首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
颜丽丽  贺振宇  刘磊  赵志丹 《地质通报》2015,34(203):466-473
浙江雁荡山是中国东南部燕山晚期巨型火山-侵入杂岩带的重要组成部分。对其中央侵入相石英正长斑岩的暗色微粒包体中的斑晶和基质斜长石进行了详细的内部结构和成分分析,揭示了斜长石复杂环带的成因和相关的岩浆作用过程。斑晶斜长石由熔蚀的核部和表面干净的幔部组成,边部包裹有钾长石膜。核部斜长石呈浑圆状或港湾状,内部发育筛状结构,An成分显著低于幔部斜长石,代表来自酸性岩浆房中早期结晶的斜长石捕掳晶。同时,幔部斜长石与自形、表面干净的基质斜长石具有类似的An含量,且两者均含有针状磷灰石的包裹体,应结晶自与暗色微粒包体相应的基性岩浆。长石的复杂结构记录了雁荡山火山-侵入杂岩形成过程中的岩浆混合作用和岩浆演化过程。岩浆混合之后的火山喷发活动,造成岩浆房的压力突然减小,温压条件达到钾长石结晶的区域,在石英正长斑岩的斑晶斜长石和暗色包体中的斑晶与基质斜长石外均形成钾长石膜,构成反环斑结构。  相似文献   

2.
The eruption of Soufrière Hills Volcano, Montserrat, has been ongoing since 1995. The volcano is erupting a crystal-rich hornblende-plagioclase andesite with ubiquitous mafic inclusions, indicating mixing with mafic magma. This mafic magma is thought to be the driving force of the eruption, supplying heat and volatiles to the andesite resident in the magma chamber. As well as producing macroscopic mafic inclusions, the magma mixing process involves incorporation of phenocrysts from the andesite into the mafic magma. These inherited phenocrysts show clear disequilibrium textures (e.g. sieved plagioclase rims and thermal breakdown rims on hornblende). Approximately 25 % of all phenocrysts in the andesite show these textures, indicating very extensive mass transfer between the two magma types. Fragments of mafic inclusions down to sub-mm scale are found in the andesite, together with mafic crystal clusters, which are commonly found adhered to the rims of phenocrysts with disequilibrium features. Mineral chemistry also points to the transfer of microlites or microphenocrysts, initially formed in the mafic inclusions, into the andesite. This combined evidence suggests that some of the mafic inclusions disaggregate during mingling and/or ascent, possibly due to shearing, and raises the question: What proportion of the andesite ‘groundmass’ actually originated in the mafic inclusions, and thus, what is the true amount of mafic magma in the magmatic system? We present a new method for quantifying the relative proportions of groundmass plagioclase derived from mafic and andesitic magma, based on analysis of back-scattered electron images of the groundmass. Preliminary results indicate that approximately 16 % of all groundmass plagioclase belongs genetically to the mafic inclusions. Together with the crystal clusters, disequilibrium phenocryst textures and mm-scale inclusions, there is a ‘cryptic’ mafic component in the andesite of approximately 6 % by volume. This is significant compared with the proportion of macroscopic mafic inclusions (typically ~ 1–5 %). The new method has the potential to allow tracking of the mafic fraction through time and thus to yield further insights into magma hybridisation processes.  相似文献   

3.
Lavas and pyroclastic rocks throughout the volcanic stratigraphy of the Tertiary-Quaternary volcanic complex of Thera in the Aegean island arc display inhomogenous plagioclase populations and phenocryst resorption textures, interpreted as indicative of magma mixing. Plagioclase zoning characteristics studied by Nomarski and laser interferometry techniques establish three main categories of plagioclase: (i) inherited plagioclase (nucleated in endmember prior to initial mixing event) (ii) in situ plagioclase (nucleated in mixed or hybrid magma) and (iii) xenocrystic plagioclase. Nomarski contrast images and linearized compositional zoning profiles reveal striking differences between calcic and sodic plagioclases, depending on the composition of the lava in which they are hosted. These differences reflect the contrasting effects of changes in physical-chemical parameters in basic vis-a-vis more acidic melts during magma mixing and/or influx of new magma into the subvolcanic magma chamber, as well as the influence of magma chamber dynamics on plagioclase equilibration. Variations in bulk major and trace element abundances of Thera volcanic products reflect the dominant overprint of crystal fractionation, but decoupling between major and trace element fractionation models and variations in incompatible trace element distributions are all indicative of magma mixing processes, consistent with compositional and textural zoning in plagioclases.  相似文献   

4.
河北武安坦岭多斑斜长斑岩的成因:冻结岩浆房活化机制   总被引:5,自引:3,他引:2  
流变学实验表明,当岩浆中晶体体积分数达到约50vol%时,岩浆体实际上处于冻结状态,不再具有整体迁移的能力。但在自然界中仍存在含大量斑晶的浅成火成岩和火山岩。因此,富晶体岩浆的上升过程和侵位机制是近年来地球科学领域关注的热点之一。目前,冻结岩浆房的活化机制主要有二种:升温活化机制和流体活化机制。河北武安坦岭地区新发现的多斑斜长斑岩为揭示冻结岩浆房的活化提供了契机。野外观察和晶体粒度分布(CSD)分析表明,坦岭斜长斑岩中斜长石斑晶高达70vol%,基质为显微晶质结构。斜长石斑晶粒径分布均一,大小约为3.1×1.7mm;显微镜观察和背散射图像揭示,斜长石斑晶具环带结构,由宽广的斜长石核部+宽度可变的条纹长石边部组成,且无熔蚀现象;电子探针成分剖面分析表明,斑晶核部成分为更长石(An_(27)Ab_(71)Or_2),幔部为更长石(An_(13)Ab_(83)Or_4),边部为条纹长石。边部条纹长石的成分有一定变化,从内侧到外侧,主晶钠长石成分由Ab_(53)Or_(47)变为Ab_(99)Or_1,客晶钾长石成分由Ab_(48)Or_(51)变为Ab3Or97。斑晶斜长石核部存在细长条状或斑点状钾长石,且越靠近中心,钾长石斑点的数量越少。这些特点表明,边部条纹长石为交代成因。稀土和微量元素分析则显示,边部条纹长石具弱正Eu异常,相对富集LREE和K、Rb、Ba、Sr等大离子亲石元素,亏损Th、Zr、Nb的特点。CSD相关图解及以上特征表明,斜长石斑晶形成于稳定,封闭的结晶环境,并受到晚期碱交代作用的改造。基质主要由微粒钙质角闪石,条纹长石,石英,钾长石和钠长石组成,含少量自形-半自形磁铁矿和钛铁矿、磷灰石、榍石、金红石和锆石等11种矿物组成。11种矿物相和结构特征暗示基质形成于极端不稳定的结晶环境,与斜长石斑晶形成条件鲜明对照。根据基质的矿物组成,推测形成基质的岩浆具有富含K、Na、Fe、Si和挥发分的特征。这种特征与上述关于条纹长石环边形成条件的判断一致。据此,本文认为:产生斜长石斑晶的岩浆曾经在地壳深部作过长时间滞留,导致了斜长石的稳定结晶,增加了岩浆的粘度和密度,使岩浆处于冻结状态;富碱高铁熔体-流体流的注入大幅降低了岩浆的总粘度,并提高了岩浆的浮力,从而促使冻结岩浆房迅速活化和上升侵位;同时,富碱高铁熔体-流体流强烈交代了先存的斜长石斑晶,使其边部形成条纹长石;这种熔体-流体流则在快速排气,冷却过程中迅速结晶,形成了具有不平衡矿物组合的显微晶质基质。在岩浆侵入体较深部位,富碱高铁熔体-流体经历了很缓慢的固结过程,而相分离产生的流体有可能萃取携带岩浆中的铁质,形成富Fe流体流,后者可能对区内"铁矿浆"型铁矿的形成具有重要的贡献。  相似文献   

5.
Lavas from Medicine Lake volcano, Northern California have been examined for evidence of magma mixing. Mixing of magmas has produced basaltic andesite, andesite, dacite and rhyolite lavas at the volcano. We are able to identify the compositional characteristics of the components that were mixed and to estimate the time lag between the mixing event and eruption of the mixed magma. Compositional data from pairs of phenocrysts identify a high alumina basalt (HAB) and a silicic rhyolite as endmembers of mixing. Mg-rich olivine or augite and Ca-rich plagioclase are associated with the HAB component, and Fe-rich orthopyroxene and Na-rich plagioclase are associated with the rhyolitic component. Some lavas contain multiple phenocryst assemblages suggesting the incorporation of several magmas intermediate between the HAB and silicic components. Glass inclusions trapped in Mg-rich olivine and Na-rich plagioclase are similar in composition to the proposed HAB and rhyolite end members and provide supportive evidence for mixing. Textural criteria are also consistent with magma mixing. Thermal curvature of the liquidus surfaces in the basalt-andesite-rhyolite system allows magmas produced by mixing to be either supercooled or superheated. Intergranular textures of basaltic andesites and andesites result from cooling initiated below the liquidus. The trachytic textures of silicic andesites form from cooling initiated above the liquidus. Reversed compositional zoning profiles in olivine crystals were produced by the mixing event, and the homogenization of the compositional zoning has been used to estimate the time interval between magma mixing and eruption. Time estimates are on the order of 80 to 90 h, suggesting that the mixing event triggered eruption.  相似文献   

6.
The Tigalak intrusion is a dominantly dioritic layered body, about 80 km2 in area, which ranges in composition from norite to granodiorite. Local areas of the layered rocks display upward fractionation from norite to ferrodiorite. Periodic reversals of mineral composition trends record the emplacement of less fractionated dioritic magma. Heterogeneous mixtures of dioritic and granodioritic rocks occur widely in mappable lenses and layers that alternate up section and along the strike with more uniformly layered rocks. In these mixtures, chilled dioritic pillows occur abundantly in a hybrid cumulate matrix of granodiorite to diorite composition. Cross-cutting granodioritic dikes grade upward into stratigraphically-bound lensoid masses of the hybrid cumulates. It appears that the hybrid rocks formed as a result of the emplacement of the granodioritic magma through lower cumulates into the dioritic magma chamber and that the dioritic pillows represent chilled bodies of Ferich dioritic magma that commingled with cooler granodioritic magma and settled to the floor of the Tigalak magma chamber. The restricted distribution of these mixtures of hybrid cumulates and chilled pillows indicates that mixing between granodioritic and dioritic liquids was limited in time and lateral extent. Periodic injections of granodioritic liquids may have collected as a separate layer below the roof of the magma chamber and above dioritic magma.  相似文献   

7.
Petrographic, mineral chemical and whole-rock major oxide data are presented for the lavas of the Main Volcanic Series of Patmos, Dodecanesos, Greece. These lavas were erupted about 7 m.y. ago and range in composition from ne-trachybasalts through hy-trachybasalts and trachyandesites to Q-trachytes. To some extent, the ne-trachybasalts are intermediate in composition to the alkaline lavas found on oceanic islands and the calc-alkaline lavas of destructive plate margins. Major oxide variation is largely explicable in terms of fractional crystallization involving removal of the observed phenocryst and microphenocryst phases viz. olivine, plagioclase, clinopyroxene and Ti-magnetite in the mafic lavas, plagioclase, clinopyroxene, mica and Ti-magnetite in the evolved lavas. Apatite, which occurs as an inclusion in other phenocrysts or as microphenocrysts must also have been removed. However, mass balance calculations indicate that the chemistry of the hy-trachybasalts is inconsistent with an origin via fractional crystallization alone and the complex zoning patterns and resorbtion phenomena shown by phenocrysts in these lavas show that they are hybrids formed by the mixing of 80-77% ne-trachybasalt with 20–23% trachyandesite. It is estimated that the mixing event preceded eruption by a period of 12 h-2 weeks suggesting that mixing triggered eruption. Combined fractionation and mixing cannot explain the relatively low MgO contents of the hy-trachybasalts and it is concluded that assimilation also occurred. Assimilation, and especially addition of volatiles to the magmas, may be responsible for the evolutionary trend from ne-normative to hy-normative magmas and was probably facilitated by intensified convection resulting from mixing. A model is presented whereby primitive magma undergoes fractionation in an intracrustal magma chamber to yield more evolved liquids. Influx of hot primitive magma into the base of the chamber facilitates assimilation, but eventually mixing yields the hy-trachybasalts and finally the ne-trachybasalts are erupted.  相似文献   

8.
Aleutian tholeiitic and calc-alkaline magma series I: The mafic phenocrysts   总被引:1,自引:0,他引:1  
Diagnostic mafic silicate assemblages in a continuous spectrum of Aleutian volcanic rocks provide evidence for contrasts in magmatic processes in the Aleutian arc crust. Tectonic segmentation of the arc exerts a primary control on the variable mixing, fractional crystallization and possible assimilation undergone by the magmas. End members of the continuum are termed calc-alkaline (CA) and tholeiitic (TH). CA volcanic rocks (e.g., Buldir and Moffett volcanoes) have low FeO/MgO ratios and contain compositionally diverse phenocryst populations, indicating magma mixing. Their Ni and Cr-rich magnesian olivine and clinopyroxene come from mantle-derived mafic olivine basalts that have mixed with more fractionated magmas at mid-to lower-crustal levels immediately preceding eruption. High-Al amphibole is associated with the mafic end member. In contrast, TH lavas (e.g., Okmok and Westdahl volcanoes) have high FeO/MgO ratios and contain little evidence for mixing. Evolved lavas represent advanced stages of low pressure crystallization from a basaltic magma. These lavas contain groundmass olivine (FO 40–50) and lack Ca-poor pyroxene. Aleutian volcanic rocks with intermediate FeO/MgO ratios are termed transitional tholeiitic (TTH) and calc-alkaline (TCA). TCA magmas are common (e.g., Moffett, Adagdak, Great Sitkin, and Kasatochi volcanoes) and have resulted from mixing of high-Al basalt with more evolved magmas. They contain amphibole (high and low-Al) or orthopyroxene or both and are similar to the Japanese hypersthene-series. TTH magmas (e.g., Okmok and Westdahl) contain orthopyroxene or pigeonite or both, and show some indication of upper crustal mixing. They are mineralogically similar to the Japanese pigeonite-series. High-Al basalt lacks Mg-rich mafic phases and is a derivative magma produced by high pressure fractionation of an olivine tholeiite. The low pressure mineral assemblage of high-Al basalt results from crystallization at higher crustal levels.  相似文献   

9.
Laser-ablation microanalysis of a large suite of silicate and sulfide melt inclusions from the deeply eroded, Cu-Au-mineralizing Farallón Negro Volcanic Complex (NW Argentina) shows that most phenocrysts in a given rock sample were not formed in equilibrium with each other. Phenocrysts in the andesitic volcano were brought together in dominantly andesitic—dacitic extrusive and intrusive rocks by intense magma mixing. This hybridization process is not apparent from macroscopic mingling textures, but is clearly recorded by systematically contrasting melt inclusions in different minerals from a given sample. Amphibole (and rare pyroxene) phenocrysts consistently contain inclusions of a mafic melt from which they crystallized before and during magma mixing. Most plagioclase and quartz phenocrysts contain melt inclusions of more felsic composition than the host rock. The endmember components of this mixing process are a rhyodacite magma with a likely crustal component, and a very mafic mantle-derived magma similar in composition to lamprophyre dykes emplaced early in the evolution of the complex. The resulting magmas are dominantly andesitic, in sharp contrast to the prominently bimodal distribution of mafic and felsic melts recorded by the inclusions. These results severely limit the use of mineral assemblages to derive information on the conditions of magma formation. Observed mineral associations are primarily the result of the mixing of partially crystallized magmas. The most mafic melt is trapped only in amphibole, suggesting pressures exceeding 350 MPa, temperatures of around 1,000 °C and water contents in excess on 6 wt%. Upon mixing, amphibole crystallized with plagioclase from andesitic magma in the source region of porphyry intrusions at 250 MPa, 950 °C and water contents of 5.5 wt%. During ascent of the extrusive magmas, pyroxene and plagioclase crystallized together, as a result of magma degassing at low pressures (150 MPa). Protracted extrusive activity built a large stratovolcano over the total lifetime of the magmatic complex (>3 m.y.). The mixing process probably triggered eruptions as a result of volatile exsolution.Electronic Supplementary Material Supplementary material (eTable 1and eFigure 1) is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial responsibility: T.L. Grove  相似文献   

10.
Mafic inclusions present in the rhyolitic lavas of Narugo volcano,Japan, are vesiculated andesites with diktytaxitic texturesmainly composed of quenched acicular plagioclase, pyroxenes,and interstitial glass. When the mafic magma was incorporatedinto the silica-rich host magma, the cores of pyroxenes andplagioclase began to crystallize (>1000°C) in a boundarylayer between the mafic and felsic magmas. Phenocryst rim compositionsand interstitial glass compositions (average 78 wt % SiO2) inthe mafic inclusions are the same as those of the phenocrystsand groundmass glass in the host rhyolite. This suggests thatthe host felsic melt infiltrated into the incompletely solidifiedmafic inclusion, and that the interstitial melt compositionin the inclusions became close to that of the host melt (c.850°C). Infiltration was enhanced by the vesiculation ofthe mafic magma. Finally, hybridized and density-reduced portionsof the mafic magma floated up from the boundary layer into thehost rhyolite. We conclude that the ascent of mafic magma triggeredthe eruption of the host rhyolitic magma. KEY WORDS: mafic inclusion; stratified magma chamber; magma mixing; mingling; Narugo volcano; Japan  相似文献   

11.
The Devonian I-type St. Marys Porphyrite (388±1Ma) comprises two petrographically similar units, an 800 m thick pyroclastic sheet (compositionally dacite and rhyolite) and a subvolcanic feeder dyke. The pyroclastics are crystal-rich and contain (in order of decreasing abundance) plagioclase, quartz, biotite, augite, hypersthene and sanidine phenocrysts in an aphanitic groundmass.The early phenocryst assemblage clinopyroxene+orthopyroxene+plagioclase was followed by crystallisation of less magnesian pyroxene, more sodic plagioclase and biotite, quartz and K-feldspar. The phenocrysts crystallised at high temperature, between 1,000°-850° C, and at a pressure of 2.5±1 kb from a water undersaturated (<2.5 wt.%) magma in a chamber underlying the intrusive centre.At least two eruptive phases are present in the pyroclastic pile, each commencing with rhyolite. Bulk chemical variation probably reflects a zonation in the magma chamber prior to eruption. The low pressure phenocryst crystallisation conditions and the pyroxene Fe-enrichment trend with falling temperature support a fractional crystallisation model. The chemical variation can be explained by 20% fractional crystallisation involving plagioclase, quartz, biotite and pyroxene in proportions similar to modal phenocryst abundances.Volcanics like the St. Marys Porphyrite preserve evidence of their early magmatic history by quenching of mineral phases. Textural relationships and physico-chemical parameters deduced from the St. Marys Porphyrite are applicable to the interpretation of I-type granitoids in eastern Australia and elsewhere and constrain petrogenetic models for their genesis. Pyroxene cores of hornblende grains, pyroxene inclusions in plagioclase and corroded cores of plagioclase crystals may be formed through magmatic crystallisation and need not represent restite.  相似文献   

12.
滇西腾冲中更新世英安质岩浆的爆发机制   总被引:2,自引:2,他引:0  
本文对腾冲马站钻孔的中酸性火山岩进行了岩相学、锆石SIMS U-Pb年代学及地球化学研究,确定其岩石类型、形成时代及岩浆喷发前的岩浆状态,从而揭示腾冲火山喷发机制。根据矿物组成将腾冲钻孔的中酸性火山岩分为两层:上层灰白色角闪熔岩(矿物组合:单斜辉石+斜方辉石+角闪石+黑云母+斜长石+钾长石+钛磁铁矿+磁铁矿+石英);下层黑色辉石熔岩(矿物组合:单斜辉石+斜方辉石+斜长石+钛磁铁矿+磁铁矿)。腾冲钻孔中酸性火山岩的锆石均呈半自形-自形,振荡环带明显,为岩浆成因。测年结果表明,灰白色角闪熔岩的结晶年龄为0.7Ma,黑色辉石熔岩中最年轻的锆石为0.6Ma;结合上覆中更新世粗面岩,我们推断其喷发时代为中更新世。地球化学显示角闪熔岩和辉石熔岩都为高钾钙碱性英安岩。相似的全岩和斑晶核部的地化特征,指示角闪英安岩和辉石英安岩来自同一个岩浆房。综合斑晶的地化特征及平衡结晶的温压条件,我们认为早期的岩浆房经历一次基性岩浆补给事件,导致火山爆发产生黑色辉石英安岩,后期岩浆房又经历一次酸性岩浆补给事件,导致火山爆发产生灰白色角闪英安岩。两次岩浆补给事件是导致火山爆发的直接原因。  相似文献   

13.
Primitive andesites from the Taupo Volcanic Zone formed by magma mixing   总被引:1,自引:0,他引:1  
Andesites with Mg# >45 erupted at subduction zones form either by partial melting of metasomatized mantle or by mixing and assimilation processes during melt ascent. Primitive whole rock basaltic andesites from the Pukeonake vent in the Tongariro Volcanic Centre in New Zealand’s Taupo Volcanic Zone contain olivine, clino- and orthopyroxene, and plagioclase xeno- and antecrysts in a partly glassy matrix. Glass pools interstitial between minerals and glass inclusions in clinopyroxene, orthopyroxene and plagioclase as well as matrix glasses are rhyolitic to dacitic indicating that the melts were more evolved than their andesitic bulk host rock analyses indicate. Olivine xenocrysts have high Fo contents up to 94%, δ18O(SMOW) of +5.1‰, and contain Cr-spinel inclusions, all of which imply an origin in equilibrium with primitive mantle-derived melts. Mineral zoning in olivine, clinopyroxene and plagioclase suggest that fractional crystallization occurred. Elevated O isotope ratios in clinopyroxene and glass indicate that the lavas assimilated sedimentary rocks during stagnation in the crust. Thus, the Pukeonake andesites formed by a combination of fractional crystallization, assimilation of crustal rocks, and mixing of dacite liquid with mantle-derived minerals in a complex crustal magma system. The disequilibrium textures and O isotope compositions of the minerals indicate mixing processes on timescales of less than a year prior to eruption. Similar processes may occur in other subduction zones and require careful study of the lavas to determine the origin of andesite magmas in arc volcanoes situated on continental crust.  相似文献   

14.
Variation of major and trace elements in drilled basalts from the Mid-Atlantic Ridge (DSDP Leg 37) reflects distinct cycles of low pressure fractionation operating independently within a complex network of magma storage reservoirs beneath the crustal spreading axis. Low pressure phase relations are determined by parental magma composition, which varies from An-rich (An/Di > ca. 1.4) to Di-rich (An/Di < ca. 1.4). High An/Di magmas probably formed under slightly hydrous conditions in the mantle. They have low LIL element contents, low P/Y and high Mg/(Mg + Fe) ratios. Zr, P and Y abundance and inter-element ratios are highly diagnostic of primary magma type, and are used to quantify fractional crystallization models.Low pressure fractionation hypotheses were tested by least-squares modelling of whole-rock and phenocryst chemistry, which indicated removal or addition of phenocryst assemblages: ol; pl; ol + pl; ol + pl + cpx; pl + cpx, (± sp). Accumulation of plagioclase or olivine is an important mechanism for generating highly porphyritic rocks. A rare 3-phase (ol + pl + cpx) cumulate resulted from cotectic fractionation of a low An/Di magma type. Olivine and plagioclase cumulates appear to be related to high An/Di magmas. Olivine accumulation has been monitored by comparison of olivine/bulk rock partitioning of Fe and Mg to experimental measurements of the equilibrium KD value. A single extensive sub-axial magma chamber could not account for the observed chemical variation and would probably be dynamically unstable.  相似文献   

15.
The magma mixing origin of mantled feldspars   总被引:25,自引:1,他引:25  
The key to mantled feldspar genesis is epitaxial nucleation of plagioclase on K-feldspar or K-feldspar on plagioclase. Once this nucleation takes place there is a relatively straightforward process of crystal growth yielding rapakivi and antirapikivi textures. The most common mantling is plagioclase on K-feldspar which occurs in both volcanic and plutonic environments. In the volcanic environment the morphology of the plagioclase overgrowth typically is dendritic, though in subvolcanic and shallow plutonic environments dendritic growth is followed by a more or less continuous non-cellular shell of plagioclase. In the plutonic environment, early stages of plagioclase overgrowth also tend to be dendritic, although with coarser-grained characteristics. Dendritic morphology is thus a common denominator in rapakivi genesis. Since growth of dendritic plagioclase is clearly related to marked undercooling in silicate melt systems its occurrence in many volcanic rocks is to be expected. Equivalent quenching in the plutonic environment requires a cooling mechanism independent of conductive heat transfer to wallrock and also independent of effective cooling related to sudden loss of volatile phases that could only occur late in the crystallization of most magmas and therefore after much dendritic plagioclase had already formed. Internal quenching of portions of magma systems must occur if mafic magma is abruptly mixed with felsic magma. Such magma mixing yields a heterogeneous system at first, one that is in a drastic state of disequilibrium and tending to force nucleation of one feldspar type on the surface of another resulting in epitaxial crystallization of dendritic plagioclase on K-feldspar. Mantling of one feldspar type by another during magma mixing is paralleled by dendritic growth zones in coexisting plagioclase crystals.Mantling textures occur in hybrid rocks of magma mixing origin. Some of the hybrid rocks are fine-grained, mafic-rich, and may contain phenocrysts of quartz, plagioclase, and K-feldspar. They occur as rounded inclusions in calc-alkaline granites and granodiorites. The host plutons themselves commonly have mantled feldspars or at least plagioclase with the unusual zoning characteristics commonly accompanying rapakivi texture. Magma-mixing tends to occur in batches so that hybrid crystal-melt systems, the calc-alkaline granitic plutons, become intrusive into earlier hybrid crystal-melt systems, represented by the mafic-rich inclusions.  相似文献   

16.
The Cordillera del Paine pluton in the southernmost Andes of Chile represents a deeply dissected magma chamber where mafic magma intruded into crystallizing granitic magma. Throughout much of the 10x15 km pluton, there is a sharp and continuous boundary at a remarkably constant elevation of 1,100 m that separates granitic rocks (Cordillera del Paine or CP granite: 69–77% SiO2) which make up the upper levels of the pluton from mafic and comingled rocks (Paine Mafic Complex or PMC: 45–60% SiO2) which dominate the lower exposures of the pluton. Chilled, crenulate, disrupted contacts of mafic rock against granite demonstrate that partly crystallized granite was intruded by mafic magma which solidified prior to complete crystallization of the granitic magma. The boundary at 1,100 m was a large and stable density contrast between the denser, hotter mafic magma and cooler granitic magma. The granitic magma was more solidified near the margins of the chamber when mafic intrusion occurred, and the PMC is less disrupted by granites there. Near the pluton margins, the PMC grades upward irregularly from cumulate gabbros to monzodiorites. Mafic magma differentiated largely by fractional crystallization as indicated by the presence of cumulate rocks and by the low levels of compatible elements in most PMC rocks. The compositional gap between the PMC and CP granite indicates that mixing (blending) of granitic magma into the mafic magma was less important, although it is apparent from mineral assemblages in mafic rocks. Granitic magma may have incorporated small amounts of mafic liquid that had evolved to >60% SiO2 by crystallization. Mixing was inhibited by the extent of crystallization of the granite, and by the thermal contrast and the stable density contrast between the magmas. PMC gabbros display disequilibrium mineral assemblages including early formed zoned olivine (with orthopyroxene coronas), clinopyroxene, calcic plagioclase and paragasite and later-formed amphibole, sodic plagioclase, mica and quartz. The early formed gabbroic minerals (and their coronas) are very similar to phenocrysts in late basaltic dikes that cut the upper levels of the CP granite. The inferred parental magmas of both dikes and gabbros were very similar to subalkaline basalts of the Patagonian Plateau that erupted at about the same time, 35 km to the east. Mafic and silicic magmas at Cordillera del Paine are consanguineous, as demonstrated by alkalinity and trace-element ratios. However, the contemporaneity of mafic and silicic magmas precludes a parent-daughter relationship. The granitic magma most likely was derived by differentiation of mafic magmas that were similar to those that later intruded it. Or, the granitic magma may have been contaminated by mafic magmas similar to the PMC magmas before its shallow emplacement. Mixing would be favored at deeper levels when the cooling rate was lower and the granitic magma was less solidified.  相似文献   

17.
The aim of this study is to quantify the crustal differentiation processes and sources responsible for the origin of basaltic to dacitic volcanic rocks present on Cordón El Guadal in the Tatara-San Pedro Complex (TSPC). This suite is important for understanding the origin of evolved magmas in the southern Andes because it exhibits the widest compositional range of any unconformity-bound sequence of lavas in the TSPC. Major element, trace element, and Sr-isotopic data for the Guadal volcanic rocks provide evidence for complex crustal magmatic histories involving up to six differentiation mechanisms. The petrogenetic processes for andesitic and dacitic lavas containing undercooled inclusions of basaltic andesitic and andesitic magma include: (1) assimilation of garnet-bearing, possibly mafic lower continental crust by primary mantle-derived basaltic magmas; (2) fractionation of olivine + clinopyroxene + Ca-rich plagioclase + Fe-oxides in present non-modal proportions from basaltic magmas at ∼4–8 kbar to produce high-Al basalt and basaltic andesitic magmas; (3) vapor-undersaturated (i.e., P H2O<P TOTAL) partial melting of gabbroic crustal rocks at ∼3–7 kbar to produce dacitic magmas; (4) crystallization of plagioclase-rich phenocryst assemblages from dacitic magmas in shallow reservoirs; (5) intrusion of basaltic andesitic magmas into shallow reservoirs containing crystal-rich dacitic magmas and subsequent mixing to produce hybrid basaltic andesitic and andesitic magmas; and (6)␣formation and disaggregation of undercooled basaltic andesitic and andesitic inclusions during eruption from shallow chambers to form commingled, mafic inclusion-bearing andesitic and dacitic lavas flows. Collectively, the geochemical and petrographic features of the Guadal volcanic rocks are interpreted to reflect the development of shallow silicic reservoirs within a region characterized by high crustal temperatures due to focused basaltic activity and high magma supply rates. On the periphery of the silicic system where magma supply rates and crustal temperatures were lower, cooling and crystallization were more important than bulk crustal melting or assimilation. Received: 2 July 1997 / Accepted: 25 November 1997  相似文献   

18.
南海新生代碱性玄武岩中斜长石矿物的化学成分及意义   总被引:1,自引:0,他引:1  
南海新生代碱性玄武岩中存在两种不同粒径的斜长石矿物.其一为斜长石斑晶,常见熔蚀麻点,是岩浆上升、压力降低时发生熔蚀作用并在骤冷条件下形成的;其二斜长石微晶,半定向或杂乱分布于火山玻璃中,其中空骸晶结构表明斜长石微晶是在淬冷条件下迅速结晶形成的.斜长石斑晶具弱成分环带,斑晶边部的An值稍高或接近于斜长石微晶.微晶斜长石An值与岩浆喷出后的水深以及喷发位置距离岩浆主通道的远近存在一定联系.本区的斜长石斑晶形成温度明显低于冲绳海槽地区,而类似于东海陆架地区;斜长石微晶的结晶温度类似于冲绳海槽,表明两地区在岩浆喷出海底后淬火结晶的物理化学条件相似.结合同样品中橄榄石斑晶研究结果以及已有的地球物理学和岩石学方面的资料,可能反映了地幔柱快速上涌使早期部分熔融及结晶分异作用较弱,岩浆本身温度高提供了早期结晶形成的斑晶与寄主岩浆进一步充分反应的热量.计算的斜长石斑晶温度不能反映源区温度特征,后者应高于本文所计算的斜长石斑晶的结晶温度.  相似文献   

19.
Evolution of the magma chamber at Mount Mazama involved repeated recharge by two types of andesite (high-Sr and low-Sr), crystal fractionation, crystal accumulation, assimilation, and magma mixing (Bacon and Druitt 1988). This paper addresses the modal compositions, textures, mineral chemistry and magmatic temperatures of (i) products of the 6845±50 BP climactic eruption, (ii) blocks of partially fused granitoid wallrock found in the ejecta, and (iii) preclimactic rhyodacitic lavas leaked from the chamber in late Pleistocene and early Holocene time. Immediately prior to the climactic eruption the chamber contained ≳ 40 km3 of rhyodacite (10 vol% plag + opx + aug + hb + mt + ilm, ∼880° C) overlying high-Sr andesite and cumulus-crystal mush (28–51 vol% plag + hb ± opx ± aug + mt ± ilm, 880° to ≥950° C), which in turn overlay low-Sr crystal mush (50–66 vol% plag + opx + aug ± hb ± ol + mt + ilm, 890° to ≥950† C). Despite the well known compositional gap in the ejecta, no thermal discontinuity existed in the chamber. Pre-eruptive water contents of pore liquids in most high-Sr and low-Sr mushes were 4–6 wt%, but on average the high-Sr mushes were slightly richer in water. Although parental magmas of the crystal mushes were andesitic, xenocrysts of bytownite and Ni-rich magnesian olivine in some scoriae record the one-time injection of basalt into the chamber. Textures in ol-bearing scoriae preserve evidence for the reactions ol + liq = opx and ol + aug + liq(+ plag?) = hb, which occurred in andesitic liquids at Mount Mazama. Strontium abundances in plagioclase phenocrysts constrain the petrogenesis of preclimactic and climactic rhyodacites. Phenocryst cores derived from high-Sr and low-Sr magmas have different Sr contents which can be resolved by microprobe. Partition coefficients for plagioclase in andesitic to rhyolitic glasses range from 2 to 7, and increase as glass %SiO2 increases. Evolved Pleistocene rhyodacites (∼30–25,000 BP) and rhyodacites of the Holocene Llao Rock center (7015±45 BP) contain Sr-poor plagioclase and are derivatives from low-Sr magma. Rhyodacites of the Pleistocene Sharp Peak domes, Holocene Cleetwood flow (∼6850 BP), and climactic ejecta contain discrete Sr-rich and Sr-poor plagioclase phenocryst populations and are hybrids produced by mixing low-Sr rhyodacite (containing Sr-poor plag + opx + aug) with a more mafic high-Sr magma (with Sr-rich plag [ + hb?]). The data reinforce the conclusions of crystal-liquid mixing calculations (Bacon and Druitt 1988), and suggest some important refinements to the magma chamber model.  相似文献   

20.
Products of the Pomici di Base plinian eruption of Somma-Vesuvius consist of pumice and scoria fall deposits overlain by lithic-rich phreatomagmatic deposits. The plinian fall, which represents most of the magma volume involved in the eruption, ranges in composition from trachyte (SiO2 = 62.5 wt%) to latite (SiO2 ≈ 58 wt%) in the lower one-third of the deposit, whereas the upper two-thirds of the total thickness consists of latitic scoriae with fairly uniform composition (SiO2 ≈ 55–56 wt%). All the products have very low content of phenocrysts (from 4 wt% in trachyte pumice to 1 wt% in the latite scoriae), most of which are not in equilibrium with the host rock. Minerals not in equilibrium, both in trachytic and latitic rocks, consist of discrete crystals of sanidine and plagioclase wetted by trachytic glass and felsic aggregates with interstital trachytic glass. Trends of major and trace elements are consistent with crystal-liquid fractionation processes and rule out syn-eruptive mixing processes between latitic and trachytic magmas. We suggest that discrete crystals and crystal aggregates not in equilibrium with the host rock represent fragments of the crystallising boundary layer at the upper walls of the magma chamber, which were wrenched and admixed into the magma during the ascent. This process diversifies the mineral assemblage and increases the crystal content of the rocks. We propose that diffusive crystallization processes operating at the wall of the chamber allowed the formation of a two-fold layered reservoir with a more mafic, homogeneous lower body and a more evolved, compositionally graded upper body. Around one-quarter of crystals adhering to the upper part of the magma chamber were admixed into the magma during the eruption. The absence of significant syn-eruptive mixing processes and the major role played by diffusive crystallization are consistent with a low aspect ratio magma chamber (width/height <1). Received: 23 March 1998 / Accepted: 11 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号