首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Gangdese magmatic arc, southeastern Tibet, was built by mantle‐derived magma accretion and juvenile crustal growth during the Mesozoic to Early Cenozoic northward subduction of the Neo‐Tethyan oceanic slab beneath the Eurasian continent. The petrological and geochronological data reveal that the lower crust of the southeastern Gangdese arc experienced Oligocene reworking by metamorphism, anatexis and magmatism after the India and Asia collision. The post‐collisional metamorphic and migmatitic rocks formed at 34–26 Ma and 28–26 Ma respectively. Meta‐granitoids have protolith ages of 65–38 Ma. Inherited detrital zircon from metasedimentary rocks has highly variable ages ranging from 2708 to 37 Ma. These rocks underwent post‐collisional amphibolite facies metamorphism and coeval anatexis under P–T conditions of ~710–760 °C and ~12 kbar with geothermal gradients of 18–20 °C km ? 1, indicating a distinct crustal thickening process. Crustal shortening, thickening and possible subduction erosion due to the continental collision and ongoing convergence resulted in high‐P metamorphic and anatectic reworking of the magmatic and sedimentary rocks of the deep Gangdese arc. This study provides a typical example of the reworking of juvenile and ancient continental crust during active collisional orogeny.  相似文献   

2.
Metabasic rocks from the Adula Nappe in the Central Alps record a regional high‐pressure metamorphic event during the Eocene, and display a regional variation in high‐pressure mineral assemblages from barroisite, or glaucophane, bearing garnet amphibolites in the north to kyanite eclogites in the central part of the nappe. High‐pressure rocks from all parts of the nappe show the same metamorphic evolution of assemblages consistent with prograde blueschist, high‐pressure amphibolite or eclogite facies conditions followed by peak‐pressure eclogite facies conditions and decompression to the greenschist or amphibolite facies. Average PT calculations (using thermocalc ) quantitatively establish nested, clockwise P–T paths for different parts of the Adula Nappe that are displaced to higher pressure and temperature from north to south. Metamorphic conditions at peak pressure increase from about 17 kbar, 640 °C in the north to 22 kbar, 750 °C in the centre and 25 kbar, 750 °C in the south. The northern and central Adula Nappe behaved as a coherent tectonic unit at peak pressures and during decompression, and thermobarometric results are interpreted in terms of a metamorphic field gradient of 9.6 ± 2.0 °C km?1 and 0.20 ± 0.05 kbar km?1. These results constrain the peak‐pressure position and orientation of the nappe to a depth of 55–75 km, dipping at an angle of approximately 45° towards the south. Results from the southern Adula Nappe are not consistent with the metamorphic field gradient determined for the northern and central parts, which suggests that the southern Adula Nappe may have been separated from central and northern parts at peak pressure.  相似文献   

3.
Although eclogites in the Belomorian Province have been regarded as Archean in age and among the oldest in the world, there are also multiple studies that have proposed a Paleoproterozoic age. Here, we present new data for the Gridino‐type eclogites, which occur as boudins and metamorphosed dykes within tonalite–trondhjemite–granodiorite gneisses. Zircon from these eclogites has core and rim structures. The cores display high Th/U ratios (0.18–0.45), negative Eu anomalies and strong enrichment in HREE, and have Neoarchean U–Pb ages of c. 2.70 Ga; they are interpreted to be magmatic in origin. Zircon cores have δ18O of 5.64–6.07‰ suggesting the possibility of crystallization from evolved mantle‐derived magmas. In contrast, the rims, which include the eclogite facies minerals omphacite and garnet, are characterized by low Th/U ratios (<0.035) and flat HREE patterns, and yield U–Pb ages of c. 1.90 Ga; they are interpreted to be metamorphic in origin. Zircon rims have elevated δ18O of 6.23–6.80‰, which was acquired during eclogite facies metamorphism. Based on petrography and phase equilibria modelling, we recognize a prograde epidote amphibolite facies mineral assemblage, the peak eclogite facies mineral assemblage and a retrograde high‐P amphibolite facies mineral assemblage. The peak metamorphic conditions of 695–755°C at >18 kbar for the Gridino‐type eclogites suggest an apparent thermal gradient of <39–42°C/kbar for the Lapland–Kola collisional orogeny.  相似文献   

4.
The metamorphic history of the Southern Marginal Zone (SMZ) of the Limpopo Belt, South Africa, possibly provides insight into one of the oldest preserved continental collision zones. The SMZ consists of granitoid gneisses (the Baviaanskloof Gneiss) and subordinate, infolded metasedimentary, metamafic and meta‐ultramafic lithologies (the Bandelierkop Formation) and is regarded as the c. 2700 Ma granulite facies reworked equivalent of the Kaapvaal craton basement. The granulite facies metamorphism is proposed to have occurred in response to collision between the Kaapvaal and Zimbabwe cratons. Previous studies have proposed a wide variety of P–T loops for the granulites, with considerable discrepancy in both the shapes of the retrograde paths and the magnitude of the peak P–T conditions. To date, the form of the prograde path and the timing of the onset of metamorphism remain unknown. This study has used a range of different metasedimentary rocks from a large migmatitic quarry outcrop to better constrain the metamorphic history and the timing of metamorphism in the SMZ. Detrital zircon ages reveal that the protoliths to the metasedimentary rocks were deposited subsequent to 2733 ± 13 Ma. Peak metamorphic conditions of 852.5 ± 7.5 °C and 11.1 ± 1.3 kbar were attained at 2713 ± 8 Ma. The clockwise P–T path is characterized by heating in the sillimanite field along a P–T trajectory which approximately parallels the kyanite to sillimanite transition, followed by near‐isothermal decompression at peak temperature and near‐isobaric cooling at ~6.0 kbar. These results support several important conclusions. First, the sedimentary rocks from the Bandelierkop Formation are not the equivalent of any of the greenstone belt sedimentary successions on the Kaapvaal craton, as has been previously proposed. Rather, they post‐date the formation of the Dominion and Witwatersrand successions on the Kaapvaal craton. From the age distribution of detrital zircon, they appear to have received significant input from various origins. Consequently, at c. 2730 Ma, the Baviaanskloof Gneiss most likely acted as basement onto which the sedimentary succession represented by the Bandelierkop Formation metapelites was deposited. Second, the rocks of the SMZ underwent rapid evolution from sediment to granulite facies anatexis, with a burial rate of ~0.17 cm yr?1. Peak metamorphism was followed by an isothermal decompression to 787.5 ± 32.5 °C and 6.7 ± 0.5 kbar and isobaric cooling to amphibolite facies conditions, below 640 °C prior to 2680 ± 6 Ma. This age for the end of the high‐grade metamorphic event is marked by the intrusion of crosscutting, undeformed pegmatites that are within error the same age as the crosscutting Matok intrusion (2686 ± 7 Ma). Collectively, the burial rate of the sedimentary rocks, the shape of the P–T path, the burial of the rocks to in excess of 30 km depth and the post‐peak metamorphic rapid decompression argue strongly that the SMZ contains sediments deposited along an active margin during lateral convergence, and that the SMZ was metamorphosed as a consequence of continental collision along the northern margin of the Kaapvaal craton at c. 2700 Ma.  相似文献   

5.
The Gosainkund–Helambu region in central Nepal occupies a key area for the development of Himalayan kinematic models, connecting the well‐investigated Langtang area to the north with the Kathmandu Nappe (KN), whose interpretation is still debated, to the south. In order to understand the structural and metamorphic architecture of the Greater Himalayan Sequence (GHS) in this region, a detailed petrological study was performed, focusing on selected metapelite samples from both the Gosainkund–Helambu and Langtang transects. The structurally lowest sample investigated belongs to the Lesser Himalayan Sequence; its metamorphic evolution is characterized by a narrow hairpin P–T path with peak P–T conditions of 595 ± 25 °C, 7.5 ± 1 kbar. All of the other samples here investigated belong to the GHS. Along the Langtang section, two tectono‐metamorphic units have been distinguished within the GHS: the Lower Greater Himalayan Sequence (L‐GHS), characterized by peak P–T conditions at 728 ± 11 °C, 10 ± 0.5 kbar (corresponding to a T/depth ratio of 22 ± 1 °C km?1), and the structurally higher Upper Greater Himalayan Sequence, with peak metamorphic conditions at 780 ± 20 °C, 7.8 ± 0.8 kbar (corresponding to a T/depth ratio of 31 ± 4 °C km?1). This confirms the existence of a main tectono‐metamorphic discontinuity within the GHS, as previously suggested by other authors. The results of petrological modelling of the metapelites from the Gosainkund–Helambu section show that this region is entirely comprised within a sub‐horizontal and thin L‐GHS unit: the estimated peak metamorphic conditions of 734 ± 19 °C, 10 ± 0.8 kbar correspond to a uniform T/depth ratio of 23 ± 3 °C km?1. The metamorphic discontinuity identified along the Langtang transect and dividing the GHS in two tectono‐metamorphic units is located at a structural level too high to be intersected along the Gosainkund–Helambu section. Our results have significant implications for the interpretation of the KN and provide a contribution to the more general discussion of the Himalayan kinematic models. We demonstrate that the structurally lower unit of the KN (known as Sheopuri Gneiss) can be correlated with the L‐GHS unit; this result strongly supports those models that correlate the KN to the Tethyan Sedimentary Sequence and that suggest the merging of the South Tibetan Detachment System and the Main Central Thrust on the northern side of the KN. Moreover we speculate that, in this sector of the Himalayan chain, the most appropriate kinematic model able to explain the observed tectono‐metamorphic architecture of the GHS is the duplexing model, or hybrid models which combine the duplexing model with another end‐member model.  相似文献   

6.
ABSTRACT The northern Dabie terrane consists of a variety of metamorphic rocks with minor mafic-ultramafic blocks, and abundant Jurassic-Cretaceous granitic plutons. The metamorphic rocks include orthogneisses, amphibolite, migmatitic gneiss with minor granulite and metasediments; no eclogite or other high-pressure metamorphic rocks have been found. Granulites of various compositions occur either as lenses, blocks or layers within clinopyroxene-bearing amphibolite or gneiss. The palaeosomes of most migmatitic gneisses contain clinopyroxene; melanosomes and leucosomes are intimately intermingled, tightly folded and may have formed in situ. The granulites formed at about 800–830 °C and 10–14 kbar and display near-isothermal decompression P–T paths that may have resulted from crust thickened by collision. Plagioclase-amphibole coronae around garnets and matrix PI + Hbl assemblages from mafic and ultramafic granulites formed at about 750–800 °C. Partial replacement of clinopyroxene by amphibole in gneiss marks amphibolite facies retrograde metamorphism. Amphibolite facies orthogneisses and interlayered amphibolites formed at 680–750 °C and c. 6 kbar. Formation of oligoclase + orthoclase antiperthite after plagioclase took place in migmatitic gneisses at T ≤ 490°C in response to a final stage of retrograde recrystallization. These P–T estimates indicate that the northern Dabie metamorphic granulite-amphibolite facies terrane formed in a metamorphic field gradient of 20–35 °C km-1 at intermediate to low pressures, and may represent the Sino-Korean hangingwall during Triassic subduction for formation of the ultrahigh- and high-P units to the south. Post-collisional intrusion of a mafic-ultramafic cumulate complex occurred due to breakoff of the subducting slab.  相似文献   

7.
The Vårdalsneset eclogite situated in the Western Gneiss Region, SW Norway, is a well preserved tectonite giving information about the deformation regimes active in the lower crust during crustal thickening and subsequent exhumation. The eclogite constitutes layers and lenses variably retrograded to amphibolite and is composed of garnet and omphacite with varying amounts of barroisite, actinolite, clinozoisite, kyanite, quartz, paragonite, phengite and rutile. The rocks record a five‐stage evolution connected to Caledonian burial and subsequent exhumation. (1) A prograde evolution through amphibolite facies (T =490±63 °C) is inferred from garnet cores with amphibole inclusions and bell‐shaped Mn profile. (2) Formation of L>S‐tectonite eclogite (T =680±20 °C, P=16±2 kbar) related to the subduction of continental crust during the Caledonian orogeny. Lack of asymmetrical fabrics and orientation of eclogite facies extensional veins indicate that the deformation regime during formation of the L>S fabric was coaxial. (3) Formation of sub‐horizontal eclogite facies foliation in which the finite stretching direction had changed by approximately 90°. Disruption of eclogite lenses and layers between symmetric shear zones characterizes the dominantly coaxial deformation regime of stage 3. Locally occurring mylonitic eclogites (T =690±20 °C, P=15±1.5 kbar) with top‐W kinematics may indicate, however, that non‐coaxial deformation was also active at eclogite facies conditions. (4) Development of a widespread regional amphibolite facies foliation (T =564±44 °C, P<10.3–8.1 kbar), quartz veins and development of conjugate shear zones indicate that coaxial vertical shortening and sub‐horizontal stretching were active during exhumation from eclogite to amphibolite facies conditions. (5) Amphibolite facies mylonites mainly formed under non‐coaxial top‐W movement are related to large‐scale movement on the extensional detachments active during the late‐orogenic extension of the Caledonides. The structural and metamorphic evolution of the Vårdalsneset eclogite and related areas support the exhumation model, including an extensional detachment in the upper crust and overall coaxial deformation in the lower crust.  相似文献   

8.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

9.
Mafic volcanic rocks of the Fortescue Group form the lowermost stratigraphic unit of the 100,000 km2 Hamersley Basin on the southern margin of the Archean Pilbara Craton, Western Australia. A regional burial metamorphic gradient extends across the basin from prehnite–pumpellyite facies in the north to greenschist facies in the south. Phase equilibria modelling of mafic rocks with the computer program thermocalc , in subsets of the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–Fe2O3, successfully reproduces observed metamorphic mineral assemblages, giving conditions of ~210 °C, 2 kbar in the north and 335 °C, 3.2 kbar in the south. Superimposed on this metamorphic gradient, regional‐scale metasomatism in the Fortescue Group progressively produces a suite of prehnite‐bearing and pumpellyite–quartz/epidote–quartz‐dominated assemblages. Further modelling of variably metasomatized samples consistently estimates conditions of 260–280 °C, 2.5–3 kbar across the basin. All modelled samples were likely metasomatized at approximately the same structural level, following regional deformation during the Ophthalmian orogeny. Folding during the Ophthalmian orogeny produced topographic and/or tectonic driving forces for regional‐scale fluid flow, pushing metasomatic fluid northwards across the Hamersley Basin. These new phase equilibria calculations support previous interpretations linking the Ophthalmian orogeny, fluid flow and upgrading of Hamersley iron ore deposits. We propose an extension of this fluid flow to the Fortescue Group, the metasomatism of which may have contributed a source of Fe to the Hamersley iron ore deposits.  相似文献   

10.
The P–T evolution of amphibolite facies gneisses and associated supracrustal rocks exposed along the northern margin of the Paleo to MesoArchean Barberton greenstone belt, South Africa, has been reconstructed via detailed structural analysis combined with calculated K(Mn)FMASH pseudosections of aluminous felsic schists. The granitoid‐greenstone contact is characterized by a contact‐parallel high‐strain zone that separates the generally low‐grade, greenschist facies greenstone belt from mid‐crustal basement gneisses. The supracrustal rocks in the hangingwall of this contact are metamorphosed to upper greenschist facies conditions. Supracrustal rocks and granitoid gneisses in the footwall of this contact are metamorphosed to sillimanite grade conditions (600–700 °C and 5 ± 1 kbar), corresponding to elevated geothermal gradients of ~30–40 °C km?1. The most likely setting for these conditions was a mid‐ or lower crust that was invaded and advectively heated by syntectonic granitoids at c. 3230 Ma. Combined structural and petrological data indicate the burial of the rocks to mid‐crustal levels, followed by crustal exhumation related to the late‐ to post‐collisional extension of the granitoid‐greenstone terrane during one progressive deformation event. Exhumation and decompression commenced under amphibolite facies conditions, as indicated by the synkinematic growth of peak metamorphic minerals during extensional shearing. Derived P–T paths indicate near‐isothermal decompression to conditions of ~500–650 °C and 1–3 kbar, followed by near‐isobaric cooling to temperatures below ~500 °C. In metabasic rock types, this retrograde P–T evolution resulted in the formation of coronitic Ep‐Qtz and Act‐Qtz symplectites that are interpreted to have replaced peak metamorphic plagioclase and clinopyroxene. The last stages of exhumation are characterized by solid‐state doming of the footwall gneisses and strain localization in contact‐parallel greenschist‐facies mylonites that overprint the decompressed basement rocks.  相似文献   

11.
Thermobarometry suggests that ultrahigh‐pressure (UHP) to high‐pressure (HP) rocks across the Western Gneiss Region ponded at the Moho following as much as 100 km of exhumation through the mantle and before exhumation to the upper crust. Eclogite across the c. 22 000 km2 study area records minimum pressures of c. 8–18 kbar and temperatures of c. 650–780 °C. One orthopyroxene eclogite yields an UHP of c. 28.5 kbar, and evidence of former coesite has been found c. 50 km farther east than previously known. Despite this widespread evidence of UHP to HP, thermobarometry of metapelite and garnet amphibolite samples reveals a surprisingly uniform ‘supra‐Barrovian’ amphibolite‐facies overprint at c. 11 kbar and c. 650–750 °C across the entire area. Chemical zoning analysis suggests that garnet in these samples grew during heating and decompression, presumably during the amphibolite‐facies event. These data indicate that the Norwegian UHP/HP province was exhumed from mantle depths of c. 150 km to lower crustal depths, where it stalled and underwent a profound high‐temperature overprint. The ubiquity of late‐stage supra‐Barrovian metamorphic overprints suggests that large‐scale, collisional UHP terranes routinely stall at the continental Moho where diminishing body forces are exceeded by boundary forces. Significant portions of the middle or lower crust worldwide may be formed from UHP terranes that were arrested at the Moho and never underwent their final stage of exhumation.  相似文献   

12.
The Qinling‐Tongbai‐Dabie‐Sulu orogenic belt comprises a Palaeozoic accretion‐dominated system in the north and a Mesozoic collision‐dominated system in the south. A combined petrological and geochronological study of the medium‐to‐high grade metamorphic rocks from the diverse Palaeozoic tectonic units in the Tongbai orogen was undertaken to help elucidate the origins of Triassic ultrahigh‐pressure metamorphism and collision dynamics between the Sino‐Korean and Yangtze cratons. Peak metamorphic conditions are 570–610 °C and 9.3–11.2 kbar for the lower unit of the Kuanping Group, 630–650 °C and 6.6–8.9 kbar for the upper unit of the Kuanping Group, 550–600 °C and 6.3–7.7 kbar for the Erlangping Group, 770–830 °C and 6.9–8.5 kbar for the Qinling Group and 660–720 °C and 9.1–11.5 kbar for the Guishan complex. Reaction textures and garnet compositions indicate clockwise P–T paths for the amphibolite facies rocks of the Kuanping Group and Guishan complex, and an anticlockwise P–T path for the granulite facies rocks of the Qinling Group. Sensitive high‐resolution ion microprobe U–Pb zircon dating on metamorphic rocks and deformed granite/pegmatites revealed two major Palaeozoic tectonometamorphic events. (i) During the Silurian‐Devonian (c. 440–400 Ma), the Qinling continental arc and Erlangping intra‐oceanic arc collided with the Sino‐Korean craton. The emplacement of the Huanggang diorite complex resulted in an inverted thermal gradient in the underlying Kuanping Group and subsequent thermal relaxation during the exhumation. Meanwhile, the oceanic subduction beneath the Qinling continental arc produced magmatic underplating and intrusion, leading to granulite facies metamorphism followed by a near‐isobaric cooling path. (ii) During the Carboniferous (c. 340–310 Ma), the northward subduction of the Palaeo‐Tethyan ocean generated a medium P/T Guishan complex in the hangingwall and a high P/T Xiongdian eclogite belt in the footwall. The Guishan complex and Xiongdian eclogite belt are therefore considered to be paired metamorphic belts. Subsequent separation of the paired belts is inferred to be related to the juxtaposition of the Carboniferous eclogites with the Triassic HP metamorphic complex during continental subduction and exhumation.  相似文献   

13.
Granulites from Huangtuling in the North Dabie metamorphic core complex in eastern China preserve rare mineralogical and mineral chemical evidence for multistage metamorphism related to Palaeoproterozoic metamorphic processes, Triassic continental subduction‐collision and Cretaceous collapse of the Dabie Orogen. Six stages of metamorphism are resolved, based on detailed mineralogical and petrological studies: (I) amphibolite facies (6.3–7.0 kbar, 520–550 °C); (II) high‐pressure/high‐temperature granulite facies (12–15.5 kbar, 920–980 °C); (III) cooling and decompression (4.8–6.0 kbar, 630–700 °C); (IV) medium‐pressure granulite facies (7.7–9.0 kbar, 690–790 °C); (V) low‐pressure/high‐temperature granulite facies (4.0–4.7 kbar, 860–920 °C); (VI) retrograde greenschist facies overprint (1–2 kbar, 340–370 °C). The PT history derived in this study and existing geochronological data indicate that the Huangtuling granulite records two cycles of orogenic crustal thickening events. The earlier three stages of metamorphism define a clockwise PT path, implying crustal thickening and thinning events, possibly related to the assembly and breakup of the Columbia Supercontinent at c. 2000 Ma. Stage IV metamorphism indicates another crustal thickening event, which is attributed to Triassic subduction/collision between the Yangtze and Sino‐Korean Cratons. The dry lower crustal granulite persisted metastably during the Triassic subduction/collision because of the lack of hydrous fluid and deformation. Stage V metamorphism records the Cretaceous collapse of the Dabie Orogen, possibly due to asthenosphere upwelling or removal of the lithospheric mantle resulting in heating of the granulite and partial melting of the North Dabie metamorphic core complex. Comparison of the Huangtuling granulite in North Dabie and the high‐pressure–ultrahigh‐pressure metamorphic rocks in South Dabie indicates that the subducted upper (South Dabie) and lower (North Dabie) continental crusts underwent contrasting tectonometamorphic evolution during continental subduction‐collision and orogenic collapse.  相似文献   

14.
Sodic metapelites with jadeite, chloritoid, glaucophane and lawsonite form a coherent regional metamorphic sequence, several tens of square kilometres in size, and over a kilometre thick, in the Orhaneli region of northwest Turkey. The low‐variance mineral assemblage in the sodic metapelites is quartz + phengite + jadeite + glaucophane + chloritoid + lawsonite. The associated metabasites are characterized by sodic amphibole + lawsonite ± garnet paragenesis. The stable coexistence of jadeite + chloritoid + glaucophane + lawsonite, not reported before, indicates metamorphic pressures of 24 ± 3 kbar and temperatures of 430 ± 30 °C for the peak blueschist facies conditions. These P–T conditions correspond to a geotherm of 5 °C km?1, one of the lowest recorded in continental crustal rocks. The low geotherm, and the known rate of convergence during the Cretaceous subduction suggest low shear stresses at the top of the downgoing continental slab.  相似文献   

15.
A temperature‐time history for the granulite‐hosted Challenger gold deposit in the Christie Domain of the Gawler Craton, South Australia, has been derived using a range of isotopic decay systems including U–Pb, Sm–Nd, Rb–Sr and 40Ar/39Ar. Nd model ages and detrital zircon ages suggest a protolith age of ca 2900 Ma for the Challenger Gneiss. Gold mineralisation was probably introduced under greenschist/amphibolite‐facies conditions towards the end of the Archaean, between 2800 and 2550 Ma. However, evidence for the exact age and P‐T conditions of this event was almost completely removed by granulite‐facies metamorphism during the Sleafordian Orogeny, which peaked around ca 2447 Ma. Cooling to 350°C occurred before 2060 Ma. It is possible that the Christie Domain was then subject to further sedimentation and volcanism in the period ca 2000–1800 Ma before reburial and a second period of orogeny around ca 1710–1615 Ma. During this second orogeny, the eastern Christie Domain experienced heterogeneous fluid‐induced retrograde metamorphism at lower greenschist‐ to amphibolite‐facies conditions, with metamorphic grade varying between structural blocks. At this time, the Challenger deposit was subject to greenschist‐facies conditions (not significantly hotter than 350°C), while at Mt Christie (50 km to the south) lower amphibolite‐facies conditions prevailed and to the west the Ifould Block experienced extensive plutonism. A third very low‐temperature thermal pulse around ca 1531 Ma, which reached ~ 150–200°C, is recorded at the Challenger deposit. It is likely that the global Grenvillian Orogeny (1300–1000 Ma) was a major period of domain exhumation and juxtaposition.  相似文献   

16.
Paleoproterozoic retrogressed eclogite (retroeclogite) occurs in the Itaguara Sequence included in the suture zone formed by collision between the Archean Divinópolis and Campo Belo/Bonfim Complexes in the southern São Francisco Craton, which represents the South American counterpart of the African Congo Craton. The Itaguara retroeclogite contains scarce omphacite and phengite but abundant garnet porphyroblasts embedded in a fine-grained, amphibole, biotite and quartz-bearing matrix. The 2.20 ± 0.05 Ga eclogitization event (garnet and whole rock Sm-Nd isochronic age) of the E-MORB protolith (TDM ~ 2.47 Ga) is recorded by omphacite formation during high-pressure prograde stage in amphibole eclogite facies due to ~70 km depth subduction process. Amphibole eclogite facies metamorphic peak stage of 17–20 kbar and 600–700 °C occurred during ~2.1 Ga continental collision. Tectonic exhumation-related decompression during collision probably triggered partial melting of the eclogitic rock. Finally, decompression late stage estimated between 5 and 8 kbar and 550–650 °C under amphibolite facies overprint during orogenic collapse was responsible for appearance of kelyphitic reaction rims (symplectite) around garnet crystals. As its Paleoproterozoic contemporary analogues from Congo Craton, the Itaguara retroeclogite is one of the oldest records of the modern-style plate tectonics.  相似文献   

17.
Four amphibolite facies pelitic gneisses from the western Mongolian Altai Range exhibit multistage aluminosilicate formation and various chemical‐zoning patterns in garnet. Two of them contain kyanite in the matrix and sillimanite inclusions in garnet, and the others have kyanite inclusions in garnet with sillimanite or kyanite in the matrix. The Ca‐zoning patterns of the garnet are different in each rock type. U–Th–Pb monazite geochronology revealed that all rock units experienced a c. 360 Ma event, and three of them were also affected by a c. 260 Ma event. The variations in the microstructures and garnet‐zoning profiles are caused by the differences in the (i) whole‐rock chemistry, (ii) pressure conditions during garnet growth at c. 360 Ma and (iii) equilibrium temperatures at c. 260 Ma. The garnet with sillimanite inclusions records an increase in pressure at low‐P (~5.2–7.2 kbar) and moderate temperature conditions (~620–660 °C) at c. 360 Ma. The garnet with kyanite inclusions in the other rock types was also formed during an increase in pressure but at higher pressure conditions (~7.0–8.9 kbar at ~600–640 °C). The detrital zircon provenance of all the rock types is similar and is consistent with that from the sedimentary rocks in the Altai Range, suggesting that the provenance of all the rock types was a surrounding accretionary wedge. One possible scenario for the different thermal gradient is Devonian ridge subduction beneath the Altai Range, as proposed by several researchers. The subducting ridge could have supplied heat to the accretionary wedge and elevated the geotherm at c. 360 Ma. The differences in the thermal gradients that resulted in varying prograde P–T paths might be due to variations in the thermal regimes in the upper plate that were generated by the subducting ridge. The c. 260 Ma event is characterized by a relatively high‐T/P gradient (~25 °C km?1) and may be due to collision‐related granitic activity and re‐equilibrium at middle crustal depths, which caused the variations in the aluminosilicates in the matrix between the rock units.  相似文献   

18.
In the nappe zone of the Sardinian Variscan chain, the deformation and metamorphic grade increase throughout the tectonic nappe stack from lower greenschist to upper amphibolite facies conditions in the deepest nappe, the Monte Grighini Unit. A synthesis of petrological, structural and radiometric data is presented that allows us to constrain the thermal and mechanical evolution of this unit. Carboniferous subduction under a low geothermal gradient (~490–570 °C GPa?1) was followed by exhumation accompanied by heating and Late Carboniferous magma emplacement at a high apparent geothermal gradient (~1200–1450 °C GPa?1). Exhumation coeval with nappe stacking was closely followed by activity on a ductile strike‐slip shear zone that accommodated magma intrusion and enabled the final exhumation of the Monte Grighini Unit to upper crustal levels. The reconstructed thermo‐mechanical evolution allows a more complete understanding of the Variscan orogenic wedge in central Sardinia. As a result we are able to confirm a diachronous evolution of metamorphic and tectonic events from the inner axial zone to the outer nappe zone, with the Late Variscan low‐P/high‐T metamorphism and crustal anatexis as a common feature across the Sardinian portion of the Variscan orogen.  相似文献   

19.
During Hercynian low-pressure/high-temperature metamorphism of Palaeozoic metasediments of the southern Aspromonte (Calabria), a sequence of metamorphic zones at chlorite, biotite, garnet, staurolite–andalusite and sillimanite–muscovite grade was developed. These metasediments represent the upper part of an exposed tilted cross-section through the Hercynian continental crust. P–T information on their metamorphism supplements that already known for the granulite facies lower crust of the section and allows reconstruction of the thermal conditions in the Calabrian crust during the late Hercynian orogenic event. Three foliations formed during deformation of the metasediments. The peak metamorphic assemblages grew mainly syntectonically (S2) during regional metamorphism, but mineral growth outlasted the deformation. This is in accordance with the textural relationships found in the lower part of the same crustal section exposed in the northern Serre. Pressure conditions recorded for the base of the upper crustal metasediments are c. 2.5 kbar and estimated temperatures range from <350 °C in the chlorite zone, increasing to 500 °C in the lower garnet zone, and reaching 620 °C in the sillimanite–muscovite zone. Geothermal gradients for the peak of metamorphism indicate a much higher value for the upper crust (c. 60 °C km?1) than for the granulite facies lower crust (30–35 °C km?1). The small temperature difference between the base of the upper crust (620 °C at c. 2.5 kbar) and the top of the lower crust (690 °C at 5.5 kbar) can be explained by intrusions of granitoids into the middle crust, which, in this crustal section, took place synchronously with the regional metamorphism at c. 310– 295 Ma. It is concluded that the thermal structure of the Calabrian crust during the Hercynian orogeny – as it is reflected by peak metamorphic assemblages – was mainly controlled by advective heat input through magmatic intrusions into all levels of the crust.  相似文献   

20.
The Belomorian Mobile Belt (BMB) in northern Karelia mostly consists of gently sloping shear zones, whose gneisses and migmatized amphibolites and blastomylonites are typically thinly banded, with their banding consistently dipping north- and northeastward. These gently sloping shear zones were not affected by folding after they were produced and are not cut by Paleoproterozoic metabasite dikes. Intrusive metabasites in the gently sloping shear zones make up relatively small (usually <5 m) equant or elongate bodies and occur as fragments of larger bodies. These fragments are often concentrated in stripes. Metabasites in the gently sloping shear zone are sometimes also found as lenses and tabular bodies of relatively small thickness, which are conformable with the foliation of the host rocks. The gently sloping shear zones cut across older domains of more complicated structure, which suggests that these zones are gently sloping ductile shear zones. Along these zones, the nappes were thrust south- and southwestward, and this process was the last in the origin of major structural features of BMB when the Paleoproterozoic Lapland–Kola orogen was formed. Practically identical age values were obtained for the gently sloping shear zone in the two widely separated Engonozero and Chupa segments of BMB: 1879 ± 21 Ma (40Ar/39Ar amphibole age of amphibolite whose protolith was mafic rock) and 1857 ± 13 Ma (Sm–Nd mineral isochron age of garnet amphibolites after gabbronorite). The PT metamorphic parameters in these gently sloping shear zones are remarkably different from the metamorphic parameters outside these zones: the pressure is 3–4 kbar lower and the temperature is 60–100°C lower. Thrusting-related decompression triggered the transition from the older high-pressure episode of Paleoproterozoic metamorphism to a younger syn-thrusting higher temperature metamorphic episode. The peak metamorphic parameters corresponding to the boundary between the amphibolite and granulite facies were reached only in the central portions of the shear zones: T= 680–760°C, P = 8.0–11.9 kbar. In areas of the most intense migmatization, temperature estimates in the central portions of the shear are as high as 810–830°C. The marginal portions of the shear zones were formed at lower temperatures of 610–630°C. The temperature heterogeneous and rock heating in the gently sloping shear zones may have resulted from flows of high-temperature metamorphic fluid that were focused to the central portions of the zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号