首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
河南栾川地区铅锌矿床地质和硫同位素地球化学   总被引:8,自引:0,他引:8       下载免费PDF全文
河南栾川地区是我国著名斑岩钼矿集区,近年铅锌矿勘查取得重要进展,但对铅锌矿成因认识分歧颇多。研究表明,栾川地区铅锌矿产在燕山期斑岩钼矿床外围,矿区地层为中元古界官道口群和新元古界栾川群碳酸盐岩-碎屑岩沉积变质建造,地层中侵入有晋宁期辉长岩、正长岩和燕山期酸性斑岩,铅锌矿呈脉状或透镜状,发育3种类型:受燕山期斑岩与元古界钙质地层接触带控制的夕卡岩型铅锌矿、受北西西向层间断裂构造控制的脉状铅锌矿和受北东或近南北向张-张扭性断裂控制的脉状铅锌矿。铅锌矿石中硫化物δ~(34)S_(V-CDT)为近零的正值(骆驼山0.37‰~4.20‰、赤土店-0.32‰~8.30‰、百炉沟-1.20‰~10.90‰、冷水北沟0.70‰~12.10‰),岩浆来源硫特征明显;夕卡岩型铅锌硫化物的δ~(34)S_(V-CDT)与本地斑岩型钼矿石中硫化物的δ~(34)S_(V-CDT)(1.24‰~3.30‰)极为相近,脉状铅锌硫化物的δ~(34)S_(V-CDT)与斑岩型钼矿石中硫化物重合,但有地层中硫(δ~(34)S_(V-CDT)为12.43‰~18.63‰)的影响。总体上δ~(34)S_(黄铁矿)>δ~(34)S_(闪锌矿)>δ~(34)S_(方铅矿),指示矿石中主要硫化物矿物硫同位素分馏基本达到平衡,赤土店铅锌矿石中共生方铅矿与闪锌矿的硫同位素温度计指示硫化物矿物沉淀温度较高(388.29℃)。河南栾川地区铅锌矿主体应为受燕山期构造-岩浆作用控制的中高温热液铅锌矿床。  相似文献   

2.
乌拉根铅锌矿带位于塔里木盆地以西喀什凹陷北部的乌恰凹陷中,该矿床δ34S值-25.9‰~27.5‰,显示出较宽泛的分布范围,本文通过对乌拉根铅锌矿床S同位素的研究,分析了成矿物质来源和矿床形成过程。该矿区硫同位素具有混合BSR作用形成的生物硫和海相沉积的膏岩矿物硫的特征,塔里木盆地西缘的新生界沉积盆地内大量发育的天青石、石膏、重晶石等硫酸盐矿物,为乌拉根铅锌矿床的铅锌矿化提供了充足的硫源。在其成矿作用过程中,盆地流体中的金属物质与来自于膏盐层溶解并进过生物还原作用形成的还原性硫结合导致硫化物的沉淀成矿。乌拉根铅锌矿床属砂砾岩型铅锌矿床。  相似文献   

3.
贵州纳雍枝铅锌矿床地质、地球化学及矿床成因   总被引:2,自引:0,他引:2       下载免费PDF全文
纳雍枝铅锌矿床位于扬子陆块西南缘,是黔西北地区五指山背斜内近年来取得勘查突破的大型铅锌矿床(1.30Mt),也是川滇黔矿集区贵州境内目前发现的最大规模的铅锌矿床。矿体受层位和构造控制明显,呈似层状、脉状及透镜状产于五指山背斜南东翼穿层和顺层构造带内,赋矿围岩为下寒武统清虚洞组和上震旦统灯影组白云岩。无论是缓倾斜的似层状矿体,还是陡倾斜的脉状矿体,矿石中普遍发育角砾状、脉状、网脉状和浸染状构造,金属矿物主要为闪锌矿,次为方铅矿和黄铁矿,脉石矿物以白云石、方解石为主,次为石英和重晶石。研究结果显示,该矿床硫化物δ~(34)SV-CDT值变化范围较宽,介于4.7‰~22.8‰之间,平均16.68‰,多数集中在18‰~22.5‰之间,远高于赋矿白云岩的δ~(34)S_(V-CDT)值(7.3‰)。硫化物总体呈现δ~(34)S_(闪锌矿)δ~(34)S_(方铅矿)δ~(34)S_(黄铁矿),暗示S同位素分馏未达到平衡,成矿流体的δ~(34)S_(∑S)值应高于硫化物的平均δ~(34)S值(16.68‰)。因此,成矿流体中的硫主要来源于赋矿海相碳酸盐岩中的蒸发膏岩,是蒸发硫酸盐矿物热化学还原(TSR)作用的产物。硫化物具有正常Pb的组成特征,~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb及~(208)Pb/~(204)Pb变化范围分别为17.8240~17.9701、15.6364~15.7651和37.8956~38.3230,与赋矿白云岩Pb同位素组成略有不同,但壳源特征明显,很可能来源于区域基底岩石。综上认为,纳雍枝铅锌矿床兼具层控和断控成矿特征,成矿物质主要由壳源岩石提供,硫化物沉淀受控于富金属流体与富还原硫流体的混合作用,其形成是区域构造与大规模成矿流体耦合作用的结果,属于MVT矿床。  相似文献   

4.
青海沱沱河地区多才玛铅锌矿床是西南三江特提斯北段新生代铅锌矿集区的典型矿床之一,本文首次应用飞秒激光剥蚀多接受器等离子体质谱法对多才玛铅锌矿床中金属硫化物的原位S和Pb同位素进行了测定。结果显示:黄铁矿、方铅矿和闪锌矿的原位S同位素的δ~(34)S_(V-CDT)值介于-26.34‰~4.24‰之间,均值-12.15‰(n=20),其中闪锌矿的δ~(34)S_(V-CDT)值介于-10.30‰~-3.52‰,均值-7.39‰(n=9);方铅矿的δ~(34)S_(V-CDT)值为-26.34‰~-11.74‰,均值-20.36‰(n=9);黄铁矿的δ~(34)S_(V-CDT)值分别为2.50‰,4.24‰。矿床δ~(34)S数据范围较宽,总体表现为富集负值硫的特征,说明有机质可能参与成矿。岩浆热液期发育的黄铁矿δ~(34)S值具有深源特征,沉积热液期发育的方铅矿和闪锌矿的δ~(34)S值表明成矿过程存在还原作用,指示盆地地层还原流体的混入,综上可认为多才玛铅锌矿床硫具有混合来源的特征。方铅矿原位Pb同位素结果为~(206)Pb/~(204)Pb=18.866~18.929,~(207)Pb/~(204)Pb=15.674~15.689,~(208)Pb/~(204)Pb=39.052~39.174。方铅矿与地层的Pb同位素组成一致,位于上地壳平均Pb演化线之上,具上地壳和地幔混合俯冲带铅的特征,表明其成矿物质的来源多样。结合矿床学、矿物学及同位素数据,本文认为多才玛铅锌矿床S元素主要来源于赋矿围岩,Pb金属元素主要来源于藏北钾质火山岩,侵入地层岩浆与盆地流体的混合是金属硫化物沉淀的重要机制。  相似文献   

5.
云南会泽超大型铅锌矿床规模大、品位富、伴生有用元素多 ,暗示其成矿环境较为特殊。本文分析该矿床原生矿体中矿石矿物的硫同位素组成和脉石矿物方解石的 REE含量 ,结合前人的碳、氢、氧、铅同位素分析资料和成矿年代测试结果 ,探讨矿床成矿流体的来源。矿床原生矿体中的硫化物均富集重硫 ,其δ34 S值集中于13‰~ 17‰之间 ,且有 δ34 S黄铁矿 >δ34 S闪锌矿 >δ34 S方铅矿 ,表明成矿流体的硫已达到平衡 ;硫化物的 δ34 S值与矿区和区域地层中膏盐层的δ34 S值相近 ,暗示成矿流体中的硫主要来自地层海相硫酸盐的还原 ,热化学还原是地层海相硫酸盐形成还原态硫的主要还原机制。矿区脉石矿物方解石的 REE含量相对高于本区各时代碳酸盐地层 ,低于非碳酸盐地层和峨眉山玄武岩 ,其 REE配分模式和有关 REE参数也与地层和峨眉山玄武岩存在明显差异 ;进一步分析结果显示 ,矿床成矿流体是一种壳 -幔混合流体 ,伴随峨眉山玄武岩岩浆活动过程中地幔流体 (包括地幔去气和岩浆去气形成的流体 )参与了矿床成矿流体的形成  相似文献   

6.
贵州普定纳雍枝铅锌矿矿床成因:S和原位Pb同位素证据   总被引:12,自引:5,他引:7  
通过近五年(2011~2015)勘查实现找矿重大突破的贵州普定纳雍枝铅锌矿床,位于扬子陆块西南缘,五指山背斜南东翼北中部,是黔西北铅锌成矿区的重要组成部分。矿区内已发现20余个铅锌矿体,探获铅锌金属资源储量超135万吨,是川滇黔接壤铅锌矿集区贵州境内目前已发现和探明规模最大的铅锌矿床。主矿体多呈层状、似层状、透镜状和陡倾斜脉状产出,除了陡倾斜脉状矿体产于F7断层破碎带,其余(似)层状矿体均产于下寒武统清虚洞组和上震旦统灯影组白云岩中,与围岩产状一致,层控特征明显。其矿石类型主要有块状、角砾状、细脉状和浸染状等,矿石矿物以闪锌矿为主,其次为方铅矿和黄铁矿,脉石矿物以方解石、白云石为主,含少量石英,偶见重晶石。本次研究表明,该矿床硫化物δ~(34)S_(CDT)值介于15.94‰~25.49‰之间,均值为22.41‰(n=21),其中黄铁矿δ~(34)S_(CDT)值为22.06‰,闪锌矿δ~(34)S_(CDT)值为19.37‰~25.49‰,均值为23.17‰(n=17),方铅矿δ~(34)S_(CDT)值为15.94‰~19.70‰(n=3),均值为18.23‰。各类硫化物δ~(34)S值部分重叠,总体上不具有δ~(34)S黄铁矿δ~(34)S闪锌矿δ~(34)S方铅矿的特征,暗示硫同位素在硫化物矿物间的分馏未达到平衡。此外,矿石存有少量硫酸盐矿物(重晶石),暗示成矿流体的δ~(34)S3∑S值应高于硫化物的平均δ4S值(22.41‰),接近赋矿地层中海相硫酸盐岩的δ~(34)S值(22‰~28‰)。因此,成矿流体中的还原硫最可能为海相硫酸盐岩热化学还原的产物,来源于赋矿地层中的蒸发岩。应用飞秒激光剥蚀多接收器等离子体质谱法首次获得了纳雍枝铅锌矿中方铅矿原位Pb同位素数据,结果显示Pb同位素组成非常集中(~(206)Pb/204Pb=17.828~17.860,均值17.841,~(207)Pb/204Pb=15.648~15.666,均值15.659,~(208)Pb/204Pb=37.922~37.979,均值37.960,n=32),位于上地壳平均Pb演化曲线上,表明其成矿物质具壳源特征,可能来源于基底岩石。综合矿床地质、矿物学、S和原位Pb同位素数据,本文认为纳雍枝铅锌矿床S主要来源于其赋矿地层,Pb等金属元素主要来源于基底岩石,这两组流体的混合是导致其金属硫化物沉淀成矿的重要机制,成矿流体具后生、低温热液等特征,属于密西西比河谷型(MVT)矿床,很可能形成于燕山期,与右江盆地演化有关。  相似文献   

7.
黔西北筲箕湾铅锌矿床硫同位素地球化学研究   总被引:3,自引:3,他引:0  
筲箕湾铅锌矿床是近年在川一滇一黔铅锌成矿域黔西北铅锌成矿区垭都一蟒硐成矿带发现的中型矿床,有关其地质、地球化学研究前人极少涉及,严重制约了成矿机制和成矿预测研究。本次工作对该矿床原生矿体主要矿石矿物(黄铁矿、方铅矿和闪锌矿)进行了硫同位素组成分析,探讨了成矿流体中硫的来源。结果表明,矿床 δ34s值集中在10%。~12%e之间,不同于δ34S值在O‰附近的幔源硫,与区域各时代碳酸盐岩地层中石膏、重晶石等硫酸盐矿物的δ34s值(约15%o)相近,认为成矿流体中的硫为区域各时代碳酸盐岩地层中膏盐层热化学还原作用(TSR)的产物。  相似文献   

8.
云南金沙厂铅锌矿床硫同位素地球化学特征   总被引:2,自引:0,他引:2  
金沙厂铅锌矿床位于云南省东北部,川-滇-黔铅锌成矿域的西北部,矿体主要赋存于下寒武统和上震旦统的碳酸盐地层中。该矿床的主要矿石矿物是闪锌矿和方铅矿,主要脉石矿物是重晶石、萤石和石英。闪锌矿的δ34S值分布于3.9‰~11.2‰之间,平均为5.7‰;方铅矿的δ34S值在6.0‰~9.0‰之间,平均为7.1‰;两个重晶石的δ34S值分别为34.8‰和34.5‰。重晶石的δ34S值与下寒武地层硫酸盐的一致,排除其他可能来源,认为重晶石的硫来源于下寒武统地层。硫化物的硫不可能来自细菌硫酸盐还原作用,因为流体包裹体均一温度远高于细菌的存活温度。硫酸盐热化学还原作用产生的同位素分馏至多为20‰,由此可知下寒武统地层中硫酸盐发生热化学还原作用产生的还原硫δ34S值至少应为14‰,这个值远高于该矿床硫化物δ34S值,因此这种机制不是还原硫的唯一来源。矿区周围广泛分布玄武岩,并且与岩浆有关的硫化物δ34S值比较低,所以硫化物中的硫可能来自岩浆活动。在方铅矿和闪锌矿共生的样品中,闪锌矿的δ34S值大于方铅矿的δ34S值,说明成矿流体的硫同位素局部达到平衡。利用矿物对硫同位素组成计算的硫化物平衡温度与流体包裹体均一温度一致。  相似文献   

9.
萝卜山铅锌矿床位于三江成矿带南段的思茅盆地,在该盆地沉积岩容矿的铅锌矿床中具有典型代表性。本次工作对该矿床原生矿体主要矿石矿物(黄铁矿、方铅矿和闪锌矿)进行了硫同位素组成分析,探讨了成矿流体中硫的来源和形成机制。结果表明,矿床δ34S值在-8.83‰~1.61‰之间,与典型幔源硫(-3‰~3‰)特征不同,与区域上海相蒸发岩的硫同位素组成(15‰~25‰)也不同。萝卜山铅锌矿床成矿流体中的硫可能主要来源于海水硫酸盐,形成机制为细菌还原(BSR)。  相似文献   

10.
高兆富  朱祥坤  张衎  罗照华  包创  唐超 《岩石学报》2015,31(12):3725-3731
东升庙多金属硫化物矿床是狼山成矿带最大和最典型的铅锌多金属硫化物矿床,目前该矿床硫的来源及成矿过程仍存在争议。本文对矿区常见硫化物矿石和最重要的赋矿围岩——绢云石墨片岩中的硫化物分别进行硫同位素分析。结果显示东升庙矿床的硫化物普遍富集硫的重同位素,且矿石与围岩中的硫化物的硫同位素分布范围均较为集中。绢云石墨片岩中的黄铁矿的δ~(34)S值在+19.4‰~+23.4‰之间,具有和当时海水硫酸盐相似的硫同位素组成,指示围岩中的不规则黄铁矿是孔隙水(海水)中的硫酸盐被完全还原后形成的。矿石硫化物的δ~(34)S值在+28.3‰~+31.3‰之间,相比围岩中的黄铁矿明显富集硫的重同位素,指示两者具有不同的硫源。矿石中的硫可能源自基底地层中蒸发岩的溶解,由此形成的硫酸盐占主导的热液流体可萃取大量铅、锌等金属,当遇到狼山群地层中富含有机质的沉积岩时发生热化学还原反应,从而造成硫化物的大量卸载,形成金属硫化物矿床。  相似文献   

11.
沙柳河矿区位于柴达木盆地东南缘阿尔茨托山南东段阿尔茨托山复式向斜南翼。为研究沙柳河矿区铅锌多金属矿床成因类型,分析了矿区地质背景、矿床(体)特征、岩(矿)石化学成分及含量,研究认为矿区是以铅锌为主的多金属矿床,矿体主要产于金水口岩群地层,沿一定的地层层位分布,具多期多阶段成矿特征。矿床的形成和演化经历了火山喷溢沉积作用成矿期、岩浆期后成矿作用期和表生作用期三个阶段,矿床成因受地层、岩浆岩、构造关系密切,矿床类型初步定为变质岩中矽卡岩型铅、锌多金属矿床。  相似文献   

12.
云南白牛厂银多金属矿床成因   总被引:1,自引:0,他引:1  
对云南白牛厂超大型银多金属矿床的地质、地球化学特征及矿床形成的长期性及多阶段性的研究认为:白牛厂银多金属矿床是热水沉积—叠生成因矿床,早期呈现寒武纪的热水同生沉积成矿作用,晚期为燕山期花岗岩浆热液成矿作用。该矿床是热水沉积成矿作用与岩浆热液成矿作用叠加成矿的产物。  相似文献   

13.
嵩县石门铷矿赋存于印支期碱性正长岩体中,岩体中主要成分为钾长石,印支期是本区岩浆活动的重要时期,岩浆活动为本区铷矿、稀土元素的形成提供了丰富的物质来源。后经构造岩浆热液活动使岩体中的铷部分活化、富集,而形成本区铷矿床。通过对本区岩体成分、矿体矿物成分等基本特征的研究,认为在本区周边及河南省的方城和安阳等地存在类似的岩体,找矿潜力较大,应加强对碱性岩体的研究及找矿。  相似文献   

14.
长坑矿田金,银矿床地球化学特征及形成差异分析   总被引:10,自引:0,他引:10  
梁华英 《地质论评》1998,44(2):194-199
长坑矿田金、银矿体主要产于下石炭统与上三叠统不整合面之下的硅质岩中,金、银矿体分离。金矿体主要为浸染状,富集As、Sb、Hg;银矿体主要为脉状,富集Cu、Pb、Zn。金矿体铅同位素组成与寒武纪—石炭纪地层及硅质岩的相同,银矿体铅同位素组成与金矿体的不同。金、银矿体的氢、氧、碳同位素组成也明显不同。银矿体Rb-Sr等时线年龄为70.4Ma。据上述特征,笔者认为长坑金、银矿床是不同成矿作用形成的,金矿主要是热水沉积形成,银矿主要是燕山期晚期改造形成。  相似文献   

15.
通过野外地质观察和对已揭露工程地段进行取样,采用显微镜观察、岩石化学分析、微量元素分析、X射线衍射、扫描电镜及微区能谱分析等手段,研究了铜厂沟铜矿矿石矿物组成及地质地球化学特征。结果表明,铜厂沟铜矿矿石类型为含铜砂岩型和含铜蚀变构造角砾岩型:砂岩型铜矿具有层控特征,矿体产出明显受三叠系飞仙关组等赋矿层位的控制;蚀变构造角砾岩型铜矿矿体沿SW向次级控矿断裂具一定规模展布并受其控制,矿石含铜品位达3.26%~3.88%。2类型铜矿石的主要矿物组成为斑铜矿、黄铜矿、辉铜矿、孔雀石,见少量蓝铜矿、自然铜、方解石、石英;主要围岩蚀变为沸石化、重晶石化、沥青化、硅化、绿泥石化、高岭石化及碳酸盐化等。砂岩型铜矿控矿及赋矿围岩岩石化学成分中SiO2含量、SiO2/Al2O3值、Na2O、 K2O含量特征和CaO+MgO含量分布特点,表明岩石为海相碎屑沉积成因。蚀变构造角砾岩型铜矿石为构造运动改造形成。  相似文献   

16.
陕西八卦庙金矿成矿地质条件及矿床成因   总被引:1,自引:0,他引:1  
张恩  郭健 《黄金地质》2000,6(4):14-18
八卦庙金矿床是产于秦岭泥盆系地层中的超大型金矿床,受区域NW向脆-韧性剪切带与NE向断裂的交汇部位及其次生的剪节理密集带控制,赋矿地层为具浊流沉积和热水沉积特征的上泥盆统星红铺组底部铁白云质粉砂质千枚岩,矿体产状与围岩近于一致。金矿化与热液蚀变有由南向北、由浅入深逐渐增强的趋势,另由铁的硫化物、容矿岩石,非金属矿物铁白云石和石英同位素特征表明,成矿物质来自过壳深部,与围岩同沉积形成矿源层,后经成矿流体的多次改造成矿,为-沉积-热液改造型金矿。  相似文献   

17.
在扇状成矿规律指导下,资源几近枯竭的赣南盘古山钨铋矿床取得新的找矿成果。在矿区南部揭露了两组倾向北的钨矿化石英细脉,总脉数达102条,与矿区北部倾向南的已知矿脉相向倾斜,横剖面呈扇状。这一成果对广大钨矿找矿工作者具有重要的借鉴意义。  相似文献   

18.
在综合前人资料的基础上结合湘南及其邻区典型铋矿区的实际调查,将该区已知的原生铋矿床划分为与壳源改造型花岗岩有关的铋多金属矿床、与壳幔混熔型花岗岩有关的铋多金属矿床和与岩浆热液-热卤水叠加作用有关的铋多金属矿床三个成矿系列。前两个成矿系列包括辉铋矿-长石类、辉铋矿-石英类、辉铋矿-矽卡岩类和蚀变花岗岩型、云英岩型、石英脉型、磁铁矿-矽卡岩型、硫化物-矽卡岩型、斑岩型等;而后-成矿系列的矿床类型仅有碳酸盐岩-砂页岩组合类、似矽卡岩型。  相似文献   

19.
纸房沟铀矿产于秦岭群骡子坪岩体内部,通过地质填图、物化探扫面工作对该铀矿的异常特征和分布规律认识较为清楚,针对关系到后期找铀工作的铀矿地质特征和成因尚存在不同的认识。采用野外钻探、室内分析测试和岩矿鉴定等手段对该区的地质特征及成因进行分析。结果认为:该区含矿岩石主要为岩体分支内部的中粗粒花岗岩,矿床属于岩浆活动和混合岩化共同作用的结果。  相似文献   

20.
纳米比亚西南部奥兰治河海伯地区是纳米比亚重要的铜矿产地之一,区内的海伯铜矿和罗雷铜矿具有明显的斑岩型成矿特征。控制铜矿的斑岩体为古元古代威尔斯锥夫岩基的岩枝、岩株状分支,矿体的围岩为古元古界奥兰治河群海伯亚群。威尔斯锥夫岩基与奥兰治河群均为钙碱性火成岩和火山-沉积岩组合,形成于大陆边缘俯冲带的构造背景环境,结合海伯铜矿和罗雷铜矿地质及同位素特征,文章认为该区斑岩型铜矿可能为板块构造成矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号