首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 196 毫秒
1.
The Neoproterozoic Earth was shaped largely by the Grenvillian and Pan-African orogenies. Out of these, the Grenvillian orogeny has long been regarded to be of minor nature in terms of global-scale orogenic episodes, whereas the Pan-African orogeny has been widely recognized in many continental fragments, although not in major parts of Asia. Based on chronological information in zircons from major river mouths across several important terrains of the globe, we show here that the Grenvillian orogeny contributed significantly to the formation of the continental crust. The time period between 0.6 Ga and 0.8 Ga marked the climax at the dawn of the Pan-African orogeny. Continental crust formed in this period is concentrated in the Pan-African orogenic belts widely across the globe. These regions were widespread over the half hemisphere of the globe, and were subsequently reduced in size after they moved to form Laurasia. The normalized frequency distribution of zircon ages from river-mouth sand over the world clearly demonstrates that Neoproterozoic and (0.9–0.6 Ga) and Grenvillian (1.3–1.0 Ga) peaks define the largest population. This means that extensive subduction, and hence active plate tectonics, might have operated through these periods. The zircon study has also brought to light new regions of the Grenvillian orogenic belts, particularly in the continents which are now covered by thick Phanerozoic sedimentary basins. Based on the new locations of Grenvillian orogens identified in this study, and using the distribution patterns as a marker bed, we propose revised paleogeographic configurations of the Rodinia and Gondwana supercontinents.Our results demonstrate that the Neoproterozoic was the most active period of crust formation in the Earth. The cold basins, formed right after the assembly of Rodinia, exhibit a basin chain fringing the northern periphery of Rodinia, which turned into sites of mantle upwellings and led to the rifting and separation of the supercontinental assembly. The continents then moved northwards after the formation of Gondwana at ca. 540 Ma, and enlarged the northern half of the supercontinent Pangea since 250 Ma.Based on the results, we also evaluate the role of supercontinents in the mechanism of generation of superplumes addressing the enigma that the coldest mantle right above the Core–Mantle Boundary turns to the hottest one over a period of several hundreds of million years. Slab graveyard formed by the Pan-African subduction can be imaged through P-wave tomography. We postulate that the high-velocity anomaly in the D” layer underneath Gondwana has now transformed to the low-V regions to generate the African superplume. The tectonic history of solid Earth in the Phanerozoic seems to be controlled by the slab graveyards formed by the Grenvillian orogeny ca. 1.0 Ga.  相似文献   

2.
Ca. 825–720 Ma global continental intraplate magmatism is generally linked to mantle plumes or a mantle superplume that caused rifting and fragmentation of the supercontinent Rodinia. Widespread Neoproterozoic igneous rocks in South China are dated at ca. 825–760 Ma. There is a hot debate on their petrogenesis and tectonic affiliations, i.e., mantle plume/rift settings or collision/arc settings. Such competing interpretations have contrasting implications to the position of South China in the supercontinent Rodinia and in Rodinia reconstruction models.Variations in the bulk-rock compositions of primary basaltic melts can provide first order constraints on the mantle thermal–chemical structure, and thus distinguish between the plume/rift and arc/collision models. Whole-rock geochemical data of 14 mid-Neoproterozoic (825–760 Ma) basaltic successions are reviewed here in order to (1) estimate the primary melts compositions; (2) calculate the melting conditions and mantle potential temperature; and (3) identify the contributions of subcontinental lithosphere mantle (SCLM) and asenthospheric mantles to the generation of these basaltic rocks.In order to quantify the mantle potential temperatures and percentages of decompression melting, the primary MgO, FeO, and SiO2 contents of basalts are calculated through carefully selecting less-evolved samples using a melting model based on the partitioning of FeO and MgO in olivine. The mid-Neoproterozoic (825–760 Ma) potential temperatures predicted from the primary melts range from 1390 °C to 1630 °C (mostly > 1480 °C), suggesting that most 825–760 Ma basaltic rocks in South China were generated by melting of anomalously hot mantle sources with potential temperatures 80–200 °C higher than the ambient Middle Ocean Ridge Basalt (MORB)-source mantle.The mantle source regions of these Neoproterozoic basaltic rocks have complex histories and heterogeneous compositions. Enriched mantle sources (e.g., pyroxenite and eclogite) are recognized as an important source for the Bikou and Suxiong basalts, suggesting that their generations may have involved recycled components. Trace elements variations show that interactions between asthenospheric mantle (OIB-type mantle) and SCLM played a very important role in generation of the 825–760 Ma basalts. Our results indicate that the SCLM metasomatized by subduction-induced melts/fluids during the 1.0–0.9 Ga orogenesis as a distinct geochemical reservoir that contributed significantly to the trace-elements and isotope inventory of these basalts.The continental intraplate geochemical signatures (e.g., OIB-type), high mantle potential temperatures and recycled components suggest the presence of a mantle plume beneath the Neoproterozoic South China block. We use the available data to develop an integrated plume-lithosphere interaction model for the ca. 825–760 Ma basalts. The early phases of basaltic rocks (825–810 Ma) were most likely formed by melting within the metasomatized SCLM heated by the rising mantle plume. The subsequent continental rift allowed adiabatic decompression partial melting of an upwelling mantle plumes at relatively shallow depth to form the widespread syn-rifting basaltic rocks at ca. 810–800 Ma and 790–760 Ma.  相似文献   

3.
The tonalite-trondhjemite-granite (TTG) crust has been considered to be buoyant and hence impossible to be subducted into the deep mantle. However, recent studies on the juvenile arc in the western Pacific region indicate that immature island arcs subduct into the deep mantle in most cases, except in the case of parallel arc collision. Moreover, sediment trapped subduction and tectonic erosion are also common. This has important implications in evaluating the role of TTG crust in the deep mantle and probably on the bottom of the mantle. Because the TTG crust is enriched in K, U and Th, ca. 20 times more than that of CI chondrite, the accumulated TTG on the Core Mantle Boundary (CMB) would have played a critical role to initiate plumes or superplumes radiating from the thermal boundary layer, particularly after 2.0 Ga, related to the origin of superplume-supercontinent cycle. This is because selective subduction of oceanic lithosphere including sediment-trapped subduction, tectonic erosion and arc- and microcontinent-subduction proceeded under the supercontinent before the final amalgamation ca. 200-300 million years after the formation of the nuclei. We speculate the mechanism of superplume evolution through the subduction of TTG-crust and propose that this process might have played a dominant role in supercontinent breakup.  相似文献   

4.
The Phanerozoic within-plate magmatism and the related deposits of Siberia are reviewed. The formation of post-perovskite at about 2.5 Ga in the Earth’s interior and the isotope characteristics of within-plate igneous rocks have shown that plate tectonics and deep geodynamics started to operate at about 2–2.5 Ga. The assembly and breakup of supercontinents under the effect of the superplumes formed in layer D″ is considered. Thus, the supercontinent–superplume cycles spanning about 700 Ma are recognized in the Earth’s history.The manifestations of the within-plate magmatic activity are found throughout the whole Phanerozoic. It was demonstrated earlier that between 570 and 160 Ma, the Siberian continent drifted within the African hot mantle field or large low shear velocity province (LLSVP). At least four plumes, excluding the superplume leading to the breakup of Rodinia at 750 Ma, interacted with the Siberian continent. The superplume leading to the breakup of Rodinia was also responsible for the origin of ultramafic intrusions with carbonatites hosting rare-metal (Nb, Ta, REE) mineralization as well as ultramafic–mafic intrusions with Cu–Ni–Pt mineralization localized along the rift zones.The plumes originated in other Phanerozoic cycles formed most likely at the lower-upper mantle boundary, where most of the stagnant slabs is accumulated. Those plumes were responsible for the origin of within-plate igneous rocks. The granitic batholiths formed in the centers of zonal area surrounded by rift zones containing abundant rare-metal intrusions with rare-metal mineralization. Gold, tin, base metal, and porphyry copper deposits are also related to these zonal area.The studies have shown that the formation of folded zones and related deposits which surround these zones as well as the structures of cratons and their metallogenic specialization should be considered in terms of both plate tectonics and plume tectonics.  相似文献   

5.
Recent results of high-resolution seismic tomography and mineral physics experiments are used to study mantle dynamics of Western Pacific and East Asia. The most important processes in subduction zones are the shallow and deep slab dehydration and the convective circulation (corner flow) processes in the mantle wedge. The combination of the two processes may have caused the back-arc spreading in the Lau basin, affected the morphology of the subducting Philippine Sea slab and its seismicity under southwest Japan, and contributed to the formation of the continental rift system and intraplate volcanism in Northeast Asia, which are clearly visible in our tomographic images. Slow anomalies are also found in the mantle under the subducting Pacific slab, which may represent (a) small mantle plumes, (b) upwellings associated with the slab collapsing down to the lower mantle, or (c) sub-slab dehydration associated with deep earthquakes caused by the reactivation of large faults preserved in the slab. Combining tomographic images and earthquake hypocenters with phase diagrams in the systems of peridotite + water, we proposed a petrologic model for arc volcanism. Arc magmas are caused by the dehydration reactions of hydrated slab peridotite that supply water-rich fluids to the mantle wedge and cause partial melting of the convecting mantle wedge. A large amount of fluids can be released from hydrated MORB at depths shallower than 55 km, which move upwards to hydrate the wedge corner under the fore-arc, and never drag down to the deeper mantle along the slab surface. Slab dehydration reactions at 120 km depth are the antigorite-related 5 reactions which supply water-rich fluids for forming the volcanic front. Phase A and Mg-surssasite breakdown reactions at 200 and 300 km depths below 700 °C cause the second and third arcs, respectively. Moreover, the dehydration reactions of super-hydrous phase B, phases D and E at 500–660 km depths cause the fluid transportation to the mantle boundary layer (MBL) (410–660 km depth). The stagnant slabs extend from Japan to Beijing, China for over 1000 km long, indicating that the arc–trench system covers the entire region from the Japan trench to East Asia. We propose a big mantle wedge (BMW) model herein, where hydrous plumes originating from 410 km depth cause a series of intra-continental hot regions. Fluids derived from MBL accumulated by the double-sided subduction zones, rather than the India–Asia collision and the subsequent indentation into Asia, are the major cause for the active tectonics and mantle dynamics in this broad region.  相似文献   

6.
Dapeng Zhao  Eiji Ohtani   《Gondwana Research》2009,16(3-4):401-413
We present new pieces of evidence from seismology and mineral physics for the existence of low-velocity zones in the deep part of the upper mantle wedge and the mantle transition zone that are caused by fluids from the deep subduction and deep dehydration of the Pacific and Philippine Sea slabs under western Pacific and East Asia. The Pacific slab is subducting beneath the Japan Islands and Japan Sea with intermediate-depth and deep earthquakes down to 600 km depth under the East Asia margin, and the slab becomes stagnant in the mantle transition zone under East China. The western edge of the stagnant Pacific slab is roughly coincident with the NE–SW Daxing'Anling-Taihangshan gravity lineament located west of Beijing, approximately 2000 km away from the Japan Trench. The upper mantle above the stagnant slab under East Asia forms a big mantle wedge (BMW). Corner flow in the BMW and deep slab dehydration may have caused asthenospheric upwelling, lithospheric thinning, continental rift systems, and intraplate volcanism in Northeast Asia. The Philippine Sea slab has subducted down to the mantle transition zone depth under Western Japan and Ryukyu back-arc, though the seismicity within the slab occurs only down to 200–300 km depths. Combining with the corner flow in the mantle wedge, deep dehydration of the subducting Pacific slab has affected the morphology of the subducting Philippine Sea slab and its seismicity under Southwest Japan. Slow anomalies are also found in the mantle under the subducting Pacific slab, which may represent small mantle plumes, or hot upwelling associated with the deep slab subduction. Slab dehydration may also take place after a continental plate subducts into the mantle.  相似文献   

7.
The growth curve of the continental crust shows that large amounts of continental crust formed in the early part of the Earth history are missing. In order to test a hypothesis that the former crust was subducted to the deep mantle, we performed phase assemblage analysis in the systems of mid-oceanic ridge basalt (MORB), anorthosite, and tonalite–trondhjemite–granite (TTG) down to the core–mantle boundary (CMB) conditions. Results show that all these materials can be subducted to the CMB leading to the development of a compositional layering in the D″ layer. We speculate that there could be five layers of FeO-enriched melt from partial melting of MORB, MORB crust, anorthosite, TTG, and slab or mantle peridotite in ascending order. Although the polymorphic transformation of perovskite to post-perovskite in (Mg,Fe)SiO3 may explain the seismic discontinuity at the top of the D″ layer (D″ discontinuity), the effects of solid solution on the sharpness of the transformation suggest that the compositional layering is more plausible for the origin of the D″ discontinuity. The D″ layer can be an “anti-crust” made up mostly of TTG + anorthosite derived from the former continental crust. Tectonic style of the anti-crust at the CMB is similar to that at the surface. At both places, chemically distinct layers are density stratified and are also characterized by the processes of accretion, magmatism, and metasomatism.  相似文献   

8.
The supercontinental status of the contemporary aggregation of continents called North Pangea is substantiated. This supercontinent comprises all continents with the probable exception of Antarctica. In addition to the spatial contiguity of continents, the supercontinent is characterized by the prevalence of the continental crust that combines North America and Eurasia, Eurasia and Africa, and Eurasia and Australia. Over the course of the 300–250-Ma evolution from Wegener’s Pangea to contemporary North Pangea, the aggregation of continents has not lost its supercontinental status, despite modification of the supercontinent shape and opening and closure of the newly formed Paleotethys, Tethys, Atlantic, and Indian oceans. Over the last 250–300 Ma, all movements of the lithospheric plates have most likely occurred within the Indo-Atlantic segment of the Earth, whereas the Pacific segment has remained oceanic. In short, the formation of the North Pangea supercontinent can be outlined in the following terms. The long and deep subduction of the lithospheric plates beneath Eurasia and North America gave rise to the stabilization of the continents and accumulation of huge bodies of the cold lithosphere commensurable in volume with the upper mantle at the deeper mantle levels. This brought about compensation ascent of hot mantle (mantle plumes) near the convergent plate boundaries and far from them. A special geodynamic setting develops beneath the supercontinent. Due to encircling subduction of the lithospheric plates and related squeezing of the hot mantle, an ascending flow, or plume (superplume) formed beneath the central part of the supercontinent. In our view, the African superplume broke up Wegener’s Pangea in the Atlantic region, caused the opening of the Atlantic and Indian oceans, and migrated to the Arctic Region 53 Ma ago.  相似文献   

9.
We have reinvestigated the mid-Cretaceous plume pulse in relation to paleo-oceanic plateaus from accretionary prisms in the circum-Pacific region, and we have correlated the Pacific superplume activity with catastrophic environmental changes since the Neoproterozoic. The Paleo-oceanic plateaus are dated at 75–150 Ma; they were generated in the Pacific superplume region and are preserved in accretionary prisms. The volcanic edifice composed of both modern and paleo-oceanic plateaus is up to 10.7 × 106 km2 in area and 19.1 × 107 km3 in volume. The degassing rate of CO2 (0.82 − 1.1 × 1018 mol/m.y.) suggests a significant impact on Cretaceous global warming. The synchronous occurrence of paleo-oceanic plateaus in accretionary complexes indicates that Pacific superplume pulse activities roughly coincided at the Permo-Triassic boundary and the Vendian–Cambrian boundary interval. The CO2 expelled by the Pacific superplume probably contributed to environmental catastrophes. The initiation of the Pacific superplume contributed to the snowball Earth event near the Vendian–Cambrian boundary; this was one of the most dramatic events in Earth's history. The scale of the Pacific superplume activity roughly corresponds to the scale of drastic environmental change.  相似文献   

10.
Two types of Neoproterozoic metabasites occur together with regionally intruded arc-related Neoproterozoic granitoids (ca. 850–830 Ma) in the Hongseong area, southwestern Gyeonggi Massif, South Korea, which is the extension of the Dabie–Sulu collision belt in China. The first type of metabasite (the Bibong and Baekdong metabasites) is a MORB-like back-arc basin basalt or gabbro formed at ca. 890–860 Ma. The Bibong and Baekdong metabasites may have formed during back-arc opening by diapiric upwelling of deep asthenospheric mantle which was metasomatized by large ion lithophile element (LILE) enriched melt or fluid derived from the subducted slab and/or subducted sediment beneath the arc axis. The second type of metabasite (the Gwangcheon metabasite) formed in a plume-related intra-continental rift setting at 763.5 ± 18.3 Ma and is geochemically similar to oceanic island basalt (OIB). These data indicate a transition in tectonic setting in the Hongseong area from arc to intra-continental rift between ca. 830 and 760 Ma. This transition is well correlated to the Neoproterozoic transition from arc to intra-continental rift tectonic setting at the margin of the Yangtze Craton and corresponds to the amalgamation and breakup of Rodinia Supercontinent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号