首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
洞穴地点骨化石铀系年龄可信度的讨论*   总被引:2,自引:1,他引:1  
沈冠军 《第四纪研究》2007,27(4):539-545
骨化石是铀不平衡系测年法广泛应用而又颇有争议的研究对象。文章通过对典型铀加入模式的计算,指出以α能谱的精度,二种铀系年龄差异的显著性表明近期内有较大量铀的迁移,但其在误差范围内的一致不能保证样品构成封闭体系。以往积累的数据表明,大多数洞穴地点骨化石给出了二法一致的铀系年龄,但钙板与下伏骨化石铀系年龄大多差异显著且与地层顺序矛盾,即使被次生碳酸盐岩包裹,多半骨化石的铀系年龄仍显著偏低于其包裹体。此外,相当一部分样品的U-Th同位素比难以用简单的铀后期加入或淋失来解释。基于对次生碳酸盐岩铀系年龄可信度的认识,骨化石总体上不构成封闭体系,所载铀系年代信息只具有限的分辨率。  相似文献   

2.
Calculations,according to some open-system models,point out that while a statistically significant discrepancy between the results of two U-series methods,^230Th/^234U and ^227Th/^220Th(or ^231Pa/^235U),attests a relatively recent and important uranium migration,concordant dates cannot guarantee closes-system behavior of sample.The results of 20 fossil bones from 10 Chinese sites,19 of which are determined by two U-series methods,are given,Judging from independent age controls,8 out of the 11 concordant age sets are unacceptable,The results in this paper suggest that uranium may cycle into or out of fossil bones,such geochemical events may take place at any time and no known preserving condition may securely protect them from being affected.So for the sitew we have studied,the U-series dating of fossil bones is of limited reliability.  相似文献   

3.
We have mapped U (238U) and Th (232Th) elemental concentrations as well as U-series isotope distributions in a Neanderthal tooth from the Middle Palaeolithic site of Payre using laser ablation ICP-MS. The U-concentrations in an enamel section varied between 1 and 1500 ppb. The U-concentration maps show that U-migration through the external enamel surface is minute, the bulk of the uranium having migrated internally via the dentine into the enamel. The uranium migration and uptake is critically dependent on the mineralogical structure of the enamel. Increased U-concentrations are observed along lineaments, some of which are associated with cracks, and others may be related to intra-prismatic zones or structural weaknesses reaching from the dentine into the enamel. The uranium concentrations in the dentine vary between about 25,000 and 45,000 ppb. Our systematic mapping of U-concentration and U-series isotopes provides insight into the time domain of U-accumulation. Most of the uranium was accumulated in an early stage of burial, with some much later overprints. None of the uranium concentration and U-series profiles across the root of the tooth complied with a single stage diffusion-adsorption (D-A) model that is used for quality control in U-series dating of bones and teeth. Nevertheless, in the domains that yielded the oldest apparent U-series age estimates, U-leaching could be excluded. This means that the oldest apparent U-series ages of around 200 ka represent a minimum age for this Neanderthal specimen. This is in good agreement with independent age assessments (200-230 ka) for the archaeological layer, in which it was found.The Th elemental concentrations in the dental tissues were generally low (between about 1 and 20 ppb), and show little relationship with the nature of the tissue.  相似文献   

4.
The capabilities and potential applications of in situ dating of Quaternary materials using laser ablation-MC-ICPMS are explored. 234U/238U and 230Th/234U can be measured with precision sufficient for dating at a spatial resolution of 100 μm or better in samples that contain as a little as 1 ppm uranium. Moreover, U and Th concentrations and U-series isotope ratios can be continuously profiled to determine changes in age that occur with sample growth (e.g. in speleothems). These capabilities additionally permit the dating of bones, teeth and possibly molluscs, which are subject to post-mortem open-system behaviour of U-series isotopes, and can be employed to elucidate processes of U-series migration during weathering and diagenesis. A drawback of laser ablation-MC-ICPMS is that it cannot in general provide U-series age estimates with the high precision and accuracy of conventional TIMS or solution MC-ICPMS methods. However, sample preparation is straightforward, the amount of sample consumed negligible, and it can be used to rapidly characterise or screen and select samples from which more precise and accurate dates can be obtained using conventional methods. Given further instrumental developments and the establishment of suitable matrix-matched standards for carbonates and other materials, we foresee that laser ablation-MC-ICPMS will play an increasingly important role in Quaternary dating research.  相似文献   

5.
《Quaternary Science Reviews》2003,22(10-13):1373-1382
U and Th concentration profiles in fossil hominid and faunal teeth have been measured by laser ablation ICPMS. These profiles record diverse modes of U and Th uptake, particularly within enamel, that can be broadly related to the state of sample preservation. Observed U profiles are in general inconsistent with existing diffusion–adsorption models developed for U-uptake in bone and teeth. Where the models appear applicable, calculated diffusion rates are several orders of magnitude smaller than previous estimates. Laser ablation ICPMS offers a means of rapidly characterizing U and Th distributions in the enamel and dentine components of teeth as a precursor to ESR and U-series dating. In particular, it should allow the identification of teeth (and also bone) samples that have simple U-uptake histories and are amenable to precise dating by time-consuming and expensive Th–U and Pa–U TIMS techniques. We also demonstrated the use of laser ablation ICPMS to measure U-series isotopes in dentine and enamel samples with relatively high U concentrations (>20 ppm). These results, obtained using a quadrupole ICPMS, illustrate significant promise for in situ U-series isotope analysis, particularly when combined with the greater sensitivity and multi-collection capabilities of new sector ICPMS instrumentation. The latter may permit precise isotope ratio measurements on samples containing only a few ppm of U.  相似文献   

6.
Many fossils are assumed to take up trace elements by a process of combined diffusion plus adsorption (DA), yet in principle composition profiles can be explained by several different diffusion-limited processes, including diffusion plus reaction or recrystallization (DR) and double-medium diffusion (DMD). The DA and DMD models are supported by REE and U composition profiles across fossil teeth, measured by laser-ablation ICP-MS, that show error-function - like diffusion profiles into enamel from the dentine-enamel interface and concentrations in the interior of enamel that are at original biogenic levels or higher. Published composition and age profiles in some Pleistocene bones may be better explained by a DR model. All three diffusion models imply linear behavior between age and distance squared, vastly simplifying U-series dating methods for Pleistocene fossils. Modeled uptake rates for fossil teeth yield a strict minimum bound on durations of about one decade to one century. The similarity of diffusion profiles in teeth, irrespective of depositional ages ranging from ∼30 ka to >30 Ma, implies that uptake occurred quickly, with a maximum duration of a few tens of kyr for typical fossil enamel; faster uptake is implied for typical fossil bone and dentine. Disparities in these uptake estimates compared to some archeological bone may reflect sampling and preservation bias for paleontological vs. archeological materials.  相似文献   

7.
第四纪骨化石样品的多方法对比测年   总被引:1,自引:1,他引:1  
陈铁梅 《第四纪研究》1990,10(3):282-290
本文报道作者用14C、铀系和ESR等多种测年技术对比测定第四纪骨化石样品年龄结果,对比分析骨化石中各含碳组分14C年龄的异同。在此基础上讨论诸测年方法的可靠性和测年精度,分析哪种含碳组分最能代表骨质样品的真实年龄。对晚于40 000aB.P.的骨质样品,作者倾向于样品中氨基酸的14C测年,而对更老的样品,铀系法应优先被选用。本文还对北京周口店山顶洞遗址骨化石样品中不同含碳组分的14C测年结果做了讨论。  相似文献   

8.
《Quaternary Science Reviews》2004,23(7-8):947-958
High-resolution chronologies in continental carbonate deposits such as tufas are required for detailed palaeoclimatic and environmental studies. This work set out to establish if high-resolution U-series dating of detritus-rich Holocene tufas is routinely possible. The study centres on a paludal Holocene tufa from southern England that already has an existing Holocene chronology, based on 14C and supported by biostratigraphy, against which to compare U-series dates. The results show that significant detrital contamination combined with low initial U concentrations, and short time for ingrowth of radiogenic 230Th make high-resolution U-series dating of Holocene tufa very difficult. Moreover, a single (230Th/232Th)initial value to correct for the presence of detrital 230Th is not appropriate at the study site, a finding that may apply to most Holocene tufas. Total sample dissolution of coeval samples demonstrates considerable variability in the isotopic composition of the detritus. The total sample dissolution data are too scattered to constrain chronologies at the required resolution and may indicate the incorporation of a 230Th-rich component in the detritus.  相似文献   

9.
Deep-sea coral has proved useful for paleoceanographic reconstructions and for documenting 14C-ages of water masses using 230Th-ages. However, for precise and accurate U-series dating, further information on coral-age structure, growth rate and diagenetic evolution is still needed. To document such processes, we used U-Th-226Ra systematics in a 40 cm diameter, Lophelia pertusa specimen collected in 1912 from the Eastern Atlantic (Sea of the Hebrides). External parts of the specimen are thought to have been alive when collected whereas more internal parts were likely dead. The “live-collected” and “dead” parts of the skeleton were sampled and analyzed for their 230Th, 232Th, 234U, 238U, 226Ra and Ba contents by thermal ionization and multicollector inductively coupled plasma mass spectrometry. 230Th/234U ratios in the most recent parts yielded ages of 86 ± 6 a and 92 ± 9 a, in agreement with the date of recovery. The older parts yielded 230Th ages ranging from 169 ± 15 to 211 ± 10 a (n = 5), but had a 31% higher U content than more recent parts of the skeleton. This raises concerns about the possibility of secondary diagenetic U uptake, although an environmentally controlled U/Ca shift between coral growth stages cannot be ruled out. 226Ra/Ba measurements were made, and model- 226Ra/Ba ages averaging 250 ± 12 yr were calculated for the older part, assuming a constant initial 226Ra/Ba ratio in bottom waters. These ages are slightly older than 230Th-ages, suggesting either that 226Ra/Ba ratios of ambient-seawater changed over time or that a diagenetic phenomenon have affected the U-series system, or both. Scanning electron microscope observations revealed bioerosion and secondary biomineralization in the older part of the coral skeleton, supporting the hypothesis that diagenetic processes may have influenced the ages obtained by the U-series toolbox. Modeled U-series ages for such an open system are discussed. However, a comparison between 14C- and 230Th-ages performed on both pristine and bioeroded parts of the coral gives coherent values (ca 450 a) for the preindustrial 14C-reservoir age of North Atlantic waters. It remains to be determined, however, whether diagenesis occurs rapidly over a short period of time, or whether it continues for longer periods. In the latter case, diagenetic processes would hamper paleoceanographic interpretations as well as the precise calculation of 14C ages of deep-water masses, based on comparative U/Th- and 14C-chronologies.  相似文献   

10.
Fossil bones and teeth are potentially important repository for geochemical proxy data and a target for radiometric dating. The concentration of many trace elements in bones and teeth increases by orders of magnitude after death and it is this diagenetic incorporation that forms the basis for several areas of geochemical study. The use of bones and teeth in this context relies on two assumptions: first, that target metal ions are incorporated rapidly after death, reflecting a known environmental signal, and second, that after early incorporation, the bone or tooth remains as an essentially closed system, resistant to later diagenetic change. A wide literature has developed exploring these assumptions, but relatively little direct evidence has been used to assess the long-term diagenetic stability of trace elements within bones and teeth. In this study, we use the Lu-Hf isotope system to show that bones and teeth of Cretaceous and Triassic age from both terrestrial and marine settings experience continued, long-term diagenetic change, most likely through gradual addition of trace elements. Modelling suggests that diagenetic addition after initial recrystallisation may account for >50% of the total REE content in the sampled bones, the extent depending on initial uptake conditions. Tooth enamel and enameloid may be more resistant to late diagenetic changes, but dentine is probably altered to the same extent as bone. These results have significant implications for the use of bones and teeth as hosts of chronological, palaeoceanographic, palaeoenvironmental and taphonomic information, particularly in Mesozoic and Palaeozoic contexts.  相似文献   

11.
The development of U-series nuclides for investigating weathering processes has been significantly stimulated by the analytical improvement made over the last decades in measuring the 238U series with intermediate half-lives (i.e., 234U–230Th–226Ra). It is proposed in this paper to present principles and methods that are now being developed to determine weathering rates from the study of U-series nuclides in soils and weathering profiles. Mathematical approaches, developed to calculate such rates, are based on some implicit assumptions that are also presented and must be kept in mind if one wants to correctly interpret the obtained ages.  相似文献   

12.
Activity ratios of 234U/238U, 230Th/234U, and 230Th/232Th have been determined for calcite, gypsum and halite speleothems from caves of the Nullarbor Plain, mostly in the area N and NW of Mundrabilla Station, for the purpose of U-series dating. All calcite speleothems contain adequate amounts of uranium for dating, but some show an excess of 230Th. Stratigraphic relationships indicate that there were at least three phases of calcium carbonate deposition in the Nullarbor caves. The calcite samples, with one possible exception, have ages in excess of ca. 400000 yrs BP. This suggests that no significant amounts of calcium carbonate deposition have taken place during the last 400ka. At present, active deposition of speleothems is restricted almost entirely to gypsum and halite. The only gypsum speleothem dated was found to have a finite age of ca. 185 ka. Six dates on a small halite speleothem containing insect and arachnid remains indicate that it formed rapidly during Holocene time.  相似文献   

13.
We present the U‐series dating of bones from Wood Quarry (‘Steetley Quarry Cave’) using the diffusion–adsorption model to account for uranium uptake. The results give a weighted mean date of 66.8 ± 3.0 kyr, placing this assemblage within or just before Marine Oxygen Isotope Stage 4. The fauna is thought to correlate with the Banwell Bone Cave mammal assemblage‐zone of the Early Devensian in Britain. Our results support the idea that this assemblage‐zone immediately precedes the assemblage represented nearby at Pin Hole in Creswell Crags which is contemporary with the Mid‐Devensian and correlates with MIS 3. Our dates, and dates for the Banwell Bone Cave mammal assemblage‐zone from Stump Cross Cavern and evidence from other sites may indicate a longevity for this fauna. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Direct dating of fossil coral reefs using the U-series chronometer provides an important independent test of the Milankovitch orbital forcing theory of climate change. However, well-dated fossil corals pre-dating the last interglacial period (>130 thousand years ago; ka) are scarce due to, (1) a lack of sampling localities, (2) insufficient analytical precision in U-series dating methods, and (3) diagenesis which acts to violate the assumption of closed-system U-series isotopic decay in fossil corals. Here we present 50 new high-precision U-series age determinations for fossil corals from Henderson Island, an emergent coral atoll in the central South Pacific. U-series age determinations associated with the Marine Isotope Stage (MIS) 9 interglacial and MIS 7.5 interstadial periods are reported. The fossil corals show relatively little open-system U-series behaviour in comparison to other localities with fossil coral reefs formed prior to the last glacial cycle, however, open-system U-series behaviour is still evident in most of the dated corals. In particular, percent-level shifts in the [230Th/238U]act composition are observed, leading to conventional U-series ages that are significantly younger or older than the true sample age. This open-system U-series behaviour is not accounted for by any of the open-system U-series models, indicating that new models should be derived. The new U-series ages reported here support and extend earlier findings reported in Stirling et al. (2001), providing evidence of prolific coral reef development on Henderson Island at ∼320 ka, most likely correlated with MIS 9.3, and subsequent reef development at ∼307 ka during MIS 9.1, while relative sea-level was potentially ∼20 m lower than during MIS 9.3. The U-series ages for additional well-preserved fossil corals are suggestive of minor reef development on Henderson Island during MIS 7.5 (245-230 ka) at 240.3 ± 0.8 and 234.7 ± 1.3 ka. All U-series observations are consistent with the Milankovitch theory of climate change, in terms of the timing of onset and termination of the dated interglacial and interstadial periods. The best preserved samples also suggest that the oceanic 234U/238U during MIS 9 and MIS 7.5 was within five permil of the modern open ocean composition.  相似文献   

15.
The island fox (Urocyon littoralis) is one of few reportedly endemic terrestrial mammals on California's Channel Islands. Questions remain about how and when foxes first colonized the islands, with researchers speculating on a natural, human-assisted, or combined dispersal during the late Pleistocene and/or Holocene. A natural dispersal of foxes to the northern Channel Islands has been supported by reports of a few fox bones from late Pleistocene paleontological localities. Direct AMS 14C dating of these “fossil” fox bones produced dates ranging from ∼ 6400 to 200 cal yr BP, however, postdating human colonization of the islands by several millennia. Although one of these specimens is the earliest securely dated fox from the islands, these new data support the hypothesis that Native Americans introduced foxes to all the Channel Islands in the early to middle Holocene. However, a natural dispersal for the original island colonization cannot be ruled out until further paleontological, archaeological, and genetic studies (especially aDNA [ancient DNA]) are conducted.  相似文献   

16.
湖南省龙山县莲花洞两根大型石笋LLl(文石-方解石型)和LL5(文石型)ICP-MS230Th结果表明,82个年龄数据并不完全符合石笋生长层序律.根据U/Th同位素比值、沉积和矿物学特征,分析了同位素体系开放度对建立石笋正确年代学模式的影响.莲花洞LLl石笋全新世以来234U/238U对230Th/238U的比值具有谐和性特征并且230Th年龄层序正常,说明文石矿物基本接近U/Th同位素封闭系统,实测年龄基本可靠.10~40 ka期间234U/238U与230Th/238U离散度较大和矿物具有溶蚀、风化现象,表明体系发生U加入/流失作用.LL5石笋60~80 ka期间封闭性较好,实测年龄可信.上述结果表明,同一洞穴中文石石笋U/Th同位素体系开放度与时间的关系并不是线性关系,沉积时水文和物理化学性质以及随后的保存状况是决定洞穴文石石笋同位素封闭性的关键因素.  相似文献   

17.
Secondary carbonate formations, such as travertine and calcareous tufa deposits, are important archives for quaternary continental climate studies and archaeology. The extremely complex growth mechanisms result in some serious problems for precise mass spectrometric uranium-series dating. Often, detrital and organic particles contaminate the carbonate and large pore volumes yield a great potential for open system behavior. We utilized microscopic, mineralogical and geochemical methods prior to sample selection to determine the abundance of primary calcite, i.e. micrite and spar. Furthermore, the state of alteration was characterized by cathodoluminescence and trace-element analysis. We conclude that travertine and calcareous tufa are appropriate for precise U-series age determination if a) micrite and/or spar are the dominant phases; b) cathodoluminescence of both phases is weak or absent; c) Fe and Al levels are low; and d) Sr concentrations are close to the average of the studied site. We mapped and sampled solely areas of major micrite/spar abundance having minor alteration for accurate U-series dating. When this new method was applied, travertines located in eastern Germany (sites Bad Langensalza, Burgtonna and Weimar-Ehringsdorf) gave single 230Th/238U-ages consistent with the lithological growth sequence and greatly improved compared to previously published chronologies. In addition, we determined 230Th/U isochron ages on bulk samples that confirm our single ages. In contrast to primary calcite, pore cements are homogeneously distributed throughout the travertine fabric and reflect early diagenetic processes and/or weathering.  相似文献   

18.
U-series dating of fossil reef corals is a well established and widely applied technique in paleoclimate research. Many fossil corals, however, show evidence for post-depositional diagenetic alteration, and it is generally accepted that the accuracy of U-series coral ages is more limited due to coral diagenesis than analytical precision. In recent years, three models have been published that try to correct the effects of diagenesis and allow the calculation of model ages [Thompson W. G., Spiegelmann M. W., Goldstein S. L., and Speed R. C. (2003) An open-system model for U-series age determinations of fossil corals. Earth and Planetary Science Letters210, 365-381; Villemant B., and Feuillet N. (2003) Dating open systems by the 238U-234U-230Th method: application to Quaternary reef terraces. Earth and Planetary Science Letters210, 105-118; Scholz D., Mangini A., and Felis T. (2004) U-series dating of diagenetically altered fossil reef corals. Earth and Planetary Science Letters218, 163-178].Here, we assess the age variability of both conventional 230Th/U-dating and the three models by application to different sub-samples of individual coral specimens. The age variability, estimated as the 2σ-standard deviation on the individual ages, is compared with the errors quoted by the different methods. Our results show that the errors of conventional 230Th/U-dating as well as those of the method of Thompson et al. (2003) do not account for the true age variability. The age variability of both methods is in the range of the errors given by the models of Villemant and Feuillet (2003) and Scholz et al. (2004).Furthermore, we show that the widely used reliability criteria are not sufficient to identify all diagenetically altered corals. In contrast, analysis of different sub-samples of one coral specimen allows (i) to estimate the real age variability, (ii) to test if the assumptions of the models are fulfilled, and (iii) to investigate the diagenetic processes in more detail. Thus, this method should generally be applied to obtain more reliable U-series coral ages and errors.  相似文献   

19.
《Quaternary Science Reviews》2003,22(10-13):1367-1372
An additional method of coupled ESR/U-series dating is developed for teeth showing post-depositional U-loss. The fundamental parameter for the dose rate calculation is the present-day 230Th-activity because of the geochemical immobility of thorium. Uranium and thorium concentrations are measured by thermal ionization mass spectrometry (TIMS). Due to the unknown uranium history an average saturation uptake of uranium is assumed leading to an average development of U-series activities. Therewith an internal dose rate and the age T can be calculated on condition that the modelled 230Th-activity at time T corresponds with the measured value. Using this new method, teeth, found in archaeological sites in France (Gramat, Bramefond), could be dated even though they show U-loss after U-uptake. Two teeth from Gramat could be dated to 128.3±8.6 and 130.5±10 ka. Two teeth from Bramefond have ages of 104.4±8.4 and 115.1±10.2 ka. Both sites can be ascribed to oxygen isotope stage 5.  相似文献   

20.
Like most other minerals, titanite rarely if ever forms perfect crystals. In addition to the point defects that might affect lattice diffusion, there may be extended line- or planar defects along which fast diffusion could occur. During the course of an experimental study of oxygen lattice diffusion in titanite, we found that almost all of the 18O uptake profiles produced in natural titanite crystals departed from the complementary error function solution expected for simple lattice diffusion with a constant surface concentration. Instead, they exhibited “tails” extending deeper into the samples than expected for simple lattice diffusion. The purpose of this contribution is to report on these features—described as “fast-paths” for oxygen diffusion—and outline a method for coping with them in extracting information from diffusion profiles.For both dry and hydrothermal experiments in which the “fast paths” are observed, 18O was used as the diffusant. In dry experiments, the source material was 18O-enriched SiO2 powder, while 18O-enriched water was used for the hydrothermal experiments. Diffusive uptake profiles of 18O were measured in all cases by nuclear reaction analysis (NRA) using the 18O (p,α)15N reaction [see Zhang X. Y., Cherniak D. J., and Watson E. B. (2006) Oxygen diffusion in titanite: lattice and fast-path diffusion in single crystals. Chem. Geol.235 105-123].In our experiments, different sizes of “tails” (with varying 18O concentrations) were observed. Theoretically, under the same temperature and pressure conditions, the sizes of tails should be affected by two factors: the diffusion duration and the defect density. For the same experiment duration, the higher the defect density, the larger the “tail”; for the same defect densities, the longer the diffusion duration, the larger the “tail.”The diffusion “tails” could be a result of either planar defects or one-dimensional “pipe” diffusion. AFM imaging of HF etched titanite surfaces confirmed that the etched features might be caused by either parallel planar defects or parallel pipe defects, but could not differentiate between these possibilities. Through theoretical calculations simulating the tailed diffusion profiles using reasonable assumptions of lattice diffusivities and fast-path diffusivities, and comparing these with tail features measured in our samples, it can be concluded that the “tails” observed in our experiments are caused by planar defects rather than pipe defects.A new method was developed for separating the “fast-path” contribution from the overall composite diffusion profile consisting of both “fast-path” and lattice diffusion. Through this process, the lattice diffusion coefficient could be determined, which is required to analyze the tail. The oxygen diffusion rates in the fast-paths were obtained by traditional graphical analysis methods, using the Whipple-Le Claire equation (for 2-D defects) assuming that the width of the fast-path is 1 nm. Two Arrhenius relations were obtained for the fast-path diffusion phenomenon, one for experiments under dry conditions, and the other for hydrothermal conditions:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号