首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We consider the influence of a non-dipolar magnetic field on the gamma-ray emission from the polar regions of a radio pulsar. The pulsar is treated in a Goldreich-Julian model with a free flow of charge from the surface of the neutron star. When finding the intensity of the gamma-ray radiation of the pulsar tube, both curvature gamma-ray radiation from the primary electrons and non-resonance inverse Compton scattering of thermal photons from the polar cap on primary electrons are taken into account. When finding the height of the upper plate of the pulsar diode, we included only positrons created by the curvature radiation of primary electrons. We assumed that the polar cap is heated by the return positron current. The influence on the gamma-ray emission of variations in both the radius of curvature of the magnetic force lines and in the electric field due to the non-dipolarity of the magnetic field were taken into account. The presence of even weak non-dipolarity of the magnetic field leads to a sharp decrease in the intensity of the gamma-ray emission from the pulsar tube at energies 1–100 MeV, while the intensity of the inverse Compton radiation (at energies 1–100 GeV) varies only relatively weakly.  相似文献   

2.
The effect of the radius of the tube of open magnetic-field lines on the gamma-ray curvature radiation from the polar regions of a radio pulsar with a non-dipolar magnetic field is analyzed. The pulsar is considered in a polar-cap model with free electron emission from the neutron-star surface. The effect of the non-dipolar magnetic field on the radius of curvature of the field lines and the field intensity is taken into account. In connection with the creation of electron-positron pairs, we take into account only the birth of pairs by curvature radiation in the magnetic field. The small non-dipolarity of the field enables the radio pulsar not to turn off, even after a considerable decrease in the pulsar-tube radius. For instance, with a 20% non-dipolarity (ν = 0.2), a pulsar with B = 1013 G and P = 0.5 s can still operate even for a fivefold decrease in the pulsar-tube radius. A maximum is observed in the dependence of the electrostatic potential in the diode on the non-dipolarity parameter ν at ν ~ 0.5–0.7. The pulse profile in non-thermal X-ray emission for ν ~ 0.5–0.7 may look virtually the same as for ν ~ 0.1–0.2. Decreases in the pulsar-tube radius could be due to a structure of currents in the magnetosphere that results in the pulsar diode on the neutron-star surface occupying only a small fraction of the pulsar tube, with the remainder of the tube containing an outer annular gap. The pulsar-tube size is also affected by the presence of a circum-pulsar disk. A change in the pulsar-tube radius could also be due to an external magnetic field, associated with either a magnetic white dwarf or a circum-pulsar disk.  相似文献   

3.
An approximate method for calculating the returning positron flux in the polar-cap regions of a radio pulsar is proposed. The pulsar is considered in the Goldreich-Julian model for a regime of free-electron emission from the neutron-star surface in the region of open lines of the dipolar magnetic field. Calculations have been done for the case when the dipolar magnetic moment is aligned with the star's rotational axis. The acceleration of primary electrons is assumed to occur near the neutron-star surface on scales comparable to the transverse radius of the tube of open field lines. The generation of electron-positron pairs by curvature radiation of the primary electrons is taken into account. A considerable contribution to the returning flux is made by the region where the electric field is screened by the electron-positron plasma.  相似文献   

4.
A comparative analysis of various parameters of pulsars with short (P < 0.1 s) and long (P > 0.1 s) periods is carried out. There is no correlation between the radio and gamma-ray luminosities of the pulsars and their surfacemagnetic fields, but there is a correlation between the X-ray luminosity and the surfacemagnetic field. A dependence of the X-ray and gamma-ray luminosities on the magnetic field at the light cylinder is also found. This result provides evidence for the formation of hard, non-thermal emission at the periphery of the magnetosphere. An appreciable positive correlation between the luminosity and the rate of rotational energy loss by the neutron star is observed, supporting the idea that all radio pulsars have the same basic source of energy. The efficiency of the transformation of rotational energy into radiation is significantly higher in long-period pulsars. The dependence of the pulse width on the pulsar period is steeper for pulsars with short periods than for those with long periods. The results obtained support earlier assertions that there are differences in the processes generating the emission in pulsars with P < 0.1 s and those with P > 0.1 s.  相似文献   

5.
Astronomy Reports - The search for pulsar (periodic) radiation of five gamma-ray pulsars was carried out using the summed power spectra and summed periodograms. No harmonics corresponding to the...  相似文献   

6.
The accretion of neutral gas (hydrogen and helium) onto a neutron star is studied. The gas is gravitationally captured into the magnetosphere of the star, where it is ionized by thermal radiation from the stellar surface and accelerated by the electric field at the light cylinder and in a tube of open magnetic lines. Particles accelerated at light cylinder generate gamma-ray, some particles move to the star and heat its polar regions, resulting in the emission of X-rays. Our calculations of the model parameters of the X-ray and gamma-ray radiation indicate that the radiation intensities should be sufficient to be observed.  相似文献   

7.
Known models proposed to explain the high space velocities of pulsars based on asymmetry of the transport coefficients of different sorts of neutrinos or electromagnetic radiation can be efficient only in the presence of high magnetic fields (to 1016 G) or short rotation periods for the neutron stars (of the order of 1 ms). This current study shows that the observed velocities are not correlated with either the pulsar periods or their surface magnetic fields. The initial rotation periods are estimated in a model for the magnetedipolar deceleration of their spin, aßsuming that the pulsar ages are equal to their kinematic ages. The initial period distribution is bimodal, with peaks at 5 ms and 0.5 s, and similar to the current distribution of periods. It is shown that asymmetry of the pulsar electromagnetic radiation is insufficient to give rise to additional acceleration of pulsars during their evolution after the supernova explosion that gave birth to them. The observations testify to deceleration of the motion, most likely due to the influence of the interstellar medium and interactions with nearby objects. The time scale for the exponential decrease in the magnetic field τD and in the angle between the rotation axis and magnetic moment τß are estimated, yielding τβ = 1.4 million years. The derived dependence of the transverse velocity of a pulsar on the angle between the line of sight and the rotation axis of the neutron star corresponds to the expected dependence for acceleration mechanisms associated with asymmetry of the radiation emitted by the two poles of the star.  相似文献   

8.
The close neutron-star binary system comprised of the radio pulsars PSR J0737-3039 A,B is discussed. An analysis of the observational data indicates that the wind from pulsar A, which is more powerful than the wind from pulsar B, strongly distorts the magnetosphere of pulsar B. A shock separating the relativistic wind from pulsar A and the corotating magnetosphere of pulsar B should form inside the light cylinder of pulsar B. A weakly diverging “tail” of magnetic field is also formed, which stores a magnetic energy on the order of 1030 erg. This energy could be liberated over a short time on the order of 0.1 s as a result of reconnection of the magnetic-force lines in this “tail,” leading to an outburst of electromagnetic radiation with energies near 100 keV, with an observed flux at the Earth of 4 × 10?11 erg cm?2 s?2. Such outbursts would occur sporadically, as in the case of magnetic substorms in the Earth’s magnetosphere.  相似文献   

9.
The Compton interaction between the optical radiation of a Be star and the relativistic wind of a radio pulsar in a binary system is investigated. The first calculations of the periodic variations of the X-ray radiation due to the anisotropic radiation field of the optical star are presented. Under favorable conditions, the Compton X-ray radiation can vary by a factor of a few.  相似文献   

10.
The quantum motion of non-relativistic and relativistic electrons in the presence of constant magnetic fields at the surfaces of magnetic stars, magnetic white dwarfs, and pulsars is considered. The quantizing magnetic-field strengths for charged particles with specified energies are determined. The quantum motion of these particles in a plane perpendicular to the magnetic field is accompanied by spontaneous radiation due to electron transitions from higher to lower discrete energy levels, right down to the ground state. In the non-relativistic case, this emission is monochromatic. In the non-relativistic case, various frequencies are emitted, but lie within an order of magnitude of each other. The electron kinetic energy along the magnetic field varies from zero to a maximum value, due to the one-dimensional character of the motion along the field, between each pair of potential barriers corresponding to the discrete energy levels. The results may be relevant to describing gamma-ray flares of pulsars.  相似文献   

11.
The evolution of a system of electrons with a given initial distribution in an external magnetic field is considered. An equation describing the evolution of the electron distribution function in a uniform magnetic field is derived for the case of arbitrarily relativistic electrons, and an exact solution to this equation is found. Asymptotics of this solution corresponding to the cases of synchrotron radiation and relativistic dipole radiation are calculated, and the evolution of the radiation spectra for these limiting cases is analyzed. The curvature of the magnetic field lines is taken into account phenomenologically, which demonstrates the presence of an exponential dependence in the case of synchrotron radiation.  相似文献   

12.
We consider the scattering of cyclotron radiation in a plasma moving along a homogeneous magnetic field. The equation of radiation transfer in a co-moving frame is derived and two limiting cases are pointed out. In the first case of a “small” velocity gradient, the total Doppler frequency shift due to variations in the plasma velocity over the flow is much smaller than the width of the line. The second, opposite, case of a “large” velocity gradient is analogous to the Sobolev approximation in the theory of moving stellar envelopes. The solution of the transfer equation for a wind-type flow illuminated by radiation of a given intensity is obtained in the latter case, when the influence of the plasma motion on cyclotron scattering is most important. It is shown that cyclotron scattering in a moving plasma differs from the known (and qualitatively similar) problems of resonance scattering in moving stellar envelopes and cyclotron scattering in a motionless plasma permeated by an inhomogeneous magnetic field. In particular, a symmetric absorption band with residual intensity proportional to the velocity gradient appears in the spectrum of the outgoing radiation, while in these two other problems, the depth of the corresponding spectral features cannot exceed half the continuum level. Detailed qualitative analysis reveals that this difference is due to the particular form of the frequency redistribution for cyclotron scattering.  相似文献   

13.
Li  Lin-Sen 《Astronomy Reports》2020,64(12):1012-1015
Astronomy Reports - The change of pulsar period and inclination angle under the braking of magnetic radiation and magnetic decay is studied. The system of equations for evolution of period and...  相似文献   

14.
A possible model for the pulsar PSR J1852+0040 associated with the supernova remnant Kes 79 and detected in place of a central compact object in this remnant is discussed. The main observational properties of the pulsar can be understood as consequences of its weak surface magnetic field (B s < 3 × 1011 G) and short rotational period (P ~ 0.1 s). Its X-ray emission is thermal, and is generated in a small region near the surface of the neutron star due to cooling of the surface as the surface accretes matter from a relict disk surrounding the pulsar. The radio emission is generated in the outer layers of the pulsar magnetosphere by the synchrotron (cyclotron) mechanism. The optical luminosity of J1852+0040 is estimated to be L opt < 1028 erg/s. If the spectral features in another central compact object, 1E 1207.4+5209, are interpreted as electron cyclotron lines, this provides evidence for a weak surface magnetic field for this neutron star as well (B < 6 × 1010 G). The hypothesis that all central compact objects have weak surface fields makes it possible to explain the number of detected central compact objects, the absence of pulsar-wind nebulae associated with these objects, and the fact that no pulsar has yet been detected at the position of SN 1987a. We suggest that, after the supernova remnant has dissipated, the central compact object becomes a weak X-ray source (XDINS), whose weak emission is also due to the weakness of its magnetic field.  相似文献   

15.
It is shown that, when angular-momentum losses of a radio pulsar are represented as a sum of magnetic-dipole and current losses, the angle between the magnetic moment and rotation axis of the radio pulsar tends to some equilibrium value (near 45°). This process takes place on a timescale of the order of the pulsar’s characteristic age. Taking into account the non-dipolarity of the pulsar’s magnetic field changes this equilibrium angle.  相似文献   

16.
Observations of the X-ray pulsar 4U 2206+54 obtrained over 15 years show that its period, which is now 5555 ± 9 s, is increasing dramatically. This behavior is difficult to explain using traditional scenarios for the spin evolution of compact stars. The observed spin-down rate of the neutron star in 4U 2206+54 is in good agreement with the value expected in a magnetic-accretion scenario, taking into account that, under certain conditions, the magnetic field of the accretion stream can affect the geometry and type of flow. The neutron star in this case accretes material from a dense gaseous slab with small angular momentum, which is kept in equilibrium by the magnetic field of the flow itself. A magnetic-accretion scenario can be realized in 4U 2206+54 if the magnetic-field strength at the surface of the optical counterpart to the neutron star is higher than 70 G. The magnetic field at the surface of the neutron star is 4 × 1012 G in this scenario, in agreement with estimates based on an analysis of X-ray spectra of the pulsar.  相似文献   

17.
The dependence of the scatter broadening of extragalactic sources on the dispersion measures of distant pulsars observed along nearby lines of sight and the dependence of broadening of pulsar pulses on the scatter broadening observed for the pulsars themselves and for extragalactic sources observed along nearby lines of sight are constructed and analyzed. These dependences can be used to study turbulent plasma in the Galaxy. The effective scattering layer in the direction toward the pulsar B1933+16 is located in the Sagittarius arm at a distance of ≈3.4 kpc from the observer, and has an extent of ≈0.55 kpc. The scatter broadening and pulse broadening of B0833-45 are due to the turbulent medium in the shell of the Gum Nebula. The distance from the pulsar to the center of the scattering layer is≈43 pc. Data on scattering of the radiation of the pulsar B1818-04 and of the extragalactic source J1821-0502, together with data on the distribution of OB stars in the direction toward this pulsar, are used to show that the distance to the pulsar is ≈0.6 kpc; an H II region around the O7V star HD 171198, located 0.42 kpc from the Sun, is responsible for the scattering of this pulsar’s radiation.  相似文献   

18.
The detection of pulsed radio emission from the recently discovered X-ray pulsar J0205+6449 in the young supernova remnant 3C 58 is reported together with the results of first studies of this emission. The observations were carried out at 111 and 88 MHz on radio telescopes of the Pushchino Observatory. The pulsar period, 65.68 ms, and period derivative, \(\dot P = 1.9 \times 10^{ - 13} \), have been confirmed. The integrated pulse profile at 111 MHz has been obtained and the flux density and spectral index α=2.8 measured. The pulsar dispersion measure DM=141 pc cm?3 has been confirmed. This dispersion measure yields a distance to the pulsar of d=6.4 kpc, a factor of two or more greater than the previously favored distance to the supernova remnant 3C 58 (2.6 kpc). The problem of the age and distance of the pulsar-SNR system is discussed. If the age of the pulsar J0205+6449 is equal to that of the SNR (820 years), this pulsar is the youngest known radio pulsar. The synchrotron mechanism for the radio and X-ray emission is proposed to explain the lower radio and X-ray luminosity of this new pulsar compared to the Crab pulsar, which is similar to it in many ways. Optical emission with luminosity Lopt=1031 erg/s and gamma-ray emission with Lγ=7×1035 erg/s are predicted, and the steep radio spectrum (α≈3) can be explained.  相似文献   

19.
The effect of the curvature of open magnetic field lines on the generation of electric fields in radio pulsars is considered in the framework of a Goldreich-Julian model, for both a regime with a free outflow of electrons from the neutron-star surface and the case of a small thermoemission current. An expression for the electron thermoemission current in a strong magnetic field is derived. The electric field associated with the curvature of the magnetic flux tubes is comparable to the field generated by the relativistic dragging of the inertial frames.  相似文献   

20.
The radiation by a charged particle in a non-uniform magnetic field is analyzed when the particle’s trajectory forms a curved spiral. The case when the pitch angle is less than the inverse of the Lorentz factor is considered. It is shown that the spectral angular distribution of the radiation consists of two parts that are substantially separated in frequency. One of these components represents curvature radiation, which is primarily linearly polarized, while the other possesses the typical properties of undulatory radiation, with a high degree of circular polarization. The derived formulas can be used to analyze the radiation of pulsars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号