首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
An ultra-high-pressure (UHP) metamorphic slab at Yangkou Beach near Qingdao in the Sulu region of China consists of blocks of eclogite facies metagabbro, metagranitoid, ultramafic rock and mylonitic orthogneisses enclosed in granitic gneiss. A gradational sequence from incipiently metamorphosed gabbro to completely recrystallized coesite eclogite formed at ultra-high-pressures was identified in a single 30 m block; metagabbro is preserved in the core whereas coesite eclogite occurs along the block margins. The metagabbro contains an igneous assemblage of Pl+Aug+Opx+Qtz+Bt+Ilm/Ti-Mag; it shows relict magmatic textures and reaction coronas. Fine-grained garnet developed along boundaries between plagioclase and other phases; primary plagioclase broke down to Ab+Ky+Ms+Zo±Grt±Amp. Augite is rimmed by sodic augite or omphacite, whereas orthopyroxene is rimmed by a corona of Cum±Act and Omp+Qtz layers or only Omp+Qtz. In transitional rocks, augite and orthopyroxene are totally replaced by omphacite, and the lower-pressure assemblage Ab+Ky+Phn+Zo+Grt coexists with domains of Omp (Jd70–73)+Ky±Phn in pseudomorphs after plagioclase. Both massive and weakly deformed coesite-bearing eclogites contain Omp+Ky+Grt+Phn+Coe/Qtz+Rt, and preserve a faint gabbroic texture. Coesite inclusions in garnet and omphacite exhibit limited conversion to palisade quartz; some intergranular coesite and quartz pseudomorphs after coesite also occur. Assemblages of the coronal stage, transitional and UHP peak occurred at about 540±50 °C at c. 13 kbar, 600–800 °C at ≥15–25 kbar and 800–850 °C at >30 kbar, respectively. Garnet from the coronal- through the transitional- to the eclogite-stage rocks show a decrease in almandine and an increase in grossular±pyrope components; garnet in low-grade rocks contains higher MnO and lower pyrope components. The growth textures of garnet within pseudomorphs after plagioclase or along grain boundaries between plagioclase and other phases are complex; the application of garnet zoning to estimate P–T should be carried out with caution. Some garnet enclosing quartz aggregates as inclusions shows radial growth boundaries; these quartz aggregates, as well as other primary and low-P phases, persisted metastably at UHP conditions due to sluggish reactions resulting from the lack of fluid during prograde and retrograde P–T evolution.  相似文献   

2.
The late Palaeozoic western Tianshan high‐pressure /low‐temperature belt extends for about 200 km along the south‐central Tianshan suture zone and is composed mainly of blueschist, eclogite and epidote amphibolite/greenschist facies rocks. P–T conditions of mafic garnet omphacite and garnet–omphacite blueschist, which are interlayered with eclogite, were investigated in order to establish an exhumation path for these high‐pressure rocks. Maximum pressure conditions are represented by the assemblage garnet–omphacite–paragonite–phengite–glaucophane–quartz–rutile. Estimated maximum pressures range between 18 and 21 kbar at temperatures between 490 and 570 °C. Decompression caused the destabilization of omphacite, garnet and glaucophane to albite, Ca‐amphibole and chlorite. The post‐eclogite facies metamorphic conditions between 9 and 14 kbar at 480–570 °C suggest an almost isothermal decompression from eclogite to epidote–amphibolite facies conditions. Prograde growth zoning and mineral inclusions in garnet as well as post‐eclogite facies conditions are evidence for a clockwise P–T path. Analysis of phase diagrams constrains the P–T path to more or less isothermal cooling which is well corroborated by the results of geothermobarometry and mineral textures. This implies that the high‐pressure rocks from the western Tianshan Orogen formed in a tectonic regime similar to ‘Alpine‐type’ tectonics. This contradicts previous models which favour ‘Franciscan‐type’ tectonics for the southern Tianshan high‐pressure rocks.  相似文献   

3.
在滇西鲁甸地区金沙江结合带新发现退变榴辉岩,其在野外呈透镜体状产于石榴子石白云母石英片岩中.利用电子探针及激光拉曼分析发现石榴子石和锆石中残留绿辉石包体.石榴子石及基质中的白云母为多硅白云母(Si(p.f.u)=3.27~3.53),指示岩石经历了高压变质作用过程.石榴子石发育进变质生长成分环带.岩相学及矿物化学特征显示,退变榴辉岩大致经历了进变质角闪岩相、峰期榴辉岩相、早期退变质以及晚期强退变这4个世代矿物组合,各阶段典型的矿物组合依次为Grt+AmpI+Qtz、Grt+Omp+Rt+Qtz+Phe、Pl+Di+AmpⅡ+Ilm+Spn+Qtz、AmpⅢ+Pl+Czo+Ilm+Qtz.该新发现对金沙江结合带复杂的变质演化P-T-t轨迹样式及年代格架、以金沙江洋为代表的整个西南三江地区古特提斯洋-陆俯冲-碰撞-造山的复杂构造演化历史以及微陆块的拼贴机制等关键科学问题的解决提供了极为重要的素材和更多的约束,具有重要的科学意义.   相似文献   

4.
Coesite inclusions in garnet have been found in eclogite boudins enclosed in coesite‐bearing garnet micaschist in the Habutengsu Valley, Chinese western Tianshan, which are distinguished from their retrograde quartz by means of optical characteristics, CL imaging and Raman spectrum. The coesite‐bearing eclogite is mainly composed of porphyroblastic garnet, omphacite, paragonite, glaucophane and barroisite, minor amounts of rutile and dotted (or banded) graphite. In addition to coesite and quartz, the zoned porphyroblastic garnet contains inclusions of omphacite, Na‐Ca amphibole, calcite, albite, chlorite, rutile, ilmenite and graphite. Multi‐phase inclusions (e.g. Czo + Pg ± Qtz, Grt II + Qtz and Chl + Pg) can be interpreted as breakdown products of former lawsonite and possibly chloritoid. Coesite occurs scattered within a compositionally homogenous but narrow domain of garnet (outer core), indicative of equilibrium at the UHP stage. The estimate by garnet‐clinopyroxene thermometry yields peak temperatures of 420–520 °C at 2.7 GPa. Phase equilibrium calculations further constrain the P–T conditions for the UHP mineral assemblage Grt + Omp + Lws + Gln + Coe to 2.4–2.7 GPa and 470–510 °C. Modelled modal abundances of major minerals along a 5 °C km?1 geothermal gradient suggests two critical dehydration processes at ~430 and ~510 °C respectively. Computed garnet composition patterns are in good agreement with measured core‐rim profiles. The petrological study of coesite‐bearing eclogite in this paper provides insight into the metamorphic evolution in a cold subduction zone. Together with other reported localities of UHP rocks from the entire orogen of Chinese western Tianshan, it is concluded that the regional extent of UHP‐LT metamorphism in Chinese western Tianshan is extensive and considerably larger than previously thought, although intensive retrogression has erased UHP‐LT assemblages at most localities.  相似文献   

5.
吕增  王凯 《地球科学》2018,43(1):150-163
角闪岩是西南天山超高压变质带变基性岩的常见岩石类型之一.野外关系和矿物反应结构表明,大多数角闪岩是由榴辉岩或蓝片岩受到不同程度的钠长绿帘角闪岩相退变质叠加形成的.但对于一些平衡结构发育良好且孤立产出的角闪岩类型(如石榴角闪岩)仍缺乏系统的岩石学研究.本次从岩相学、矿物成分以及热力学模拟几个方面对哈布腾苏河下游地区超高压带内不含钠长石的石榴角闪岩开展了详细的工作.这些石榴角闪岩的主要矿物为绿色角闪石(钙质-钠钙质闪石)、帘石(黝帘石-绿帘石)和石榴石,三者总体积占80%~90%,明显有别于大多数由榴辉岩退变而成的含有钠长石变斑晶的石榴角闪岩.虽然这些角闪岩化学成分十分相近,都具有富钙贫钠和高的Mg/(Mg+Fe)比值,但在结构、构造和矿物组成等方面存在显著差异,据此将它们划分为两类.第一类角闪岩基质中不含石英,保存在变斑晶中的少量残余矿物组合为石榴石+绿辉石+硬柱石+蓝闪石+金红石,指示峰期硬柱石榴辉岩相变质条件,富钛矿物全部为金红石.第二类角闪岩强烈面理化,面理由绿色角闪石、绿帘石和绿泥石以及条带状石英集合体构成.石榴石粒度呈双峰式分布,粗粒比细粒低钙低锰.基质和包体中均未发现高压变质特征矿物绿辉石和蓝闪石.富钛矿物以榍石为主,金红石和钛铁矿仅存在于个别石榴石中.两类角闪岩的石榴石成分具有较大区分度,前者的钙含量较高而镁含量较低.P-T视剖面计算显示它们的峰期条件为480~520 ℃,30~33 kbar,均达到超高压范围,与哈布腾苏河下游及以西地区的榴辉岩相似,表明西南天山超高压变基性岩构成沿中天山南缘断裂延伸数十千米的独立地质单元,不存在所谓的俯冲隧道混杂现象.   相似文献   

6.
High-pressure zoisite- and clinozoisite-bearing segregations are common in garnet- and albite-bearing amphibolites of the Palaeozoic part of the Lower Schieferhülle, south-central Tauern Window, Austria. The zoisite segregations (primary assemblage: Zo+Qtz+Cal) formed during an early to pre-Hercynian high-pressure event (P≫0.6 GPa, T =500–550 °C) by hydrofracturing as a result of protolith dehydration. Zoisite is growth zoned from Fe3+-poor cores (Al2Fe=9 mol%) to Fe3+-rich rims (17 mol%), and has high Sr, Pb and Ga contents and LREE-enriched REE patterns, controlling the trace element budget of the segregations. Hercynian deformation at c. 0.7 GPa/600 °C kinked and cracked primary zoisite and enhanced breakdown into secondary zoisite (13 mol% Al2Fe), clinozoisite (40–55 mol% Al2Fe), albite (an<20), calcite and white mica during an Eoalpine high-pressure event at 0.9–1.2 GPa/400–500 °C. The clinozoisite segregations (primary assemblage: Czo+Qtz+Omp+Ttn+Chl+Cal) are mm- to cm-wide, vein-like bodies, cross-cutting fabric elements of the host garnet amphibolite. They formed during the Eoalpine high-pressure event at 0.9–1.2 GPa/400–500 °C. During Alpine exhumation, omphacite was pseudomorphed by amphibole, albite, quartz and clinozoisite. Oxygen isotope data suggest equilibrium between host metabasite and zoisite segregations and indicate an internal fluid source and fluid buffering by the protolith. Mobility of P, Nb and LREE changed the protolith’s trace element composition in the vicinity of the zoisite segregations: Mobilization of LREE is evidenced by decreasing modal amounts of LREE-rich epidote and decreasing LREE contents in LREE-rich epidote towards the segregations, changing the REE patterns of the host metabasite from LREE-enriched to LREE-depleted. Tectonic discrimination diagrams, based on the trace element content of metabasites, should be applied with extreme caution.  相似文献   

7.
Eclogite boudins occur within an orthogneiss sheet enclosed in a Barrovian metapelite‐dominated volcano‐sedimentary sequence within the Velké Vrbno unit, NE Bohemian Massif. A metamorphic and lithological break defines the base of the eclogite‐bearing orthogneiss nappe, with a structurally lower sequence without eclogite exposed in a tectonic window. The typical assemblage of the structurally upper metapelites is garnet–staurolite–kyanite–biotite–plagioclase–muscovite–quartz–ilmenite ± rutile ± silli‐manite and prograde‐zoned garnet includes chloritoid–chlorite–paragonite–margarite, staurolite–chlorite–paragonite–margarite and kyanite–chlorite–rutile. In pseudosection modelling in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) using THERMOCALC, the prograde path crosses the discontinuous reaction chloritoid + margarite = chlorite + garnet + staurolite + paragonite (with muscovite + quartz + H2O) at 9.5 kbar and 570 °C and the metamorphic peak is reached at 11 kbar and 640 °C. Decompression through about 7 kbar is indicated by sillimanite and biotite growing at the expense of garnet. In the tectonic window, the structurally lower metapelites (garnet–staurolite–biotite–muscovite–quartz ± plagioclase ± sillimanite ± kyanite) and amphibolites (garnet–amphibole–plagioclase ± epidote) indicate a metamorphic peak of 10 kbar at 620 °C and 11 kbar and 610–660 °C, respectively, that is consistent with the other metapelites. The eclogites are composed of garnet, omphacite relicts (jadeite = 33%) within plagioclase–clinopyroxene symplectites, epidote and late amphibole–plagioclase domains. Garnet commonly includes rutile–quartz–epidote ± clinopyroxene (jadeite = 43%) ± magnetite ± amphibole and its growth zoning is compatible in the pseudosection with burial under H2O‐undersaturated conditions to 18 kbar and 680 °C. Plagioclase + amphibole replaces garnet within foliated boudin margins and results in the assemblage epidote–amphibole–plagioclase indicating that decompression occurred under decreasing temperature into garnet‐free epidote–amphibolite facies conditions. The prograde path of eclogites and metapelites up to the metamorphic peak cannot be shared, being along different geothermal gradients, of about 11 and 17 °C km?1, respectively, to metamorphic pressure peaks that are 6–7 kbar apart. The eclogite–orthogneiss sheet docked with metapelites at about 11 kbar and 650 °C, and from this depth the exhumation of the pile is shared.  相似文献   

8.
江苏东海榴辉岩向斜长角闪岩转化的研究   总被引:11,自引:1,他引:11  
东海榴辉岩曾被俯冲到上地幔,而后又折返回地表,经历了宽广的温度、压力、应力、流体条件等变化范围,形成了大量矿物反应结构,为研究岩石矿物反应提供了很好的素材。本文选取东海地区一个保留从初始榴辉岩到斜长角闪岩完整退变质序列的榴辉岩体作为研究对象,通过详细的显微结构观察、矿物成分分析、成分空间分析、成分迁移估算,揭示了东海榴辉岩向斜长角闪岩的转化过程。该过程可划分为两个阶段:早期为替代绿辉石的后成合晶形成阶段,通过绿辉石内部端元组分间的反应实现,反应产物之一的Fe^2 与金红石结合形成钛铁矿,Ca、Mg被排出到绿辉石体系之外。晚期退变为流体的渗滤交代作用,表现为石榴子石被角闪石部分取代、后成合晶的角闪石化,以及黝帘石、白云母的形成。退变质的最后阶段为石榴子石被绿帘石 角闪石 赤铁矿完全替代。榴辉岩转化成含帘石的斜长角闪岩。  相似文献   

9.
Zhang Zeming  Xu Zhiqin  Xu Huifen 《Lithos》2000,52(1-4):35-50
The 558-m-deep ZK703 drillhole located near Donghai in the southern part of the Sulu ultrahigh-pressure metamorphic belt, eastern China, penetrates alternating layers of eclogites, gneisses, jadeite quartzites, garnet peridotites, phengite–quartz schists, and kyanite quartzites. The preservation of ultrahigh-pressure metamorphic minerals and their relics, together with the contact relationship and protolith types of the various rocks indicates that these are metamorphic supracrustal rocks and mafic-ultramafic rock assemblages that have experienced in-situ ultrahigh-pressure metamorphism. The eclogites can be divided into five types based on accessory minerals: rutile eclogite, phengite eclogite, kyanite–phengite eclogite, quartz eclogite, and common eclogite with rare minor minerals. Rutile eclogite forms a thick layer in the drillhole that contains sufficient rutile for potential mining. Two retrograde assemblages are observed in the eclogites: the first stage is characterized by the formation of sodic plagioclase+amphibole symplectite or symplectitic coronas after omphacite and garnet, plagioclase+biotite after garnet or phengite, and plagioclase coronas after kyanite; the second stage involved total replacement of omphacite and garnet by amphibole+albite+epidote+quartz. Peak metamorphic PT conditions of the eclogites were around 32 to 40 kbar and 720°C to 880°C. The retrograde PT path of the eclogites is characterized by rapidly decreasing pressure with slightly decreasing temperature. Micro-textures and compositional variations in symplectitic minerals suggest that the decompression breakdown of ultrahigh-pressure minerals is a domainal equilibrium reaction or disequilibrium reaction. The composition of the original minerals and the diffusion rate of elements involved in these reactions controlled the symplectitic mineral compositions.  相似文献   

10.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号