首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
山东半岛高压麻粒岩中锆石的U-Pb定年及其地质意义   总被引:10,自引:0,他引:10       下载免费PDF全文
在山东半岛早前寒武纪变质基底中,高压麻粗岩常常呈透镜体或不规则脉状体广泛分布于TTG片麻岩之中.锆石中矿物包体激光拉曼测试、阴极发光图像分析及原位U-Pb定年结果表明,山东丰岛高压麻粒岩中锆石成因十分复杂,可划分为3种类型:第一类锆石显示明显或弱的岩浆结晶环带,部分锆石保存磷灰石(Ap)等矿物包体,U-Pb定年结果显示...  相似文献   

2.
胶东地区的荆山群呈近东西向环绕太古宙TTG花岗质片麻岩展布,主要由成熟度高的含石墨变泥砂质岩石、钙硅酸岩和大理岩组成,变质程度达高角闪岩相-麻粒岩相,具孔兹岩系性质。变质中-基性岩侵入到荆山群。它们的侵位时代对于探讨华北克拉通东部元古宙构造演化以及对荆山群沉积时代的制约,都有重要意义。锆石SHRIMP U-Pb定年结果表明,遭受低级变质的闪长岩(S0835)岩浆锆石年龄为1852±9Ma (MSWD=2.1),遭受中高级变质的辉长岩(S0816)变质锆石年龄为1865±11Ma (MSWD=0.76)。结合区域资料,可得出如下结论:(1)荆山群孔兹岩系形成于古元古代晚期(2.2~1.9Ga);(2)古元古代期间,胶东地区从挤压体制转入伸展体制的时间在1.87Ga之前。在华北克拉通中西部的恒山、大青山地区,存在1.97~1.92Ga辉长岩,在1.92~1.83Ga期间发生变质,与本文研究结果类似。这表明华北克拉通中-西部和东部具有类似的古元古代演化历史。  相似文献   

3.
U–Pb and Pb–Pb zircon ages for metamorphic zircons from granulites in the Saxonian granulite complex are reported, using the SHRIMP ion microprobe, conventional multigrain and single-gain techniques and the evaporation method. This is complemented by a Pb–Pb evaporation age for a post-granulite granite emplaced into the schist mantle around the granulites during uplift of the complex. We also demonstrate that zircon ages are not reset during high-grade metamorphism, as commonly argued, but have a very high closure temperature and usually preserve the isotopic composition reflecting the time of their formation. Multifaceted zircons from four granulite samples that probably grew close to the peak of high-grade metamorphism yielded identical U–Pb and Pb–Pb ages of ~340?Ma which support previously published data and unambiguously show that the granulites formed during a lower Carboniferous event and not in the early Palaeozoic or Precambrian as previously suggested. Older cores in some of the metamorphic zircons reveal early Palaeozoic components at 470–485?Ma that we interpret as ages reflecting magmatic crystallization of the granulite precursors. One sample suggests an inherited component as old as ~1700?Ma. The post-granulite granite has a Pb–Pb evaporation age of 333.1±1.0?Ma, and the short time interval between granulite metamorphism and granite intrusion implies that uplift, crustal extension and cooling of the granulite complex occurred rapidly after peak metamorphic conditions.  相似文献   

4.
U-Pb zircon and rutile multigrain ages and 207Pb/206Pb zircon evaporation ages are reported from high-pressure felsic and metapelitic granulites from northern Bohemia, Czech Republic. The granulites, in contrast to those from other occurrences in the Bohemian Massif, do not show evidence of successive HT/MPLP overprints. Multigrain size fractions of nearly spherical, multifaceted, metamorphic zircons from three samples are slightly discordant and yield a U-Pb Concordia intercept age of 348 ± 10 Ma, whereas single zircon evaporation of two samples resulted in 207Pb/206Pb ages of 339 ± 1.5 and 339 ± 1.4 Ma, respectively. A rutile fraction from one sample has a U-Pb Concordia intercept age of 346 ± 14 Ma. All ages are identical, within error, and a mean age of 342 ± 5 Ma was adopted to reflect the peak of HP metamorphism. Because rutile has a lower closing temperature for the U-Pb isotopic system than zircon, the results and the P-T data imply rapid uplift and cooling after peak metamorphism. The above age is identical to ages for high-grade metamorphism reported from the southern Bohemian Massif and the Granulite Massif in Saxony. It can be speculated that all these granulites were part of the same lower crustal unit in early Carboniferous, being separated later due to crustal stacking and subsequent late Variscan orogenic collapse.  相似文献   

5.
As a window of insight into the lower crust, high pressure granulite has received much attention since last decade. Yushugou high pressure granulite-peridotite Complex was located in the northeast margin of Southern Tianshan, NW China. Previous ideas agreed that the peridotite unit in Yushugou, combined with the ultramafic rocks in Tonghuashan and Liuhuangshan, represent an ophiolite belt. However, the metamorphic evolution and tectonic mechanism of the Yushugou high pressure(HP) granulite remain controversial. Petrological investigations and phase equilibrium modelling for two representative felsic granulite samples suggest two stages metamorphism of the rocks in Yushugou Complex. Granulite facies metamorphism(Stage Ⅰ) with P-T conditions of 9.8–10.4 kbar at 895–920°C was recorded by the porphyroblastic garnet core; HP granulite facies metamorphism(Stage Ⅱ) shows P-T conditions of 13.2–13.5 kbar at 845–860°C, based on the increasing grossular and decreasing pyrope contents of garnet rims. The Yushugou HP felsic granulites have recorded an anticlockwise P-T path, characterized by the temperature decreasing and pressure increasing simultaneously. The LA-ⅠCP-MS isotopic investigations on zircons from the felsic granulite show that the protolith ages of the granlulites are ~430 Ma, with two age groups of ~390 Ma and 340–350 Ma from the metamorphic rims of zircon, indicating the Stage Ⅰ and Ⅱ metamorphic events, respectively. A tectonic model was proposed to interpret the processes. The investigated felsic granulite was derived from deep rooted hanging wall, with Stage Ⅰ granulite facies metamorphism of ~390 Ma, which may be related to the Devonian arc magmatic intrusion; Stage Ⅱ HP granulite facies metamorphism(340–350 Ma) may due to the involvement of being captured into the subducting slab and experienced the high pressure metamorphism.  相似文献   

6.
Santunying is an important area for revealing nature of the late Neoarchean tectono-magmato-thermal events in the eastern Hebei part of the North China Craton. It is mainly composed of meta-intrusive rocks. Supracrustal rocks sporadically occur in the meta-intrusive rocks. The meta-intrusive rocks are subdivided into the Santunying tonalitic gneiss, Qiuhuayu tonalitic-trondhjemitic gneiss, Xiaoguanzhuang dioritic gneiss and Qingyangshu meta-gabbro. Respectively, SHRIMP U–Pb zircon dating on fourteen samples yielded weighted mean 207Pb/206Pb ages of 2525–2537, 2532–2546, 2530–2544 and ∼2531 Ma for magmatic zircons from them. Dioritic gneiss of the Xiaoguanzhuang gneiss contain abundant 2544–3487 Ma xenocrystic zircons. SHRIMP U–Pb dating on a garnet-biotite gneiss sample yielded a weighted mean 207Pb/206Pb age of 2537 Ma for detrital zircons. All rocks underwent strong metamorphism, deformation and anatexis, resulting in formation of leucosomes and residues, with some leucosomes concentrating to form large veins. They record a strong late Neoarchean event by metamorphic zircon ages of 2489–2519 Ma. Some rocks also record metamorphic zircon ages of 1772–1843 Ma. Magmatic zircons from the magmatic rocks show large variations in εHf(t) values ranging from −1.7 to +8.7. Combined with early studies, conclusions are: 1) Intrusive rocks with the involvement of mantle-derived materials have a narrow range of magmatic zircon ages from 2525 to 2546 Ma, and supracrustal rocks were formed during the same period. 2) Ancient crustal remnants (>2600 Ma) are present, consistent with the late Neoarchean arc magmatism involving older continental crust, similar to Phanerozoic Andean margins. 3) The Archean basement underwent a strong tectonothermal event at the end of the Neoarchean, with the metamorphic zircon ages being 10–30 million years younger than the timing of magmatism, a common feature of the North China Craton. 4) A late Paleoproterozoic tectonothermal event widely occurred in the western part of eastern Hebei, which is linked with regional ductile deformation.  相似文献   

7.
Eclogite occurs within the southern domain of the East Athabasca mylonite triangle in northern Saskatchewan. Situated at the boundary between the Archean Rae and Hearne Provinces of the western Canadian Shield, the East Athabasca mylonite triangle is a fundamental exposure of the ~3,000-km-long Snowbird tectonic zone. The eclogite occurs in association with a variety of lower crustal high-pressure granulites that record a complex metamorphic history from 2.6 to 1.9 Ga. Temperatures of the eclogite facies metamorphism are constrained by garnet-clinopyroxene exchange thermometry at 920–1,000 °C. Minimum pressure conditions are recorded by the jadeite+quartz=albite geobarometer at 1.8–2.0 GPa. A near-isothermal decompression path to granulite facies conditions is inferred from retrograde reaction textures involving the formation of granulite facies assemblages such as orthopyroxene-plagioclase and pargasite-plagioclase. U-Pb IDTIMS zircon geochronology of the eclogite yields a weighted mean 207Pb/206Pb date of 1,904.0±0.3 Ma, which we interpret as the time of peak eclogite facies metamorphism. SHRIMP in situ analyses of metamorphic zircons included within omphacitic clinopyroxene support this interpretation with a weighted mean 207Pb/206Pb date of 1,905±19 Ma. Inclusion suites of high-pressure phases and the petrographic setting of zircon are a direct link between zircon growth and eclogite facies metamorphism. Zircon from one eclogite sample has older cores that are 2.54 Ga, which is a minimum age for the emplacement or earliest metamorphism of the gabbroic protolith. U-Pb rutile data indicate slow cooling at ~1°C/Ma below ~500 °C from 1.88 to 1.85 Ga. The formation and exhumation of the eclogites at ca.1.9 Ga has important implications for the tectonic significance of the Snowbird tectonic zone during the Paleoproterozoic. The eclogites described here are consistent with transport of continental crust to mantle depths during the Paleoproterozoic, followed by rapid buoyancy-driven exhumation to normal lower crustal depths.Editorial responsibility: T.L. Grove  相似文献   

8.
Correct interpretation of zircon ages from high-grade metamorphic terrains poses a major challenge because of the differential response of the U–Pb system to metamorphism, and many aspects like pressure–temperature conditions, metamorphic mineral transformations and textural properties of the zircon crystals have to be explored. A large (c. 450?km2) coherent migmatite complex was recently discovered in the Bohemian Massif, Central European Variscides. Rocks from this complex are characterized by granulite- and amphibolite-facies mineral assemblages and, based on compositional and isotopic trends, are identified as the remnants of a magma body derived from mixing between tonalite and supracrustal rocks. Zircon crystals from the migmatites are exclusively large (200–400?μm) and yield 207Pb/206Pb evaporation ages between 342–328?Ma and single-grain zircon fractions analysed by U–Pb ID-TIMS method plot along the concordia curve between 342 and 325?Ma. High-resolution U–Pb SHRIMP analyses substantiate the existence of a resolvable age variability and yield older 206Pb/238U ages (342–330?Ma, weighted mean age?=?333.6?±?3.1?Ma) for inner zone domains without relict cores and younger 206Pb/238U ages (333–320?Ma, weighted mean age?=?326.0?±?2.8?Ma) for rim domains. Pre-metamorphic cores were identified only in one sample (206Pb/238U ages at 375.0?±?3.9, 420.3?±?4.4 and 426.2?±?4.4?Ma). Most zircon ages bracket the time span between granulite-facies metamorphism in the Bohemian Massif (~345?Ma) and the late-Variscan anatectic overprint (Bavarian phase, ~325?Ma). It is argued that pre-existing zircon was variously affected by these metamorphic events and that primary magmatic growth zones were replaced by secondary textures as a result of diffusion reaction processes and replacement of zircon by dissolution and recrystallization followed by new zircon rim growth. Collectively, the results show that the zircons equilibrated during high-grade metamorphism and record partial loss of radiogenic Pb during post-peak granulite events and new growth under subsequent anatectic conditions.  相似文献   

9.
The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary collages in the world, and records a prolonged sequence of subduction‐accretion and collision processes. The Tarim Craton is located at the southernmost margin of the CAOB. In this study, the discovery of early Palaeozoic high‐pressure (HP) granulites from the Dunhuang block in the northeastern Tarim Craton is reported, and these rocks are characterized through detailed petrological and geochronological studies. The peak mineral assemblage of the HP mafic granulite is garnet + clinopyroxene + plagioclase + quartz + rutile, which is overprinted by amphibolite facies retrograde metamorphic assemblages. The calculated P–T conditions of the peak metamorphism are ~1.4–1.7 GPa and ~800 °C. The retrograde P–T conditions are ~0.7 GPa and ~700 °C. The metamorphic zircon grains from the HP mafic granulite show homogeneous CL‐images, low Th/U ratios and flat HREE patterns and yield a weighted mean 206Pb/238U age of 444 ± 5 Ma. The metamorphic zircon grains from the associated kyanite‐bearing garnet gneiss and garnet‐mica schist show a similar 206Pb/238U age of 429 ± 3 and 435 ± 4 Ma, respectively. The c. 440–430 Ma age is interpreted to mark the timing of HP granulite facies metamorphism in the Dunhuang block. The results from this study suggest that the Dunhuang block experienced continental subduction prior to the early Palaeozoic collisional orogeny between the northeastern Tarim Craton and the southern CAOB, and the Dunhuang area could be considered as the southward extension of the CAOB. It is suggested that the continental collision in the eastern part involving the Dunhuang block of the southern CAOB may have occurred c. 120 Ma earlier than in the western part involving the Tianshan orogen.  相似文献   

10.
Abstract A major episode of continental crust formation, associated with granulite facies metamorphism, occurred at 2.55–2.51 Ga and was related to accretional processes of juvenile crust. Dating of tonalitic–trondhjemitic, granitic gneisses and charnockites from the Krishnagiri area of South India indicates that magmatic protoliths are 2550–2530 ± 5 Ma, as shown by both U–Pb and 207Pb/206Pb single zircon methods. Monazite ages indicate high temperatures of cooling corresponding to conditions close to granulite facies metamorphism at 2510 ± 10 Ma. These data provide precise time constraints and Sr–Nd isotopes confirm the existence of late tonalitic–granodioritic juvenile gneisses at 2550 Ma. Pb single zircon ages from the older Peninsular gneisses (Gorur–Hassan area) are in agreement with some previous Sr ages and range between 3200 ± 20 and 3328 ± 10 Ma. These gneisses were derived from a 3.3–3.5-Ga mantle source as indicated from Nd isotopes. They did not participate significantly in the genesis of the 2.55-Ga juvenile magmas. All these data, together with previous work, suggest that the 2.51-Ga granulite facies metamorphism occurred near the contact of the ancient Peninsular gneisses and the 2.55–2.52-Ga ‘juvenile’tonalitic–trondhjemitic terranes during synaccretional processes (subduction, mantle plume?). Rb–Sr biotite ages between 2060 and 2340 Ma indicate late cooling probably related to the dextral major east–west shearing which displaced the 2.5-Ga juvenile terranes toward the west.  相似文献   

11.
Abstract In the Adirondack Highlands of New York State, the effect of granulite facies metamorphism on the physical and isotopic characteristics of zircon from anorogenic plutonic rocks has a distinct geographical pattern. The location of zircon populations which appear to have been altered describes a roughly circular area where metamorphic palaeotemperatures have been determined to be in excess of 750° C. Zircons from anorogenic plutonic rocks outside this area were undisturbed during metamorphism and yield well constrained ages. Granitic, charnockitic and mangeritic anorogenic plutonic rocks peripheral to the Marcy anorthosite massif have large, euhedral, prismatic zircons that display fine, internal, magmatic growth zonations and abundant, randomly orientated, mineral inclusions. Co-genetic zircon fractions yield linear discordant arrays and well constrained upper intercepts of 1125–1157 Ma. Metamorphic zircon is limited to sporadically developed and volumetrically insignificant, clear, low-U overgrowths or protuberances. In marked contrast, zircons from petrographically and geochemically identical rocks adjacent to, or within, the Marcy anorthosite massif are typically large, limpid, anhedral to subhedral crystals or crystal fragments lacking internal features except for tubular cavities and CO-2-rich inclusions. Co-genetic zircon fractions yield nearly concordant, non-linear clusters with 207Pb/206Pb minimum ages of 1073–1095 Ma. Metamorphic overgrowths cannot be readily identified by optical or cathodoluminscence techniques; however, many grains show complex and unusual external boundaries suggestive of post-crystallization modification. These data indicate that temperatures as low as 750° C, in combination with other factors, may have been sufficient to facilitate recrystallization, and diffusion of radiogenic Pb from the zircon crystal structure, during the complex, protracted metamorphism of the Adirondack Highlands.  相似文献   

12.
Mafic xenoliths from the Paleozoic Fuxian kimberlites in the North China craton include garnet granulite, and minor pyroxene amphibolite, metagabbro, anorthosite and pyroxenite. The formation conditions of the amphibolites are estimated at 745–820 °C and 7.6–8.8 Kb (25–30 km); the granulites probably are derived from greater depths in the lower crust. LAM-ICPMS U–Pb dating of zircons from four granulites reveals multiple age populations, recording episodes of magmatic intrusion and metamorphic recrystallisation. Concordant ages and upper intercept ages, interpreted as minimum estimates for the time of magmatic crystallisation, range from 2,620 to 2,430 Ma in three granulites, two amphibolites and two metagabbros. Lower intercept ages, represented by near-concordant zircons, are interpreted as reflecting metamorphic recrystallisation, and range from 1,927 to 1,852 Ma. One granulite contains two metamorphic zircon populations, dated at 1,927±55 Ma and 600–700 Ma. Separated minerals from one granulite and one amphibolite yield Sm–Nd isochron ages of 1,619±48 Ma (143Nd/144Nd)i=0.51078), and 1,716±120 Ma (143Nd/144Nd)i=0.51006), respectively. These ages are interpreted as recording cooling following metamorphic resetting; model ages for both samples are in the range 2.40–2.66 Ga. LAM-MC-ICPMS analyses of zircon show a range in 176Hf/177Hf from 0.28116 to 0.28214, corresponding to a range of Hf from –34 to +12. The relationships between 207Pb/206Pb age and Hf show that: (1) the granulites, amphibolites and metagabbro were derived from a depleted mantle source at 2.6–2.75 Ga; (2) zircons in most samples underwent recrystallisation and Pb loss for 100–200 Ma after magmatic crystallisation, consistent with a residence in the lower crust; (3) metamorphic zircons in several samples represent new zircon growth, incorporating Hf liberated from breakdown of silicates with high Lu/Hf; (4) in other samples metamorphic and magmatic zircons have identical 176Hf/177Hf, and the younger ages reflect complete resetting of U–Pb systems in older zircons. The Fuxian mafic xenoliths are interpreted as the products of basaltic underplating, derived from a depleted mantle source in Neoarchean time, an important period of continental growth in the North China craton. Paleoproterozoic metamorphic ages indicate an important tectonic thermal event in the lower crust at 1.8–1.9 Ga, corresponding to the timing of collision between the Eastern and Western Blocks that led to the final assembly of the North China craton. The growth of metamorphic zircon at 600–700 Ma may record an asthenospheric upwelling in Neoproterozoic time, related to uplift and a regional disconformity in the North China craton.  相似文献   

13.
The Paleoproterozoic Jiao-Liao-Ji Belt lies in the Eastern Block of the North China Craton, with its southern segment extending across the Bohai Sea into the Jiaobei massif. High-pressure pelitic and mafic granulites have been recently recognized in the Paleoproterozoic Jingshan Group (Jiaobei massif). New SHRIMP U–Th–Pb geochronology combined with cathodoluminescence (CL) imaging of zircon has been applied to the determination of the timing of the metamorphism of the high-temperature and high-pressure granulites and associated gneisses and marbles. Metamorphic zircons in these high-pressure granulites, gneisses and marbles occur as either single grains or overgrowth (or recrystallization) rims surrounding and truncating oscillatory-zoned magmatic zircon cores. Metamorphic zircons are all characterized by nebulous zoning or being structureless, with high luminescence and relatively low Th/U values. Metamorphic zircons from two high-pressure mafic granulites yielded 207Pb/206Pb ages of 1956 ± 41 Ma and 1884 ± 24 Ma. One metamorphic zircon from a garnet–sillimanite gneiss also gave an apparent 207Pb/206Pb age of 1939 ± 15 Ma. These results are consistent with interval of ages of c. 1.93–1.90 Ga already obtained by previous studies for the North and South Liaohe Groups and the Laoling Group in the northern segment of the Jiao-Liao-Ji Belt. Metamorphic zircons from a high-pressure pelitic granulite and two pelitic gneisses yielded weighted mean 207Pb/206Pb ages of 1837 ± 8 Ma, 1821 ± 8 Ma and 1836 ± 8 Ma respectively. Two diopside–olivine–phlogopite marbles yielded weighted mean 207Pb/206Pb ages of 1817 ± 9 Ma and 1790 ± 6 Ma. These Paleoproterozoic metamorphic ages are largely in accordance with metamorphic ages of c. 1.85 Ga produced from the Ji'an Group in the northern segment of the Jiao-Liao-Ji Belt and c. 1.86–1.80 Ga obtained for the high-pressure pelitic granulites from the Jingshan Group in the southern segment. As this metamorphic event was coeval with the emplacement of A-type granites in the Jiao-Liao-Ji Belt and its adjacent areas, it is interpreted as having resulted from a post-orogenic or anorogenic extensional event.  相似文献   

14.
Zircon U–Pb ages and trace elements were determined for granulites and gneiss at Huangtuling, which are hosted by ultrahigh-pressure metamorphic rocks in the Dabie Orogen, east-central China. CL images reveal core–rim structure for most zircons in the granulites. The cores show oscillatory zoning, relatively high Th/U ratios, and HREE enriched patterns, consistent with a magmatic origin. They gave a weighted mean 207Pb/206Pb age of 2766 ± 9 Ma, interpreted as dating magma emplacement of the protolith. The rims are characterized by sector or planar zoning, low Th/U ratios, negative Eu anomalies and flat HREE patterns, consistent with their formation under granulite-facies metamorphic conditions. Zircon U–Pb dating yields a weighted mean 207Pb/206Pb age of 2029 ± 13 Ma, which is interpreted to record a metamorphic event, possibly during assembly of the supercontinent Columbia. The gneiss has a protolith age of 1982 ± 14 Ma, which is younger than the zircon age of the granulite-facies metamorphism, suggesting a generally delay between HT metamorphism and the intrusion of post-collisional granites. A few inherited cores with igneous characteristics have 207Pb/206Pb ages of 2.90, 3.28 and 3.53 Ga, suggesting the presence of Mesoarchean to Paleoarchean crustal remnants in the Yangtze Craton. A few Cretaceous metamorphic ages were also obtained, suggesting the influence of post-collisional collapse in response to Cretaceous extension of the Dabie Orogen. It is inferred that the recently discovered Archean basement of the Yangtze Craton occurs as far north as the Dabie Orogen.  相似文献   

15.
In the Orlica‐?nie?nik complex at the NE margin of the Bohemian Massif, high‐pressure granulites occur as isolated lenses within partially migmatized orthogneisses. Sm–Nd (different grain‐size fractions of garnet, clinopyroxene and/or whole rock) and U–Pb [isotope dilution‐thermal ionization mass spectrometry (ID‐TIMS) single grain and sensitive high‐resolution ion microprobe (SHRIMP)] ages for granulites, collected in the surroundings of ?ervený D?l (Czech Republic) and at Stary Giera?tów (Poland), constrain the temporal evolution of these rocks during the Variscan orogeny. Most of the new ages cluster at c. 350–340 Ma and are consistent with results previously reported for similar occurrences throughout the Bohemian Massif. This interval is generally interpreted to constrain the time of high‐pressure metamorphism. A more complex evolution is recorded for a mafic granulite from Stary Giera?tów and concerns the unknown duration of metamorphism (single, short‐lived metamorphic cycle or different episodes that are significantly separated in time?). The central grain parts of zircon from this sample yielded a large spread in apparent 206Pb/238U SHRIMP ages (c. 462–322 Ma) with a distinct cluster at c. 365 Ma. This spread is interpreted to be indicative for variable Pb‐loss that affected magmatic protolith zircon during high‐grade metamorphism. The initiating mechanism and the time of Pb‐loss has yet to be resolved. A connection to high‐pressure metamorphism at c. 350–340 Ma is a reasonable explanation, but this relationship is far from straightforward. An alternative interpretation suggests that resetting is related to a high‐temperature event (not necessarily in the granulite facies and/or at high pressures) around 370–360 Ma, that has previously gone unnoticed. This study indicates that caution is warranted in interpreting U–Pb zircon data of HT rocks, because isotopic rejuvenation may lead to erroneous conclusions.  相似文献   

16.
本文采用LA-ICP-MS技术,对胶北地体TTG片麻岩和花岗质片麻岩中锆石进行系统原位U-Pb定年和稀土、微量元素的分析,发现研究区早前寒武变质结晶基底存在多期岩浆-变质热事件。4件TTG片麻岩和2件花岗质片麻岩锆石样品记录了2909±13Ma、2738±23Ma、2544±15~2564±12Ma和2095±12Ma 4组岩浆事件年龄,以及2504±16~2513±32Ma和1863±41Ma 2组变质事件年龄。结合以往TTG片麻岩和花岗质片麻岩的地球化学及Nd同位素研究发现,约2738Ma的TTG岩浆事件可能代表胶北地体地壳最主要的生长事件,而2544~2564Ma的岩浆事件则可能代表古老地壳重熔的最强烈岩浆事件,约2095Ma岩浆事件则反映了胶-辽-吉构造带内部在该时期与地壳拉张作用有关的岩浆活动。2504~2513Ma是研究区以及华北克拉通早前寒武基底最主要的一期变质热事件,可能与地幔柱(热点)岩浆的底侵作用有关,而TTG片麻岩记录的约1863Ma的变质年龄与研究区基性和泥质高压麻粒岩相岩石记录的麻粒岩相变质时代一致,暗示TTG片麻岩可能也经历了古元古代高压麻粒岩相变质作用,上述研究进一步表明胶北地体在古元古代的确存在一期陆-陆碰撞的重要造山事件。该项研究成果对于进一步深入探讨胶北乃至华北克拉通早前寒武纪变质基底的形成演化、岩浆-变质热事件序列及其构造背景具有重要的科学意义。  相似文献   

17.
北秦岭西段冥古宙锆石(4.1~3.9Ga)年代学新进展   总被引:15,自引:13,他引:2  
2007年王洪亮等报道在北秦岭西段火山岩中获得一粒年龄为4079±5Ma的冥古宙捕虏锆石。之后,对这一发现开展了深入的调查研究,我们除利用SHIMP技术方法对原4079Ma的锆石进行验证外,新获得了两粒~(207)Pb/~(206)Pb年龄为4007±29Ma和3908±45Ma捕获的变质成因锆石,表明早在4.0Ga已经有变质作用的发生,这或许说明在冥古宙时期地球已经具有相当规模和厚度的地壳。同时开展的岩石学研究表明,蕴含古老锆石的母岩属于火山碎屑熔岩类而不是火山熔岩。  相似文献   

18.
中国东北地区佳木斯地块南部麻山杂岩正、副片麻岩 7个样品的锆石 SHRIMP年龄数据首次明确地表明 ,东北地区存在 500 Ma的晚泛非期高级变质作用事件。峰期麻粒岩相变质导致柳毛地区 (502± 10)Ma (2σ )深熔花岗岩的形成。正、副片麻岩变质年龄的一致性表明它们已在变质前发生了构造叠置。西麻山副片麻岩中含有在后期麻粒岩相变质过程中未重结晶的碎屑锆石,由此形成从协和一致的 550 Ma到弱不一致 1 900 Ma的较大 207Pb/206Pb年龄变化范围,表明其原岩具有从新元古代到中元古代-古元古代的年龄。柳毛地区变质的片麻状闪长岩中所含的古老锆石的 207Pb/206Pb年龄为 546~ 1 460 Ma表明,该闪长岩大约在 1 400 Ma就位,并受到 500 Ma变质事件的影响,从而说明柳毛地区存在中元古代基底。然而,与以前的认识相反,麻山杂岩不存在具有太古宙基底的同位素证据。晚泛非期变质事件年龄的确定对重塑晚前寒武纪-显生宙早期麻山杂岩和佳木斯地块的古地理位置具有重要意义。根据目前获得的有关证据,认为佳木斯地块可能曾经位于冈瓦纳大陆北缘的华北克拉通附近。  相似文献   

19.
The Variscan Erzgebirge represents an antiform with a core of gneisses and mica schists, surrounded by a phyllitic mantle. The Gneiss-Eclogite Unit (GEU), in the central part, is a composite tectonometamorphic assemblage characterized by a HP-HT imprint and comprises migmatitic para- and orthogneisses, HT mylonites, HP granulites, eclogites and garnet peridotites. It is tectonically sandwiched between two major units with distinctly lower PT histories. The GEU experienced a characteristic “kinked” retrograde PT path after HP-HT equilibration with: (1) strong near-isothermal decompression at high temperatures; (2) extensive re-equilibration at medium pressures, followed (3) by rapid cooling during continued uplift. We dated zircons (Pb-Pb evaporation) from granitoid orthogneisses and metapelites of the GEU. The orthogneisses contain euhedral, long-prismatic zircons of igneous origin that provided protolith ages between 470 and 524 Ma. Metapelites retain well-preserved granulite-facies mineral assemblages and contain spherical, multifaceted metamorphic zircons that grew near the peak of HP/HT metamorphism. Inclusions of prograde HP phengite (∼15 kbar) and rutile are included in one such zircon. Metamorphic zircons of three samples from different localities yielded identical 207Pb/206Pb ages of 340.5 ± 0.7 Ma, 341.2 ± 0.5 Ma and 341.6 ± 0.5 Ma respectively. Consideration of these zircon ages with published 39Ar/40Ar white mica ages suggests fast cooling and uplift rates in excess of 50 °C/Ma and 4 km/Ma. This is typical for large-scale extensional tectonic unroofing of the ultra-deep part of a fossil, thickened Variscan continental crust (>60 km) during continuing continental collision and orogenic collapse. Received: 5 June 1997 / Accepted: 7 January 1998  相似文献   

20.
An ion-microprobe (SIMS) U-Pb zircon dating study on four samples of Precambrian metasediments from the high-grade Bamble Sector, southern Norway, gives the first information on the timing of discrete crust-forming events in the SW part of the Baltic Shield. Recent Nd and Pb studies have indicated that the sources of the clastic metasediments in this area have crustal histories extending back to 1.7 to 2.1 Ga, although there is no record of rocks older than 1.6 Ga in southern Norway. The analysed metasediments are from a sequence of intercalated, centimetre to 10-metre wide units of quartzites, semi-metapelites, metapelites and mafic granulites. The zircons can be grouped in two morphological populations: (1) long prismatic; (2) rounded, often flattened. The BSE images reveal that both populations consist of oscillatory zoned, rounded and corroded cores (detrital grains of magmatic origin), surrounded by homogeneous rims (metamorphic overgrowths). The detrital zircons have 207Pb/206Pb ages between 1367 and 1939 Ma, with frequency maxima in the range 1.85 to 1.70 Ga and 1.60 to 1.50 Ga. There is no correlation between crystal habit and age of the zircon. One resorbed, inner zircon core in a detrital grain is strongly discordant and gives a composite inner core-magmatic outer core 207Pb/206Pb age of 2383 Ma. Two discrete, unzoned zircons have 207Pb/206Pb ages of 1122 and 1133 Ma, representing zircon growth during the Sveconorwegian high-grade metamorphism. Also the μm wide overgrowths, embayments in the detrital cores and apparent “inner cores” which represent secondary metamorphic zircon growth in deep embayments in detrital grains, are of Sveconorwegian age. The composite-detrital-metamorphic zircon analyses give generally discordant 206Pb/238U versus 207Pb/235U ratios and maximum 207Pb/206Pb ages of 1438 Ma. These data demonstrate the existence of a protocrust of 1.7 to 2.0 Ga in the southwestern part of the Baltic Shield, implying a break in the overall westward younging trend of the Precambrian crust, inferred from the southeastern part of the Baltic Shield. Received: 8 April 1997 / Accepted: 14 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号