明地铁列车振动引发拱底部的振动加速度,通过衬砌传递至上覆岩土体时,加速度发生了显著的衰减;当地裂缝上盘下降时,隧道拱底及拱顶测点产生的振动响应比地裂缝未活动时明显更为强烈。表明地裂缝的活动对隧道结构振动特性具有显著影响;受地铁列车运行位置变化和地裂缝上盘下降的双重影响,地裂缝两侧土体振动加速度幅值有明显的差异,这会对隧道结构的振动特性造成不利影响,在设计中应采取适当措施,防止造成隧道衬砌的局部损伤或破坏。  相似文献   

3.
为研究地铁列车振动荷载对地裂缝附近土压力动响应的影响机理,开展了地裂缝与斜交马蹄形地铁隧道的物理模型试验,分别制作地铁隧道模型和土层模型,采用激振器模拟地铁列车振动,通过压力盒测试土压力分布规律。试验结果表明:地裂缝未活动时,激振点所在的地裂缝一侧的附加土压力大于另一侧的附加土压力,离激振点越远附加土压力越小。垂直隧道方向的附加土压力分布具有隧道轴线处最大、隧道两侧逐渐减小的规律。地裂缝活动后,位于隧道上部的土体附加压力呈现上盘大、下盘小的分布规律,其余部位的附加土压力呈现下盘大、上盘小的规律。地裂缝未活动时,土体附加压力的分布主要受地裂缝的存在及与激振点距离的影响;地裂缝活动后土体附加压力的分布主要受隧道与土体接触状态的影响。  相似文献   

4.
为研究列车振动荷载作用下盾构隧道结构及周围土体的动力响应特性,采用模型试验方法,通过布置在盾构隧道底部的激振器施加扫频激振荷载和列车振动荷载,采用频率响应函数FRF与最大加速度分析了盾构隧道衬砌结构与周围土体不同位置处的动力响应及其衰减规律。研究结果表明:FRF是隧道衬砌结构和周围土体自身的动力响应特性的体现,与激振力的大小、扫频方向及扫频时间无关;在隧道管片衬砌结构的底部和顶部均体现出高频响应大于低频响应的特性,隧道顶部加速度响应沿隧道纵向衰减幅度明显小于隧道底部;隧道周围土体的动力响应沿深度有明显变化,但均表现出沿隧道轴向衰减的规律。隧道结构上部第1层测点土体的动力响应在全频域内随频率的增加逐渐增大。但在第2层和地表的第3层测点,土体的动力响应在30~90 Hz区段线性增长,在90~300 Hz区段出现波动变化,并无明显增大趋势;与扫频激振荷载引起的动力响应规律一致,由列车运行振动荷载引起的隧道管片衬砌结构和周围土体的振动沿隧道轴向逐渐衰减,隧道底部的加速度响应大于顶部,随着列车车速的增大,在隧道内部引起的加速度响应将显著增大。同时,在列车振动荷载作用下发现地表存在加速度放大效应,地表第3层测点的加速度响应均大于隧道结构上部第1层测点。  相似文献   

5.
地裂缝场地地铁隧道地震动力响应的振动台试验研究   总被引:1,自引:1,他引:0  
以西安轨道交通3号线地铁隧道近距离通过地裂缝场地为工程背景,采用几何比1:30的大型振动台模型试验,研究不同地震波作用下通过地裂缝带上盘场地地铁隧道的地震动力响应。试验结果表明:地裂缝场地上盘加速度响应表现出明显的放大效应;浅埋地铁隧道对地震波在土层中的传播具有一定阻碍作用,而隧道两侧拱腰位置围岩土层加速度放大效应最强;隧道特征部位PGA放大系数拱腰最大,拱底次之,拱顶最小,其中靠近地裂缝侧拱腰的PGA放大系数大于远离一侧;地裂缝附近动土压力增量明显增加,而靠近隧道附近,动土压力增量明显降低;地震作用下隧道通过地裂缝场地上下盘出现差异沉降,地表出现多条与地裂缝近似平行和正交的裂缝;隧道环向受剪切作用在靠近地裂缝一侧的拱肩部位环向应变最大,而隧道轴向受挤压作用在左右拱腰处应变出现最大值。研究结果可为地裂缝场地地铁隧道结构抗震设计与防灾减灾提供重要科学参考与借鉴。   相似文献   

6.
黄强  黄宏伟  张锋  叶斌  张冬梅 《岩土力学》2015,36(Z1):563-567
我国沿海地区大量的地铁隧道都修建在饱和软土地层,饱和软土地层中地铁列车运行引起的环境振动逐渐成为社会关注的问题。以上海2号线某地铁区间隧道为研究对象,采用循环运动模型本构模型和水土耦合动力分析方法,分析了饱和软土中地铁列车运行引起的地表振动加速度以及振动位移响应规律,采用加速度振级对地表的振动强度进行了评价,分析了单次列车通过时引起的隧道下卧土层超孔隙水压力(EPWP)响应规律。计算结果表明,饱和土的振动响应比干土要小得多,地表水平向与竖向的振动规律明显的不同,超孔隙水压力沿隧道下方沿向是不断减少的,在距离隧道中心的纵断面上是先增加后减少。分析饱和土中地铁运行引起的环境响应规律,可为地铁沿线建筑物减隔振设计及沉降控制提供一定依据。  相似文献   

7.
黄强兵  彭建兵  邓亚虹  范文 《岩土力学》2010,31(9):2882-2888
基于西安地裂缝成因、基本特征和未来活动趋势分析,通过几何缩比为1:5的地裂缝活动模型试验和地裂缝活动对盾构隧道影响的数值模拟计算,研究了西安地铁2号线隧道正交穿越地裂缝带的设防参数。通过分析地裂缝年平均活动速率和历史最大活动量,确定了与地铁2号线相交的各条地裂缝的最大垂直位移量的预测值和设计建议值。模型试验和数值模拟结果表明,正交条件下地铁隧道在地裂缝活动地段的设防宽度为60 m,即上盘为35 m,下盘为25 m;沿隧道纵向地裂缝两侧地层变形规律呈现台阶状突变变形,隧道纵向设计可将上盘视为整体下降来考虑;地铁隧道穿越地裂缝带必须分段设缝以适应地裂缝的变形,其分段长度在地裂缝主影响区按10 m进行设防,在一般影响区可按10~15 m进行分段设防。研究结果可为地铁隧道穿越地裂缝带的结构设计提供参考。  相似文献   

8.
地震作用下邻近地裂缝带地铁隧道工程场地地表沉降研究   总被引:2,自引:2,他引:0  
为了探讨地震和地裂缝耦合作用下位于地裂缝上盘的地铁隧道顶部地表沉降规律及其对附近建筑物的影响,以邻近穿越地裂缝场地的西安地铁3号线为工程背景,利用FLAC3D有限差分软件,结合理论分析,对西安人工地震波、El Centro波和Kobe波三种不同地震波作用下邻近地裂缝带地铁隧道建设场地地表沉降问题进行了研究。结果表明:地震作用下,隧道顶部一定范围内的地层沉降量显著大于其周围地层,形成宽度约9~16 m的沉降凹槽;El Centro波作用下沉降凹槽的宽度最大,约15.9 m,超越概率为10%的西安人工合成地震波次之,约11.6 m,而Kobe波作用下沉降凹槽的宽度最小,约9.5 m;隧道上覆地层沉降凹槽的沉降规律符合peck公式;隧道顶部约20 m范围内场地地表受地震和地裂缝耦合作用影响最强烈,沉降最大。   相似文献   

9.
针对地铁建设中典型的马蹄形断面隧道建立比例尺为1∶20的分析模型,并采用数值分析方法研究马蹄形隧道处于单一土层及工程所处区域典型的成层土体中时的动力响应。分析结果表明,在单一土层中由于土体的约束作用,结构产生的位移以整体沉降为主,在成层土体中除产生一定的整体变形外还伴随一定的扭转变形。在两种地层情况下马蹄形地铁隧道在地震动力作用下的动力加速度响应、竖向位移均在拱顶处产生最大值,其中在单一土层中的加速度响应最大值为结构中部加速度的2.29倍。结构在顶部和侧板处所产生的动应力响应值也较大。研究表明,地震动力荷载作用下顶板、侧板均为受力较大部位,在设计和施工中应予以充分重视。  相似文献   

10.
地裂缝是西安市最典型的地质灾害之一,地裂缝地段地铁隧道施工引起地层及地表沉降是较为突出的工程地质和岩土工程问题。文章以西安地铁六号线浅埋暗挖隧道穿过f8地裂缝为工程背景,基于有限元数值模拟,对地裂缝地段交叉中隔墙法(CRD工法)暗挖施工引起的地表沉降和隧道变形进行了分析。结果表明:暗挖施工引起的地表沉降随开挖进尺呈反S型曲线变化特征,地裂缝带上盘的开挖进尺影响范围大于下盘;隧道中心线地表沉降在地裂缝带出现错台且靠近上盘5 m处出现集中沉降区;地裂缝地段隧道暗挖施工对地表的影响区范围约为80 m即上盘约45 m、下盘约35 m,在此范围应考虑暗挖施工对附近地表建(构)筑物的影响;开挖过程中地裂缝带上盘沉降过程变长且大于下盘;地表横向变形曲线符合高斯分布,上盘沉降大于下盘,在上盘靠近地裂缝位置处地表沉降槽宽度、沉降量明显增大;距地裂缝带5 m处上盘拱顶出现最大沉降,其值为25 mm,而在地裂缝位置处拱底出现27 mm的隆起变形,拱顶和拱底变形在地裂缝带附近出现错台;地裂缝带隧道暗挖施工对拱顶、拱底影响区范围分别为50 m和55 m,靠近上盘地裂缝位置附近隧道暗挖施工衬砌应及时支护,防止土体塌落与隧道变形。研究结果可为西安地铁隧道穿越地裂缝带暗挖施工提供科学依据和技术指导。  相似文献   

11.
地铁隧道受平行向地裂缝错动影响数值分析   总被引:2,自引:0,他引:2  
西安地铁3号线局部地段通过f7地裂缝上盘,并且和f7地裂缝近似平行。基于f7地裂缝长期水准监测预测的未来最大活动量值,采用数值方法,研究了西安典型的黄土、古土壤和粉质黏土地层下地铁隧道受平行向地裂缝活动的影响。通过逐渐变化地铁隧道衬砌外皮同地裂缝间的距离,计算了6种工况下地铁隧道衬砌的变形和内力。计算结果表明:当地铁隧道衬砌外皮距离地裂缝30m时,隧道衬砌是安全,并有一定的安全储备。  相似文献   

12.
隧道斜交穿越地裂缝的模型试验研究   总被引:1,自引:0,他引:1  
李建军  邵生俊  熊田芳 《岩土力学》2010,31(Z1):115-120
西安地区由北向南间隔分布有十多条近东西走向的地裂缝,建设中的多条地铁线路与地裂缝呈斜交状态。为了揭示地铁隧道斜交穿越地裂缝时受地裂缝活动而产生的力学性状变化,采用50:1几何相似比尺的物理模型试验仪,在合理模拟围岩地层、衬砌结构、应力条件、地裂缝与洞轴线交角及其错动位移基础上,开展了斜交地裂缝活动条件下隧道衬砌结构与围岩相互作用的物理模型试验研究,并与正交地裂缝活动下的测试结果进行了对比分析。表明斜交地裂缝活动对地铁隧道的影响范围更大,各变形缝均有明显的沉降差发展;邻近斜交地裂缝的衬砌结构易处于“悬臂梁”受力状态,衬砌结构不均匀沉降使其产生旋转位移,围岩土压力变化使衬砌结构内力产生显著变化;随着地裂缝错动位移的发展,上盘内拱顶和下盘拱顶、拱底出现围岩作用的加强,而上盘拱底出现围岩作用的松弛。与隧道正交穿越地裂缝的情况比较,斜交穿越地裂缝时围岩土压力和衬砌结构内力变化更大,易出现拉裂破坏。  相似文献   

13.
陈磊  陈国兴  龙慧 《岩土力学》2010,31(12):3971-3976
基于ABAQUS软件研发的显式有限元并行计算集群平台,建立地铁双层交叉隧道结构的三维精细化有限元分析模型,研究了近场强地震动作用下地铁双层交叉隧道的三维非线性地震反应特性,并与浅埋/深埋单层隧道的地震反应特性进行了比较,结果表明:双层隧道的相互作用效应对上、下层隧道顶、底部之间的相对水平位移差具有放大作用;对上、下层隧道的地震应力反应有减小作用;双层隧道上、下层左侧的地震应力反应大于右侧的地震应力反应,隧道拱肩和拱腰处的应力反应明显大于其他部位,拱肩为隧道结构的最危险部位;双层隧道下层顶、底部的峰值加速度反应大于上层顶、底部的峰值加速度反应;双层隧道相互作用效应对上、下层隧道地震反应的影响与双层隧道的交叉形式和基岩输入的近场强地震动特性有关。  相似文献   

14.
目前西安地铁建设中过地裂缝带隧道均采取分段设缝的结构措施,而隧道结构分段长度的优化问题是地铁隧道穿越地裂缝带设防的关键。本文以西安地铁斜交穿越地裂缝带为工程背景,通过分段设缝的地铁隧道斜交跨地裂缝带的有限元数值模拟,研究了斜交跨地裂缝带地铁隧道分段设缝的合理模式及分段隧道的合理长度。计算结果表明:对缝设置模式下分段设缝隧道结构塑性区范围较小,集中在隧道拱底、拱脚;而悬臂设置模式下塑性区分布范围大且较为复杂,不利于进行衬砌加强。地铁隧道穿越地裂缝带衬砌结构宜采取分段设缝的对缝设置模式,跨地裂缝带的分段隧道合理长度为15 m,位于地裂缝主变形区内的分段隧道长度可按10~15 m考虑,而穿越地裂缝主变形区之外的地铁隧道分段长度可根据轨道调坡及隧道防水等其他要求适当增加。研究成果可为地裂缝发育的城市地铁隧道结构设计及其他地下空间开发提供重要的理论依据和技术参考。  相似文献   

15.
李朋  徐海清  李振伟 《岩土力学》2011,32(Z1):761-0765
紧邻多孔交叠隧道是随着地铁建设的不断深入发展而出现的一种复杂的隧道空间分布形式。依托武汉地铁2号线和4号线工程,针对4孔紧邻交叠隧道,采用三维有限元方法分析了隧道动态施工过程引起的地表变形规律以及后建隧道对已建隧道受力与变形的影响。计算结果表明:隧道埋深对地表变形影响显著;紧邻4孔交叠隧道施工引起的地表最终变形达到了32 mm,超出了规范的限值;隧道埋深越大,引起的地表变形越小,但影响的范围越大;紧邻4孔交叠隧道施工时的影响范围为:前方约为30 m、后方约25 m、单侧约30 m;隧道的变形主要表现为上下压扁,两拱腰外扩,变成倒鸭蛋形;隧道的变形主要发生在盾构机刀盘通过前后约1D的范围内,随后很快趋于稳定;隧道结构的沉降主要取决于隧道自身以及其上部的垂直隧道的施工,邻近隧道的施工主要影响已建隧道的侧向变形;后建隧道将少量增加已建隧道管片内的内力。研究成果可为武汉地铁建设以及国内今后类似工程的设计与施工提供参考和指导  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号