首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composition, age, and genetic relationships of spodumene pegmatites of the Khusuingol field (South Sangilen pegmatite belt, SW Sayan), encompassing the large Tastyg lithium deposit, with granitoids of the neighboring polygenic Dzos-Khusuingol batholith have been studied. SHRIMP-II U–Pb zircon analyses yielded an Early Paleozoic age of the granites and pegmatites. The tectonic settings of the formation of these rocks are discussed.  相似文献   

2.
湖南仁里稀有金属矿田是中国近年来新发现的一处重要的花岗伟晶岩型铌、钽、锂等稀有金属矿产地,文章针对矿田含锂伟晶岩地球化学特征、成矿时代及其与花岗岩的关系,选取传梓源锂铌钽矿床内规模最大的206号锂辉石伟晶岩脉开展地球化学和白云母Ar-Ar定年工作,并与区内其他伟晶岩、花岗岩的地球化学特征、成岩时代对比分析.传梓源206号锂辉石伟晶岩属高分异稀有金属伟晶岩,形成时代为(135.4±1.4)Ma,岩石地球化学表现为高硅、高铝、低钙、相对富碱、钙碱性及过铝质特征;稀土元素总量很低,以轻稀土元素为主;微量元素富集Cs、Rb、U、Ta、Nb、Zr、Hf,相对亏损Ba、Ti,Zr/Hf、Nb/Ta比值低且集中.幕阜山地区稀有金属成矿可分为2期:第1期稀有金属成矿时代约145 Ma,与燕山早期岩浆活动有关;第2期稀有金属成矿时代135~125 Ma,为主成矿期,该期稀有金属伟晶岩与燕山晚期的二云母二长花岗岩存在成因联系,两者为同源岩浆连续结晶分异过程中不同阶段的产物.稀有金属富集成矿经历了岩浆-热液两阶段作用,Be、Nb、Ta、Li、Rb、Cs等稀有元素的富集多发生于岩浆结晶分异晚期,热液作用使Ta、Li、Rb、Cs再次富集.  相似文献   

3.
Columbite-group minerals (CGM) account for the majority of the production of tantalum, an important metal for high-technology applications. Along with other Ta–Nb oxides such as tapiolite, wodginite, ixiolite and pyrochlore supergroup minerals, CGM are recovered from rare-metal granites and granitic rare-element pegmatites. In this paper mineralogical and geochemical data with a focus on CGM, tapiolite, wodginite and ixiolite are presented for rare-element granites and pegmatites from worldwide occurrences except Africa that has been covered in a previous contribution (Melcher et al., 2015). Major and trace element data of the Ta–Nb oxides are presented and compared for a total of 25 granite/pegmatite provinces, and one carbonatite for comparison. Based on CGM compositions, the data allow to distinguish between various subgroups of Li–Cs–Ta (LCT)-family pegmatites, Nb–Y–F (NYF)-family pegmatites, mixed LCT–NYF pegmatites, and rare-element granites.Each period of Ta-ore formation in Earth history is characterised by peculiar mineralogical and geochemical features. Some of the largest and economically most important rare-element pegmatite bodies are located within Archean terrains and intruded ultramafic and mafic host rocks (e.g., Tanco/Canada, Wodgina and Greenbushes/Western Australia, Kolmozero/Kola). They are highly fractionated, of LCT affinity throughout and yield complex mineralogical compositions. The variety of minor and trace elements incorporated attests to a rather insignificant role of the immediate host rocks to their geochemical signature and rather points to the significance of the composition of the underlying crustal protoliths, internal fractionation and the processes of melt generation. Many of the Archean pegmatites carry significant Li mineralization as spodumene, petalite, and amblygonite, and all of them are also characterised by elevated Li in CGM. In addition, Sb and Bi are important trace elements, also reflected by the occasional presence of stibiotantalite and bismutotantalite. REEN patterns of CGM are dominated by the MREE or HREE, and range from very low to high total REE concentrations. Negative Eu anomalies are omnipresent. Scandium contents are also highly variable, from very high (Tanco) to very low concentrations (Wodgina, Kolmozero).A second period of worldwide pegmatite formation was in the Paleoproterozoic. All CGM analysed derive from LCT-family pegmatites except samples from the Amazonas region where Ta is mined from rare-metal granites at Pitinga. Pegmatites intruded highly variable lithologies including metasediments, metabasites, gneiss, granite and quartzite within a variety of structural and paleogeographic settings; however, most of them are syn- to post-orogenic with respect to major Paleoproterozoic orogenic events. Minor and trace element signatures are similar to CGM from Archean pegmatites. Some are characterised by considerable REE enrichment (São João del Rei/Brazil; Amapá/Brazil; Finnish Lapland/Finland), whereas others have normal to low total REE concentrations (Black Hills/USA, Bastar/India). Examples with high REE commonly are enriched in Sc and Y as well, and are often transitional to NYF-family pegmatites.The Mesoproterozoic period is comparatively poor in rare-element pegmatites and rare-metal granites. Mineralogical and chemical attributes of ixiolite–wodginite, tapiolite, CGM and rutile from placer material in Colombia point to an unusual pegmatite source of NYF affinity, yielding high total REE, Sc and Th at low Li and Bi. REE patterns have typical negative Eu and Y anomalies.A third major period of pegmatite formation was the Early Neoproterozoic at around 1 Ga, documented in the Grenvillian (North America), the Sveconorwegian (northern Europe) and the Kibaran in central Africa. CGM are present in numerous, mostly small pegmatites, although larger examples also occur (e.g., Manono in the D.R. Congo; Melcher et al., 2015). Pegmatite fields often display a zonal arrangement of mineralised pegmatites with respect to assumed “fertile” parent granites. They intrude metasediments, metabasites, gneiss and granite of middle to upper crustal levels and display a variety of mineralogical and chemical characteristics. Pegmatites of the Sveconorwegian and Grenville domains are usually of the NYF type and CGM are characterised by elevated Y, REE, Th and Sc. In contrast, the pegmatites of central (Kibara Belt) and southwestern Africa (Orange River Belt) are commonly of LCT affinity carrying spodumene, beryl and cassiterite (Melcher et al., 2015). These CGM have elevated conce ntrations of Li, Mg, Sn and Hf. Total REE concentrations are low except for the Sveconorwegian, and exhibit a variety of shapes in normalised diagrams.The fourth major pegmatite-forming event coincides with amalgamation of Gondwana at the Neoproterozoic/Paleozoic boundary around 550 Ma ago. This event is omnipresent in Africa (“Panafrican”) and South America (“Brasiliano event” documented in the Eastern Brazilian pegmatite and Borborema provinces). Pegmatites often intruded high-grade metamorphic terrains composed of metasediments including schist, marble, quartzite, as well as gneiss, amphibolite, ultramafic rocks, and granite. Within the Neoproterozoic, rare-metal granites of NYF affinity are locally abundant. Pegmatites show both LCT and NYF affinities, and mixed types occur in Mozambique. The Alto Ligonha and Madagascar provinces are characterised by abundant REE and Sc both within Ta–Nb-oxides and as separate mineral phases. Notably, some pegmatite provinces are almost devoid of cassiterite, whereas others carry cassiterite in economic amounts.In the Phanerozoic (younger than 542 Ma), pegmatites formed at all times in response to orogenetic processes involving various continents and terranes during the long-time amalgamation of Pangea and the Alpine orogenies. Whereas some activity is related to the Pampean, Acadian and Caledonian orogenies, the Variscan/Hercynian and Alleghanian orogenies are of utmost importance as manifested in pegmatite formation associated with Sn–W mineralised granites in central and western Europe as well as in the Appalachians. Most of the Variscan and Alleghanian pegmatites are of LCT affinity, although NYF and some mixed types have been described as well. Variscan pegmatite formation culminated at ca. 330 to 300 Ma, whereas Alleghanian pegmatites range in age from about 390 Ma to about 240 Ma. Most are syn- to post-orogenic and were emplaced at different crustal levels and into a variety of host rocks. Degree of fractionation as well as minor and trace element geochemistry of Ta–Nb oxides are rather variable and cover the complete field of CGM compositions. REE patterns are characterised by prominent negative Eu anomalies.Some Mesozoic and Cenozoic pegmatites and rare-metal granites from Southeast Asia and the Russian Far East are included in the compilation. Rare-metal granites of the Jos Plateau (Nigeria) were previously investigated (Melcher et al., 2015). The proportion of NYF pegmatites and rare-metal granites in the Mesozoic is striking, i.e. illustrated by Jos, Orlovka, Ulug Tanzek as well as the southeast Asian deposits related to tin granites. CGM from these areas are invariably rich in REE, Sc, Y and Th. In all rare-metal granites, Ta–Nb oxides are characterised by high total REE concentrations and both, negative Eu and Y anomalies in chondrite-normalised REE diagrams.Although constituting a vastly different magmatic system compared to rare metal pegmatites and granites, we included the Upper Fir carbonatite from the Canadian Cordillera, for comparison, because it is characterised by unusal high Ta contents. As expected, the CGM differ from the pegmatitic CGM by having high Mg and Th, and low U concentrations in columbite-(Fe) and lack an Eu anomaly. However, they also show similarities to primitive CGM from rare metal pegmatites of the NYF family in terms of the REE pattern and the increase in #Ta and #Mn towards the margins of the CGM. Our findings support recent results presented in Chudy (2014) indicating that the Ta enrichment in some carbonatites might be attributed to magmatic processes and conditions that are similar to the pegmatitic systems.  相似文献   

4.
Trace element distribution patterns are reported for whole rocks (granites, aplites, greisens, pegmatites, alaskites) and minerals from the Kenticha pegmatite field. The data shed light on the evolution, regional and local zonal pattern of the granitepegmatites and associated mineralization in the Kenticha belt. The complex mineralization of commercial concentrations of Ta, Nb, Hf, Zr, REE, U and Th is related to Be, Li, Cs, Rbbearing zones of pegmatites and is structurally controlled. Whole rock chemical signatures of the suite of felsic rocks of the Kenticha belt are predominantly similar to those generated by subduction in modern magmatic arcs and indicate a mantle derivation. Columbotantalite concentrates extracted from the pegmatitic ores represent the basic raw materials from which a number of possible byproducts can be recovered.  相似文献   

5.
The Burpala alkaline massif contains rocks with more than 50 minerals rich in Zr,Nb,Ti,Th,Be and rare earth elements(REE).The rocks vary in composition from shonkinite,melanocratic syenite,nepheline and alkali syenites to alaskite and alkali granite and contain up to 10%LILE and HSFE,3.6%of REE and varying amounts of other trace elements(4%Zr,0.5%Y,0.5%Nb,0.5%Th and 0.1%U).Geological and geochemical data suggest that all the rocks in the Burpala massif were derived from alkaline magma enriched in rare earth elements.The extreme products of magma fractionation are REE rich pegmatites,apatite-fiuorite bearing rocks and carbonatites.The Sr and Nd isotope data suggest that the source of primary melt is enriched mantle(EM-Ⅱ).We correlate the massif to mantle plume impact on the active margin of the Siberian continent.  相似文献   

6.
The Burpala alkaline massif is a unique geological object. More than 50 Zr, Nb, Ti, Th, Be, and REE minerals have been identified in rare-metal syenite of this massif. Their contents often reach tens of percent, and concentrations of rare elements in rocks are as high as 3.6% REE, 4% Zr, 0.5% Y, 0.5% Nb, 0.5% Th, and 0.1% U. Geological and geochemical data show that all rocks in the Burpala massif are derivatives of alkaline magma initially enriched in rare elements. These rocks vary in composition from shonkinite, melanocratic syenite, nepheline and alkali syenites to alaskite and alkali granite. The extreme products of magma fractionation are rare-metal pegmatites, apatite-fluorite rocks, and carbonatites. The primary melts were related to the enriched EM-2 mantle source. The U-Pb zircon ages of pulaskite (main intrusive phase) and rare-metal syenite (vein phase) are estimated at 294 ± 1 and 283 ± 8 Ma, respectively. The massif was formed as a result of impact of the mantle plume on the active continental margin of the Siberian paleocontinent.  相似文献   

7.
Tantalum, an important metal for high-technology applications, is recovered from oxide minerals that are present as minor constituents in rare-metal granites and granitic rare-element pegmatites. Columbite-group minerals (CGM) account for the majority of the current tantalum production; other Ta–Nb oxides (TNO) such as tapiolite, wodginite, ixiolite, rutile and pyrochlore-supergroup minerals may also be used.In this paper mineralogical and geochemical data with a focus on opaque minerals as well as age determinations on CGM using the U–Pb method are presented for 13 rare-element granite and pegmatite districts in Africa, covering Archean, Paleoproterozoic, Neoproterozoic, Paleozoic and Mesozoic provinces. Geological, economic and geochronological data are reviewed.Each period of Ta-ore formation is characterised by peculiar mineralogical and geochemical features that assist in discriminating these provinces. Compositions of CGM are extremely variable: Fe-rich types predominate in the Man Shield (Sierra Leone), the Congo Craton (Democratic Republic of the Congo), the Kamativi Belt (Zimbabwe) and the Jos Plateau (Nigeria). Mn-rich columbite–tantalite is typical of the Alto Ligonha Province (Mozambique), the Arabian–Nubian Shield and the Tantalite Valley pegmatites (southern Namibia). Large compositional variations through Fe–Mn fractionation, followed by Nb–Ta fractionation are typical for pegmatites of the Kibara Belt of Central Africa, pegmatites associated with the Older Granites of Nigeria and some pegmatites in the Damara Belt of Namibia. CGM, tapiolite, wodginite and ixiolite accommodate minor and trace elements at the sub-ppm to weight-percent level. Trace elements are incorporated in TNO in a systematic fashion, e.g. wodginite and ixiolite carry higher Ti, Zr, Hf, Sn and Li concentrations than CGM and tapiolite. Compared to tapiolite, CGM have higher concentrations of all trace elements except Hf and occasionally Zr, Ti, Sn and Mg. The composition of TNO related to rare-element pegmatites is rather different from rare-metal granites: the latter have high REE and Th concentrations, and low Li and Mg. Pegmatite-hosted TNO are highly variable in composition, with types poor in REE, typical of LCT-family pegmatites, and types rich in REE — showing affinity for NYF-family or mixed LCT–NYF pegmatites. Major and trace elements show regional characteristics that are conspicuous in normalised trace element and REE diagrams. In general, CGM from Ta-ore provinces are characterised by the predominance of one type of REE distribution pattern characterised by ratios between individual groups of REE (light, middle, heavy REE) and the presence and intensity of anomalies (e.g. Eu/Eu*).Despite textural complexities such as complex zoning patterns and multiple mineralisation stages, the chemical compositions of CGM, tapiolite and wodginite–ixiolite from rare-metal granite and rare-element pegmatite provinces indicate that they are cogenetic and reflect specific source characteristics that may be used to discriminate among rocks of different origin.Geochronological data produced for CGM from ore districts are discussed together with the respective ore mineralogy and minor and trace element geochemistry of TNO to reconsider the geodynamics of pegmatite formation. In Africa, formation of rare element-bearing pegmatites and granites is related to syn- to late-orogenic (e.g., West African Craton, Zimbabwe Craton), post-orogenic (Kibara Belt, Damara Belt, Older Granites of Nigeria, Adola Belt of Ethiopia) and anorogenic (Younger Granites of Nigeria) tectonic and magmatic episodes. The late-orogenic TNO mineralisation associated with A-type granites in the Eastern Desert of Egypt shares geochemical features with the anorogenic Younger Granites of Nigeria.  相似文献   

8.
东秦岭伟晶岩区是秦岭造山带规模最大、稀有金属矿化最丰富的伟晶岩区.该区稀有金属矿化种类齐全,产出贫矿、铀矿化、铍矿化、锂矿化和复杂稀有金属矿化伟晶岩,以锂矿化和铀矿化伟晶岩为主.稀有金属伟晶岩类型丰富,包括绿柱石-铌铁矿亚型、锂辉石亚型、锂云母亚型和钠长石-锂辉石型.伟晶岩内部结构分带型式多样,包括对称分带、分层和均一结构.铀矿化伟晶岩分带简单,铍矿化和复杂稀有金属矿化伟晶岩以对称分带结构为主,锂矿化伟晶岩具有多种内部结构分带型式.伟晶岩分异演化程度跨度大.结晶分异影响着复杂稀有金属矿化伟晶岩的成矿过程.该区主要产出古生代伟晶岩,形成于晚志留世—中泥盆世,集中于两期,处于晚造山-造山后阶段.伟晶岩形成时代与伟晶岩空间分布、岩浆岩分异演化程度、稀有金属矿化类型等关联不大.东秦岭地区中大面积不同时代花岗岩体的侵位、变质沉积岩地层的发育以及长期复杂的造山演化历史,包括地壳加厚和抬升,是形成高度分异演化的伟晶岩岩浆的有利地质条件.该区具有寻找铍矿和复杂稀有金属矿的潜力,且需要关注长石、石英和云母等矿物的综合利用.稀有金属伟晶岩的岩浆成因是未来研究的重要方向.  相似文献   

9.
Earlier, a belt of alkali-granite plutons and a carbonatite province were discovered in the South Gobi Desert, Mongolia. The Lugingol pluton of pseudoleucitic syenites with carbonatites was assigned to the alkali-granite belt. However, new dating showed that it is 40 Myr younger than the Khan-Bogdo pluton and a large fault separates it from the alkali-granite belt. In the same part of the South Gobi Desert, a dike series of alkaline K-shonkinites with a rare-metal carbonatite vein was found by V.I. Kovalenko west of the Lugingol pluton, near Mt. Baruun Hasar Uula, and a dike series of alkali and nepheline syenites was found by us northeast of the Lugingol pluton. These data give grounds to distinguish an intrusive complex of K-alkaline shonkinites and leucitic syenites with Late Paleozoic REE-bearing carbonatites. Thus, three alkaline-rock complexes of different ages are distinguished in the South Gobi Desert. We present refined geological maps of these complexes. The plutons of all three complexes are deposits of trace elements (REE, Nb, Zr, Y, P). The chemical composition of the silicate rocks of the complex, rare-metal agpaitic pegmatites, and carbonatite and apatite rare-metal ores was considered in detail. Shonkinites from Mt. Baruun Hasar Uula and the Mountain Pass mine (United States) and their carbonatites, along with the Lugingol carbonatites, belong to a single association of K-alkaline rocks and carbonatites, as evidenced by their identical chemical, mineral, and geochemical rare-metal compositions. Rare-earth element patterns and spidergrams show similarities and differences between the rare-metal rocks of three complexes as well as paragenetic differences between their rare-metal minerals. A rare process is described—the amorphization of rare-metal minerals, related to their high-temperature crystallization in a medium with abnormal silica contents of the Khan-Bogdo pegmatites. The parental magmas of the alkali-carbonatite complexes were generated from the EM-2 contaminated mantle that had undergone recycling, whereas the parental magmas of the Khan-Bogdo agpaitic alkali granites were produced from depleted mantle.  相似文献   

10.
皖南及邻区早白垩世中—晚期酸性岩浆岩产于扬子陆块江南古隆起东段,岩体类型为花岗岩、碱长花岗岩及钾长花岗岩。岩体含有丰富的锆石、富F的萤石及富含稀土的磷钇矿、独居石、褐帘石等矿物。主量元素具较高含量的SiO2和K2O,较低含量的TiO2、MgO、CaO,高(Na2O+K2O)/Al2O3值,高FeOT/MgO比;富集REE(Eu亏损),HREE亏损不严重,稀土配分模式表现为海鸥型;明显富集Zr、Nb、Rb、Ta、Y、Yb,显著亏损Cr、Co、Ni、V、Ba、Sr。地化特征分析认为早白垩世中—晚期花岗岩为A2型花岗岩,产生于造山后的伸展环境,是正常安山质地壳在皖南印支期加厚地壳熔融结束之后继续受地幔物质底侵部分熔融所形成。  相似文献   

11.
东秦岭地区和阿尔泰造山带均产出大量稀有金属伟晶岩,是中国重要的稀有金属产地。前者工作程度低,远景尚不明朗;后者规模巨大。开展成矿条件对比研究十分必要。东秦岭地区产出铍矿、锂矿和复杂稀有金属矿,以锂矿化为主,伟晶岩类型复杂,包括绿柱石-铌铁矿型、复杂型锂辉石亚型、复杂型锂云母亚型和钠长石-锂辉石型。阿尔泰稀有金属伟晶岩发育多种稀有金属矿化组合,伟晶岩类型为绿柱石-铌铁矿型、复杂型锂辉石亚型和钠长石-锂辉石型。东秦岭稀有金属伟晶岩的内部结构分带型式包括对称分带结构、均一结构和分层结构,阿尔泰稀有金属伟晶岩以对称分带结构为主,也见均一结构。东秦岭与阿尔泰稀有金属矿石矿物相近,东秦岭产出更多含锂磷酸盐矿物。东秦岭稀有金属伟晶岩分异演化程度相对集中且高,阿尔泰稀有金属伟晶岩分异演化程度跨度大。东秦岭和阿尔泰锂矿的锂矿化主要发生于岩浆就位前,复杂稀有金属矿稀有金属富集作用发生在岩浆就位前和就位后,但阿尔泰复杂稀有金属矿经历了更为复杂和极度的分异演化过程。东秦岭稀有金属伟晶岩可能与同期花岗岩为同一熔融事件的产物,与早期花岗岩来自同一物质来源。阿尔泰稀有金属伟晶岩与花岗岩关系复杂,但大量早期花岗岩的形成提高了地壳成熟度,有利于形成晚期稀有金属伟晶岩。东秦岭稀有金属伟晶岩产出于北秦岭单元中,形成于晚造山和造山后阶段,集中于造山后阶段,稀有金属矿化呈多期断续叠加特征。阿尔泰稀有金属伟晶岩主要产出于琼库尔-阿巴宫地体和中阿尔泰山地体内,集中于造山后和非造山阶段。伟晶岩岩浆活动受控于物质来源和造山作用。储存稀有金属的岩石在造山作用中熔融,发生多期的大规模花岗质岩浆活动,稀有金属通过长期复杂的分异演化过程在残余熔体中不断富集。这种富挥发分和稀有金属的过铝质硅酸盐岩浆随后上升就位,可经后续冷却结晶和不混溶作用进一步富集稀有金属,从而形成稀有金属伟晶岩。东秦岭具有形成含稀有金属高度分异演化岩浆的有利条件,该区具有寻找铍矿和复杂稀有金属矿的潜力。  相似文献   

12.
Abstract. The REE-mineralized alkaline granites in Egypt are divided into the following three classes: (1) Mesozoic, anorogenic nepheline syenite ring complexes with REE amounting up to 1.3 %, particularly in their fenitized parts (e.g. Abu Khruq), (2) an orogenic peralkaline syenite-granite, composed of i) Zr, Nb, - REE, and Th-enriched peralkaline granite-syenite complexes with REE amounting up to 0.5 % (e.g. Um Hibal, Tarbite North and South, Gharib, and Zarget Naam) and ii) Y, Th, HREE, and P-enriched post-Cretaceous peralkaline complexes that intrude the Phanerozoic rocks of the Southwestern Desert with REE amounting up to 2 % (e.g. Gara El Hamra), and (3) upper Proterozoic, post-orogenic siderophyllite alkali feldspar granite with REE amounting up to 0.8 %, particularly in their apical miarolitic pegmatites and albitized zones (e.g. Kadabora-Abu Dob and Um Naggat). Special attention is given to the Abu Khruq and Gara El Hamra granitic bodies.  相似文献   

13.
The dike belt and separate intrusive bodies of the Abdar–Khoshutula series were formed in the NE-trending linear zone, southwest of the Daurian–Khentei batholith, in the peripheral part of the Early Mesozoic magmatic area, on the western termination of the Mongol–Okhotsk belt. The granitoids of this series are subdivided into following geochemical types: anatectic granitoids of the calc-alkaline and subalkaline series, alkaline rocks, and plumasite rare-metal leucogranites (Li–F granites). The entire series was formed within approximately 12–15 Ma. Its geochemical evolution follows two trends, which correspond to two stages of the granitoid magmatism. The early stage was responsible for the formation of granitoids of two phases of the Khoshutulinsky Pluton and alkaline syenites with similar trace element distribution patterns. However, syenites, as agpaitic rocks, are significantly enriched in Ba, Zr, and Hf. The late stage of the intrusive- dike series resulted in the formation of the dike belt and Abdar Massif of rare-metal granites. These rocks show enrichment in Li, Rb, Cs, Nb, Ta, Sn, and Y, and deep negative anomalies of Ba, Sr, La, and Ce, which are best expressed in the late amazonite–albite granites of the Abdar intrusion and ongonites of the dike belt. The intrusive-dike series in the magmatic areas of different age of Mongolia and Baikal region are characterized by the wide compositional variations, serve as important indicators of mantle-crustal interaction and differentiation of granitoid magmas, and could highlight the nature of zonal areas within the Central Asian Fold Belt. Obtained geochemical data indicate a potential opportunity to concentrate trace and ore components during long-term evolution of the intrusive-subvolcanic complexes, which could be indicators of the evolution of the ore-magmatic systems bearing rare-metal mineralization.  相似文献   

14.
黑龙江省伊春红星地区大地构造上位于布列亚-佳木斯地块和张广才岭造山带结合部位,区内出露晚三叠世碱性花岗岩,其岩石组合为正长花岗岩、碱长花岗岩、含钠闪石、霓石碱性花岗岩。地球化学上,该套岩石具有富硅、富碱,铁镁比值较高,CaO、MgO含量低,富含F、Zr、Nb、Ce、Ga、稀土元素(REE)、Y和Zn等元素,贫Sr、P、Ti,镓铝比值高,轻重稀土分馏显著,具有强的Eu负异常等特点。在花岗岩成因类型判别图解中,它们均投影在A型花岗岩区,结合岩石具有过碱和相对贫铝的化学组成特征,表明它们应属过碱性A型花岗岩。在微量元素蛛网图上,这套岩石表现出较明显的Ba、Sr、P、Ti的负异常,保留有先期“弧”岩浆作用的地球化学印记,其Y/Nb和Y/Ta比值也较高,分别为1.55—3.27和13.5~44.00,在A型花岗岩岩石学亚类判别图解中,它们均投影在产于后造山环境的A2花岗岩区。根据对岩石地球化学的组成及产出地质背景的分析,表明这套岩石应形成于造山期后的张性构造环境。  相似文献   

15.
A crescent-shape granitic stock and associated dykes is located to the East Gabal Nuqra at the extreme western part of Wadi Natash,South Eastern Desert,Egypt.The examined granites are classified as alkali-feldspar granites and mainly consist of quartz,potash feldspars,plagioclases,and aegirine-augite.Xenotime,zircon,apatite and allanite are accessories representing the source of Y,U,Th and REEs in these rocks.These granites are characterized by high K2O,Na2O and Zn contents and Rb/Sr ratio.Also,they are highly enriched in high field strength elements(HFSE),especially Zr(1529×10-6),Nb(100×10-6),Hf(91×10-6) and Y(624×10-6) and light rare-earth elements(LREE,141×10-6) concentrations and strongly depleted in Ca,Mg,Sr and Eu contents.These features suggest that they are similar to A-type granites(type-2).The rhyolite dykes and granites have similar geochemical characteristics whereas the chondrite-normalized REE patterns show a LREE enriched feature with strong negative Eu-anomaly,whereas the REE pattern of trachydacites show slightly fractionated pattern with no Eu-anomaly.It is suggested that the trachydacites were generated by small degree of partial-melting deep-seated basic source.Such liquid,when subjected to fractional crystallization involving separation of plagioclases as residue,generated the alkali-feldspar granites.And further fractional crystallization gave rise to the alkali rhyolites.The igneous rock suite originated from metaluminous to alkaline trachytic magma,and was developed in a within-plate tectonic environment.The extension caused by NW-SE right-lateral shear in area led to the emplacement of the alkali-feldspar granites.The later extrusion of the alkali rhyolite and trachydacite dykes was due to cauldron subsidence.  相似文献   

16.
The geochemistry of K‐feldspar for K, P, Sr, Ba, Rb, Cs, Ga, and of muscovite for the same elements plus Nb and Ta, was used for proving the parental relationships of S‐type granites and LCT (Li, Cs, Ta) rare‐element pegmatites in the southernmost pegmatitic field of the Pampean pegmatite province in Argentina. The variation of K/Rb‐Cs, K/Cs‐Rb, K/Rb‐Rb/Sr, K/Rb‐Ba in K‐feldspar from the granites and pegmatites show that they form an association with the evolutional sequence: granites → barren‐ to transitional pegmatites → beryl type, beryl‐columbite‐phosphate pegmatites → complex type of spodumene subtype pegmatites → albite‐spodumene type → albite type pegmatites. This sequence reflects the regional distribution of the different magmatic units. The Ta‐Cs diagram for muscovite reveals that none of the studied pegmatites exceed the threshold established in previous studies for being considered with important tantalum oxide mineralization. The granites and pegmatites constitute a rare‐element pegmatitic field in which different magmatic units form a continuous fractionation trend, extended from the less evolved granitic facies to the most geochemically specialized pegmatites  相似文献   

17.
江南造山带西段岩浆作用特性   总被引:12,自引:1,他引:11  
在湖南浏阳南桥的中元古代冷家溪地层中发现了一种高度亏损、具N—MORB属性的玄武岩一辉绿岩。这种玄武岩的K2O特低,不相容的高场强元素,如Nb,Zr,Hf,Ti等和稀土元素的丰度都低于(少数元素接近)N-MORB的丰度,εNd(1271Ma)为6.86~8、98。在俯冲带附近N—MORB的发现为“九岭古岛弧”的存在提供了新的证据。湘西黔阳、古丈新元古代玄武岩-辉绿岩属碱性玄武岩.其微量元素特征近似于OIB,它的规模值得进一步调查。广西北部丹洲群中基性-超基性岩的TiO2,Ta及Nb的含量低,Hf/Th,Ti/Y和Ti/Zr等的比值也低,La/Ta和Th/Yb等的比值高,具有“弧玄武岩”特性。它们不具有CFB及OIB的地球化学特征,在构造环境判别图解上的标绘点集中在“火山弧玄武岩区”,少数样品位于“弧后盆地玄武岩区”。至今未发现具高温特征的高镁熔岩,也未见大规模放射性岩墙群。这些基性岩的规模极小(约100km^2),不具有地幔柱来源的镁铁质岩浆的特性。桂北及湘东北的新元古代强过铝(SP)花岗岩体与江西九岭和安敞许村、休宁、歙县等岩体具有相似的特征,它们沿江南造山带呈带状分布,其形成与华夏和扬子板块之间的碰撞事件有关。在全球不同时代的造山带中都有S-型花岗岩出露;地幔柱岩浆作用形成的“镁铁质大火成岩省”中,出现的少量花岗岩是非造山、板内或A-型花岗岩,而不会是S-型花岗岩。不能把S-型花岗岩作为地幔柱岩浆作用的证据。这些都说明“江南造山带”的厘定有充分的岩石学证据。  相似文献   

18.
The Zr/Hf ratio as a fractionation indicator of rare-metal granites   总被引:1,自引:0,他引:1  
The Zr-Hf geochemical indicator, i.e., the Zr/Hf ratio (in wt %) in granitic rocks is proposed to be used as the most reliable indicator of the fractionation and ore potential of rare-metal granites. It was empirically determined that the fractional crystallization of granitic magma according to the scheme granodiorite → biotite granite → leucogranite → Li-F granite is associated with a decrease in the Zr/Hf ratio of the granites. The reason for this is the stronger affinity of Hf than Zr to granitic melt. This was confirmed by experiments on Zr and Hf distribution between granitic melt and crystals of Hf-bearing zircon (T = 800°C, P= 1 kbar). The application of the Zr/Hf indicator was tested at three classic territories of rare-metal granites: eastern Transbaikalia, central Kazakhstan, and the Erzgebirge in the Czech Republic and Germany. The reference Kukul’bei complex of rare-metal granites in eastern Transbaikalia (J3) is characterized by a uniquely high degree of fractionation of the parental granitic melt, with the granites and their vein derivatives forming three intrusive phases. The biotite granites of phase 1 are barren, the leucogranites of phase 2 are accompanied by greisen Sn-W mineral deposits (Spokoininskoe and others), and the final dome-shaped stocks of amazonite Li-F granites of phase 3 host (in their upper parts) Ta deposits of the “apogranite” type: Orlovka, Etyka, and Achikan. The Kukul’bei Complex includes also dikes of ongonites, elvanes, amazonite granites, and miarolitic pegmatites. All granitic rocks of the complex are roughly coeval and have an age of 142±0.6 Ma. The Zr/Hf ratio of the rocks systematically decreases from intrusive phase 1 (40–25) to phases 2 (20–30) and 3 (10–2). Compared to other granite series, the granites of the Kukul’bei Complex are enriched in Rb, Li, Cs, Be, Sn, W, Mo, Ta, Nb, Bi, and F but are depleted in Mg, Ca, Fe, Ti, P, Sr, Ba, V, Co, Ni, Cr, Zr, REE, and Y. From earlier to later intrusive phases, the rocks become progressively more strongly enriched or depleted in these elements, and their Zr/Hf ratio systematically decreases from 40 to 2. This ratio serves as a reliable indicator of genetic links, degree of fractionation, and rare-metal potential of granites. Greisen Sn, W, Mo, and Be deposits are expected to accompany granites with Zr/Hf < 25, whereas granites related to Ta deposits should have Zr/Hf < 5.  相似文献   

19.
20.
福建沿海中生代变质带中花岗质岩石的地球化学   总被引:12,自引:1,他引:12  
周旋  于津海 《地球化学》2001,30(3):282-292
福建东南沿海中生代变质带的花岗质岩石分布于东山、晋江和莆田等广大地区。花岗岩中常包含黑云母、石榴子石或白云母。但地球化学研究表明,这些花岗岩属于钙碱性或高钾钙碱性,以低Rb、Zr、Hf、Nb、Y、Ga含量和Rb/Sr比值,以及高Ba、Sr丰度为特征,属于典型的Ⅰ型花岗岩。它们的稀土总量普遍较低,具有轻稀土富集、铕中等亏损的稀土分布模式。本带三个地区花岗岩的微量元素组成存在一定差异,但具有相似的Sr、Nd同位素组成,以高εNd(t)(-4.49~-3.15)和低ISr(0.7055-0.7074)、tDM(1.19-1.29Ga)为特征。地球化学研究显示本带花岗岩形成于相同的构造背景-大型边缘火山弧环境。其母岩浆是由类似于麻源群的古老火成变质岩部分熔融产生的熔融体与同期的幔源玄武质岩浆发生一定程度混合而成。不同地区或同一地区花岗岩地球化学组成上的差异是不同程度的部分熔融和结晶分异的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号