首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 359 毫秒
1.
构造煤甲烷吸附表面能研究   总被引:1,自引:0,他引:1  
煤的表面能是致使煤具有吸附性差异的根本原因。通过分析动力变质作用对构造煤结构和组分的影响,借助甲烷等温吸附实验,计算了不同温度下随着压力增大,原生结构煤和构造煤吸附甲烷的煤表面能的变化情况,并从构造煤动力变质角度分析了其表面能变化的原因。结果表明:动力变质作用对构造煤结构和组分改造作用明显,构造煤比共生的原生结构煤微孔隙更发育,吸附能力更强;计算结果也表明,随着温度的升高和压力的增大,构造煤吸附甲烷的表面能降低值均大于共生的原生结构煤,构造煤吸附甲烷的能力更强。   相似文献   

2.
甲烷在煤基质中的扩散性能是影响煤层气产出的重要储层参数。采用云南东南部地区新近系中新统小龙潭组褐煤样品,开展了低煤阶煤中甲烷等温吸附实验。基于等温吸附实验获得的吸附量与时间的关系数据,应用一元孔隙结构气体非稳态扩散模型,计算了煤中甲烷气体扩散系数,揭示了煤中甲烷扩散规律和控制机理。研究结果表明,低煤阶煤中气体扩散规律服从Langmuir方程,煤中甲烷有效扩散系数和扩散系数随着压力的增高而增大;吸附时间常数随着压力的增高而减小,服从负指数函数规律。4个实验煤样Langmuir有效扩散系数和扩散系数分别是(1.71~5.46)×10-4 s-1和(2.17~6.91)×10-12 m2/s,Langmuir压力为0.63~1.97 MPa。在相同温度和压力条件下,干燥煤样的有效扩散系数和扩散系数大于平衡水分煤样,随着温度的增高,其有效扩散系数和扩散系数增加,煤中气体扩散性能增强。   相似文献   

3.
柴达木盆地东部石炭系页岩是一套待开发的优质烃源岩,吸附是页岩气最主要的储集状态,但针对该区页岩吸附特征的研究较少。依据物质守恒与热力学平衡原理,运用自主设计的气固双相等温吸附实验仪,参考煤的高压等温吸附测定行业标准,对取自柴达木盆地东部石浅1井的页岩样品进行了不同温度(30 ℃、40 ℃、50 ℃和60 ℃)的甲烷等温吸附实验研究,并运用LangmuirFreundlich(L F)模型对吸附量实验值进行非线性回归分析;根据ClausiusClapeyron方程计算得到页岩对甲烷的等量吸附热方程。研究结果表明:压力一定时,页岩对甲烷的吸附量随着温度升高而降低;温度一定时,随压力升高,甲烷吸附量出现先增大后降低的现象,具有典型的超临界吸附特征;L F模型对等温吸附过程拟合效果良好,实验结果将模型中4个参数确定,且各参数物理意义明确;计算得到等量吸附热与吸附量之间的关系为:q=-3 679.7n+9 779.5,等量吸附热随吸附量增大而降低。等量吸附热结合L F模型可以预测任意温度、压力下页岩对甲烷的吸附量,且预测值与实验所得数据结果吻合较好,对页岩气储量评估与开发利用具有实际意义。  相似文献   

4.
为了研究甲烷在颗粒煤中扩散、吸附至平衡过程的扩散特性,基于颗粒煤吸附甲烷幂函数扩散模型,利用磁悬浮天平高压等温吸附仪,测定不同压力下颗粒煤甲烷吸附过程中扩散量随时间变化值,研究颗粒煤甲烷吸附达到平衡前的扩散特征。实验结果表明:平衡压力对颗粒煤甲烷吸附和扩散特性影响显著;吸附量和平均扩散系数随着压力增大而增大;颗粒煤甲烷吸附过程扩散系数随时间呈幂函数衰减,前500 s衰减幅度较大,平均扩散系数与时间呈负相关关系。研究认为颗粒煤吸附甲烷幂函数扩散模型对于描述颗粒煤甲烷吸附扩散过程具有较高准确性,有助于分析煤层气排采过程煤层气吸附量的动态变化,提高煤层气采收率。   相似文献   

5.
研究煤的吸附和放散特性,对于查明煤与瓦斯突出中甲烷的作用,提高煤层气采收率或矿井抽采率具有重要作用。通过自行研制的实验装置,对河南新安矿和平煤一矿软煤和硬煤甲烷吸附和扩散的性质、相同吸附压力下的吸附量和Langmuir吸附常数的差异进行分析,阐明煤表面能的控制因素,查明煤在初始解吸时刻的扩散系数。结果表明,同一煤层中软煤比共生的硬煤具有更大的Langmuir吸附体积,在同一吸附压力下同阶煤的吸附量与煤的软硬和吸附压力有关,软煤和硬煤的表面能与煤阶有关,短时间解吸时软煤扩散系数大于硬煤,长时间解吸后硬煤的扩散系数大于软煤,且软硬煤的扩散系数均随解吸时间延长和吸附平衡压力的增加而减小。   相似文献   

6.
查明颗粒煤超临界态甲烷吸附相密度特征是研究温度、压力影响煤样吸附甲烷量的基础。选用安阳–鹤壁煤田鹤壁六矿与龙山矿颗粒煤样,借助磁悬浮天平等温吸附仪测量温度为308、313和318 K,压力为1~24 MPa下的等温吸附线。利用截距法、Langmuir三元模型拟合法与液相密度法分别计算超临界甲烷吸附饱和时的吸附相密度,分析其影响因素,并通过定吸附相体积的方法,一方面计算未吸附饱和时的吸附相密度,对峰值型拐点与过剩吸附量出现负值的实验现象进行解释,另一方面校正出较为理想的绝对吸附量。吸附相密度的计算结果表明,甲烷吸附相密度受温度、压力和煤变质程度的影响:随温度升高而降低,随压力升高先快速增加,后逐渐变缓,测量范围内吸附饱和时,无烟煤吸附相密度为121.60~136.17 kg/m3,贫瘦煤为73.29~76.96 kg/m3;绝对吸附量的计算结果表明,采用液相密度法校正出的绝对吸附量会出现负值,明显与实际不符,用截距法和Langmuir三元模型法校正的绝对吸附量会因实验条件的变化而改变,结合吸附常数b值的变化规律,发现用Langmuir三元模型法描述超临界甲烷的吸附行为最为恰当。   相似文献   

7.
中煤级煤吸附甲烷的物理模拟与数值模拟研究   总被引:3,自引:0,他引:3  
傅雪海  秦勇  权彪  范炳恒  王可新 《地质学报》2008,82(10):1368-1371
基于184个中煤级(镜质组最大反射率Ro,max介于0.65%~2.50%)煤在平衡水条件下的等温吸附实验成果,模拟了中煤级煤的朗格缪尔体积和压力与煤级的关系,建立了不同埋深(温度、压力)条件下不同煤级煤饱和吸附气量量板,探讨了压力和温度对中煤级煤吸附甲烷能力的综合效应,对比分析了中煤级煤吸附特征与低、高煤级煤的差异,提出了中煤级煤吸附气量预测的方法。  相似文献   

8.
川南煤层甲烷解吸动力学影响因素实验研究   总被引:1,自引:0,他引:1  
为了系统研究煤层气(甲烷)解吸动力学的影响因素,选用川南地区的无烟煤,设计了不同压力、温度、粒度和湿度下的煤层气解吸动力学实验。采用高温高压煤层气吸附/解吸测试系统进行实验,并拟合实验结果获得了不同条件下的扩散系数。研究表明:压力和温度越高,甲烷解吸量和解吸速率越大;粒度越大,甲烷解吸量和解吸速率越小;低于平衡水含量时,湿度增大,甲烷解吸量和解吸速率降低;甲烷扩散系数拟合结果揭示,扩散系数随压力增高而减小,随温度升高而增大,随湿度增大而减小。   相似文献   

9.
深部煤层含气量变化特征与浅部有所不同,实测数据极少,需要研发新的方法对其进行预测。本文以鄂尔多斯盆地东部主煤层为对象,分析了影响吸附常数的地质因素。基于煤样在不同温度条件下的高压甲烷等温吸附实验,采用主成分分析方法,探讨了深部煤层含气量预测方法。选取温度、镜质组反射率、水分含量、灰分产率、镜质组含量、惰质组含量6个因素进行主成分分析,提取出3个主成分,获得吸附常数与3个主成分之间的多元一次函数关系,根据朗格缪尔方程并结合含气饱和度建立了深部煤层含气量预测模型。采用这一模型,对鄂尔多斯盆地东部深部煤层进行了实例研究。结果表明,煤层含气量随埋深的变化存在一个临界深度,临界深度大致在750~1200m之间,随煤级及地层温度和地层压力而呈规律性变化。在临界深度以浅,煤层含气量随埋深的增大而增高;超过临界深度后,含气量随埋深的增大而减低。  相似文献   

10.
沈瑞  郭和坤  胡志明  熊伟  左罗 《地学前缘》2018,25(2):204-209
针对目前页岩吸附等温线测试温度、压力通常未达到储层温压条件这一问题,设计了页岩高温高压吸附等温线测试方法,研究了储层温度、压力条件下页岩吸附等温线特征,以实际页岩岩心为例计算了游离气和吸附气随压力的变化规律,并采用全直径页岩氦气和甲烷控压生产实验研究了吸附气对产气特征的影响。结果表明:视吸附量先随压力增大而增大,到达峰值之后视吸附量随压力的增大而减小;在低压条件下,采用Langmuir外推计算的吸附气量与高压实验计算的吸附气量相差不大;而在高压条件下,采用低压Langmuir理论推算总含气量高估9.2%;低于临界解吸压力时,吸附气解吸附使得单位压差产气量增加;高于临界解吸压力时,吸附气对单位压差产气量几乎没有影响;开发初期,低于临界解吸压力范围较小,吸附气对产气量贡献较小,尽可能动用游离气是高效开发的关键。  相似文献   

11.
The majority of coalbed methane(CBM) in coal reservoirs is in adsorption states in coal matrix pores. To reveal the adsorption behavior of bituminous coal under high-temperature and high-pressure conditions and to discuss the microscopic control mechanism affecting the adsorption characteristics, isothermal adsorption experiments under hightemperature and high-pressure conditions, low-temperature liquid nitrogen adsorption-desorption experiments and CO2 adsorption experiments were performed on coal samples. Results show that the adsorption capacity of coal is comprehensively controlled by the maximum vitrinite reflectance(Ro, max), as well as temperature and pressure conditions. As the vitrinite reflectance increases, the adsorption capacity of coal increases. At low pressures, the pressure has a significant effect on the positive effect of adsorption, but the effect of temperature is relatively weak. As the pressure increases, the effect of temperature on the negative effect of adsorption gradually becomes apparent, and the influence of pressure gradually decreases. Considering pore volumes of pores with diameters of 1.7-100 nm, the peak volume of pores with diameters 10-100 nm is higher than that from pores with diameters 1.7-10 nm, especially for pores with diameters of 40-60 nm, indicating that pores with diameters of 10-100 nm are the main contributors to the pore volume. The pore specific surface area shows multiple peaks, and the peak value appears for pore diameters of 2-3 nm, indicating that this pore diameter is the main contributor to the specific surface area. For pore diameters of 0.489-1.083 nm, the pore size distribution is bimodal, with peak values at 0.56-0.62 nm and 0.82-0.88 nm. The adsorption capability of the coal reservoir depends on the development degree of the supermicroporous specific surface area, because the supermicroporous pores are the main contributors to the specific pore area. Additionally, the adsorption space increases as the adsorption equilibrium pressure increases. Under the same pressure, as the maximum vitrinite reflectance increases, the adsorption space increases. In addition, the cumulative reduction in the surface free energy increases as the maximum vitrinite reflectance increases. Furthermore, as the pressure increases, the surface free energy of each pressure point gradually decreases, indicating that as the pressure increases, it is increasingly difficult to adsorb methane molecules.  相似文献   

12.
为了探讨中-高煤级深部煤层孔隙结构特征和吸附性,以陕西宜川和山西柿庄地区埋深100~1 800 m的中-高煤级样品为研究对象,对样品进行了煤岩煤质分析以及压汞法、核磁共振、低温液氮和等温吸附等测试,结果表明:(1)随着深度的增加,煤层吸附孔含量增多,渗流孔含量减小,渗透性降低,储层物性变差。(2)比表面积和总孔体积在1 000 m附近出现高值区域,随后才出现如前人所述的随深度逐渐降低的趋势,这与小孔的贡献率一致,可见比表面积和总孔体积并非完全由微孔决定,小孔作用显著。(3)深部煤层吸附性是压力的正效应与温度的负效应共同作用的结果,随着压力的增高,吸附量明显增加,温度每升高1 ℃,吸附量平均减少0.25 cm3/g;兰氏压力并不是简单地随温度递增而递增,而是存在随温度变化的拐点(35 ℃),大于拐点温度时,兰氏压力才呈现增高趋势。  相似文献   

13.
为揭示深部煤层超临界CO2(ScCO2)吸附特征及其控制机理,以沁水盆地南部余吾矿、寺河矿、成庄矿的3号煤为研究对象,通过自制等温吸附仪进行了不同温度(45℃,62.5℃,80℃)、最高压力达到CO2超临界压力以上时的等温吸附实验。研究结果表明:高温高压条件下ScCO2吸附曲线不同于常温常压下CO2吸附曲线,随压力升高ScCO2过剩吸附量和绝对吸附量分别呈4段式和3段式变化,ScCO2达到过剩吸附量峰值出现的压力点具有随温度升高向高压增高的特征;ScCO2过剩吸附量远低于绝对吸附量,无法采用Langmuir吸附模型进行解释;温度对ScCO2吸附抑制明显,水分对ScCO2吸附没有起到抑制作用,灰分含量较高对ScCO2吸附量有明显抑制作用,煤中高镜质组含量和高Rmax对ScCO2吸附具有较明显的促进作用;超临界状态下煤对ScCO2的吸附量大小由微孔和过渡孔所控制,且与微孔比表面积大小有关,高变质煤对ScCO2的吸附能力降低可能是因微孔中矿物充填所致。   相似文献   

14.
碎软煤的完整原样制取困难,需要加工制成重塑煤体,为了研究不同压制荷载对煤体物性特征的影响,以重塑煤体为研究对象,基于低温液氮的孔隙测试实验和高压容量法的甲烷吸附实验,探讨不同成型荷载而成的重塑煤体的微小孔结构及其吸附特性的差异。结果表明:不同成型荷载压制而成的重塑煤体,其微孔和小孔的孔容随着成型荷载的增大而略微减少,孔比表面积随着成型荷载的增大而略微增加,总孔体积减少和孔比表面积增加的幅度不大;通过分形理论发现无论高压段还是低压段,孔隙结构具有明显的分形特征,且在高压段的分形维数普遍低于低压段,不同荷载压制而成的重塑煤体的分形维数差别不大;等温吸附线均符合第Ⅰ类等温吸附曲线,Langmuir模型适用于描述重塑煤体的等温吸附,成型荷载对煤的吸附常数有一定的影响,其对吸附常数b值的影响大于对a值的影响。研究不同成型荷载下重塑煤体的吸附特性,为不同条件下型煤制作及冷冻取心实验提供参考。   相似文献   

15.
渗透率是表征瓦斯流动的重要参数,为保证煤矿瓦斯安全高效抽采,有必要探究距抽采井筒不同位置处煤层瓦斯渗流演化特征。然而,瓦斯抽采过程中伴随有效应力、煤基质对瓦斯的吸附/解吸能力以及煤储层温度的不断变化,甚至出现抽采损伤,使得煤层瓦斯运移行为异常复杂。为探究抽采过程的煤层瓦斯渗流特性,在圆柱坐标系下,考虑压力场与温度场变化对煤储层渗透率的影响,构建温度影响的孔隙压力时空演化函数,据此建立应力与温度作用下的煤储层渗透率模型。结果表明:建立的模型能合理描述沿抽采井筒孔隙压力的演化规律以及瓦斯的运移特性,即在恒定外应力的条件下,随抽采时间增加,不同位置处孔隙压力先降低后变化平缓,煤储层渗透率先降低后升高;此外,同一煤储层位置处,考虑温度比不考虑温度的渗透率计算值更低;通过讨论发现,随抽采时间增加,根据裂隙压缩与基质收缩对渗透率演化的不同效应,设置合理的负压抽采方式可提高瓦斯抽采量。   相似文献   

16.
查明超临界状态下煤岩对CO2的吸附/解吸特征,能为煤层气开采现场注CO2的注入参数选取提供理论依据。以山西屯留矿的瘦煤和寺河矿的无烟煤为研究对象,借助ISO-300型等温吸附实验仪分别进行了不同温度(35℃、45℃、55℃)、最高压力达到CO2临界压力以上时的吸附/解吸实验。结果表明:超临界状态下,随着压力升高,容量法测得的吸附量存在最大值,不代表煤样的绝对吸附量,而是Gibbs吸附量;根据煤岩在高压下吸附CO2的本质,计算出超临界状态下煤岩吸附/解吸CO2的真实量。超临界状态下煤岩吸附CO2的真实量与压力之间符合langmuir吸附曲线,随着吸附压力的升高,Gibbs吸附量与绝对吸附量之间的差值越来越大;随着温度的升高,煤样的饱和吸附量降低;同样条件下,高变质程度的无烟煤对CO2的饱和吸附量大于瘦煤;超临界状态下煤样对CO2的绝对吸附等温线和绝对解吸等温线是可逆的。   相似文献   

17.
The characteristic curves for methane on organic-rich shales at above critical temperature were investigated. And the adsorption equation of methane on organic-rich shales at above critical temperature was deduced. The results show that the improved Amankwah’s method is applied to obtain the suitable pseudo-saturation pressure and then the optimal characteristic curve for methane on organic-rich shales can be determined based on the adsorption potential theory. The adsorption equation is constructed by combination of the D–A equation and characteristic curve, which could reliably predict the methane adsorption capacity on organic-rich shales at different temperatures and pressures. The methane adsorption capacity first increases to maximum and then decreases with increasing the depth. When the burial depth is lower than a depth corresponding to the maximum adsorption capacity, the adsorption capacity is determined by the hydrostatic pressure gradient combined with the geothermal gradient. The higher the hydrostatic pressure gradient is, the larger the maximum adsorption capacity is. However, when the burial depth exceeds the critical depth, the methane adsorption capacity is mainly affected by the geothermal gradient. The higher the geothermal gradient is, the faster the fall rate of the adsorption capacity is.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号