首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Daliao River watershed, an important industrial base of China, has been heavily influenced by anthropogenic activities. Microbes in sediments play an important role in recycling of organics and nutrients, and knowledge of the microbial composition and community structure in river sediments can help us to understand the contribution of microorganisms to environmental processes and their response to environmental perturbation. In this study, 11 surface sediment samples and 1 core sediment sample were collected from the Daliao River water system and its estuary, and their microbial abundance and community compositions were investigated using fluorescence in situ hybridization. Results showed that total cell numbers in surface sediments from different locations ranged from 4.2 × 10to 16.2 × 108 cells cm−3. Domain bacteria represented 58–82% with α-, β-, and γ-proteobacteria as the major subgroups summing up to 40%. Total cell numbers along the core sediment profile ranged from 7.9 × 108 to 20.1 × 108 cells cm−3, with relatively higher total cell numbers in the upper (0–6 cm) and middle (21–30 cm) layers. In the core sediment, domain bacteria represented 62–85% and archaea 1.0–11.8%. α-, β- and γ-Proteobacteria were three major phylogenetic groups of bacteria in the core sediment also with γ-proteobacteria as the most abundant subgroup accounting for 9.8–40.8% of total cells.  相似文献   

2.
To examine the biogeochemistry of amino acids (AAs) in the sediment of Lake Taihu, surface sediments (0–3 cm) and deeper sediments (18–21 cm) were collected at 21 sites from different ecotype zones of the lake. AAs were extracted from the sediments, and the total hydrolyzable amino acids (THAA) were determined by high-performance liquid chromatography instrument. The THAA contents in Taihu sediment were much lower than that in marine sediments, ranging from 6.84 to 38.24 μmol g−1 in surface sediments and from 2.91 to 18.75 μmol g−1 in deeper sediments in Taihu, respectively. AAs were a major fraction of the organic matter (OM) and organic nitrogen in Taihu sediments. The AAs on average contributed 8.2% of organic carbon (OC) and 25.0% of total nitrogen (TN) from surface sediments, and 5.9% of OC and 20.5% of TN in deeper sediments, respectively. AA composition provided very useful information about the degradation of OM. Glycine (Gly) and lysine (Lys) were the predominant forms of AAs in the sediments, irrespective of lake regions, followed by alanine, glutamic acid, serine (Ser), and aspartic acid (Asp). The high concentrations of Gly, Lys, and Ser suggested that these forms of AAs were relatively refractory during OM degradation in sediments. The relationship between the Asp/Gly ratio and Ser + Thr [mol%] indicated that OM in surface sediment was relatively fresher than that in deeper sediments. The AAs-based degradation index (DI) gave a similar conclusion. The composition and DI of AAs in surface sediments are markedly different across different zones in Taihu. The percentages of AAs to organic carbon (AA-C%) and total nitrogen (AA-N%) were higher in phytoplankton-dominated zones than those in macrophyte-dominated zones. These results suggest that DI could provide useful information about the degradation of OM in shallow lakes such as Taihu.  相似文献   

3.
210Pb geochronologies of Cd, Cu, Hg, and Pb fluxes were obtained from the intertidal mudflat sediments of the coastal lagoons Chiricahueto, Estero de Urías, and Ohuira in the Mexican Pacific. The Cu and Hg sediment concentrations at the three lagoons fell within the ranges of 6–76 μg g−1 and 0.1 to 592 ng g−1, respectively; Chiricahueto and Estero de Urías sediments had comparable Cd and Pb concentrations within the ranges of 0.2–2.1 μg g−1 and 10–67 μg g−1, respectively; whereas in Ohuira lagoon, Cd concentrations were lower (0.1–0.5 μg g−1) and Pb concentrations were higher (115–180 μg g−1) than in the other lagoons. The metal fluxes (μg cm−2 y−1) for the three lagoons fell within the ranges of 0.02–0.15 for Cd, 0.7–6.0 for Cu, 0.001–0.045 for Hg, and 0.7–20 for Pb. The Hg pollution in Estero de Urías was attributed to the exhausts of the thermoelectric plant of Mazatlan and the metal enrichment in Chiricahueto and Ohuira was related to the agrochemical wastes from the croplands surrounding these lagoons.  相似文献   

4.
Two boreholes and ten piezometers in the Ganges flood plain were drilled and installed for collecting As-rich sediments and groundwater. Groundwater samples from the Ganges flood plain were collected for the analysis of cations (Ca2+, Mg2+, K+, Na+), anions (Cl, NO3 , SO4 2−), total organic carbon (TOC), and trace elements (As, Mn, Fe, Sr, Se, Ni, Co, Cu, Mo, Sb, Pb). X-ray powder diffraction was performed to characterize the major mineral contents of aquifer sediments and X-ray fluorescence (XRF) to analyze the major chemical composition of alluvial sediments. Results of XRF analysis clearly show that fine-grained sediments contain higher amounts of trace element because of their high surface area for adsorption. Relative fluorescence index (15–38 QSU) of humic substance in groundwater was measured using spectrofluorometer, the results revealed that groundwater in the Ganges flood plain contains less organic matter (OM). Arsenic concentration in water ranges from 2.8 to 170 μg/L (mean 50 μg/L) in the Ganges flood plain. Arsenic content in sediments ranges from 2.1 to 14 mg/kg (mean 4.58 mg/kg) in the flood plains. TOC ranges from 0.49 to 3.53 g/kg (mean 1.64 g/kg) in the Ganges flood plain. Arsenic is positively correlated with TOC (R 2 = 0.55) in sediments of this plain. Humic substances were extracted from the sediments from the Ganges flood plain. Fourier transform infrared analysis of the sediments revealed that the plain contains less humic substances. The source of organic carbon was assigned from δ13C values obtained using elemental analysis-isotope ratio mass spectrometry (EA-IRMS); the values (−10 to −29.44‰) strongly support the hypothesis that the OM of the Ganges flood plain is of terrestrial origin.  相似文献   

5.
Among several salt lakes in the Thar Desert of western India, the Sambhar is the largest lake producing about 2 × 105 tons of salt (NaCl) annually. The “lake system” (lake waters, inflowing river waters, and sub-surface brines) provides a unique setting to study the geo-chemical behavior of uranium isotopes (238U, 234U) in conjunction with the evolution of brines over the annual wetting and evaporation cycles. The concentration of 238U and the total dissolved solids (TDS) in lake water increase from ~8 μg L−1 and ~8 g L−1 in monsoon to ~1,400 μg L−1 and 370 g L−1, respectively, during summer time. The U/TDS ratio (~1 μg g−1 salt) and the 234U/238U activity ratio (1.65 ± 0.05), however, remain almost unchanged throughout the year, except when U/TDS ratio approaches to 3.8 at/or beyond halite crystallization. These observations suggest that uranium behaves conservatively in the lake waters during the annual cycle of evaporation. Also, uranium and salt content (TDS) are intimately coupled, which has been used to infer the origin and source of salt in the lake basin. Furthermore, near uniform ratios in evaporating lake waters, when compared to the ratio in seawater (~0.1 μg g−1 salt and 1.14 ± 0.02, respectively), imply that aeolian transport of marine salts is unlikely to be significant source of salt to the lake in the present-day hydrologic conditions. This inference is further consistent with the chemical composition of wet-precipitation occurring in and around the Sambhar lake. The seasonal streams feeding the lake and groundwaters (within the lake’s periphery) have distinctly different ratios of U/TDS (2–69 μg g−1 salt) and 234U/238U (1.15–2.26) compared to those in the lake. The average U/TDS ratio of ~1 μg g−1 salt in lake waters and ~19 μg g−1 salt in river waters suggest dilution of the uranium content by the recycled salt and/or removal processes presently operating in the lake during the extraction of salt for commercial use. Based on mass-balance calculations, a conservative estimate of "uranium sink" (in the form of bittern crust) accounts for ~5 tons year−1 from the lake basin, an estimate similar to its input flux from rivers, i.e., 4.4 tons year−1.  相似文献   

6.
The Corsica River, located on Maryland’s eastern shore, has been the site of restoration efforts targeting sediment and nutrient load reductions. Previous work has indicated that agricultural activities supply most of these materials; however, their dynamics and fate are largely unknown. To address these needs, bottom sediments have been collected and analyzed for their chemical and textural properties. Long-term (decadal) accumulation rates are determined with 210Pb (half-life 22.3 years), verified with 137Cs, and range from 0.18 to 0.84 g/cm2/year in the subtidal region and 0.3–1.89 g/cm2/year in the marshes. These estimates are compared with likely sediment sources to determine the direction of exchange with the adjacent estuary (Chester River), which is a subtributary of Chesapeake Bay, with the Chester River likely supplying 0.94 × 103 t/year of sediment to the Corsica, ∼16% of the total sediment input. The radiochemical data are used to interpret profiles of grain size and nitrogen and to provide improved estimates of nitrogen burial. Comparison of the Corsica River to similar systems highlights the importance of marshes in trapping sediment and nutrient inputs from the watershed.  相似文献   

7.
The geochemical study of groundwaters and core sediments from the Old Brahmaputra plain of Bangladesh was conducted to investigate the distribution of arsenic and related trace elements. Groundwaters from tube wells are characterized by pH of 6.4–7.4, dissolved oxygen (DO) of 0.8–1.8 mg/l, Ca contents of 5–50 mg/l, and Fe contents of 0.2–12.9 mg/l. Arsenic concentrations ranged from 8 to 251 μg/l, with an average value of 63 μg/l. A strong positive correlation exists between As and Fe (r 2 = 0.802; p = 0.001) concentrations in groundwater. The stratigraphic sequences in the cores consist of yellowish silty clays at top, passing downward into grayish to yellowish clays and sands. The uppermost 3 m and lower parts (from 13 to 31 m) of the core sediments are oxidized (average oxidation reduction potential (ORP) +170 and +220 mV, respectively), and the ORP values gradually become negative from 3 to 13 m depths (−35 to −180 mV), indicating that anoxic conditions prevail in the shallow aquifers of the Brahmaputra plain. Age determinations suggest that clay horizons at ~10 m depth were deposited at around 2,000 and 5,000 years BP (14C ages) during the transgressive phase of sea-level change. Elevated concentrations of As, Pb, Zn, Cu, Ni, Cr, and V are present in the silts and clays, probably due to adsorption onto clay particles. Significant concentrations of As occur in black peat and peaty sediments at depths between 9 and 13 m. A strong positive correlation between As and Fe was found in the sediments, indicating As may be adsorbed onto Fe oxides in aquifer sediments.  相似文献   

8.
We investigated the role of sandy beaches in nearshore nutrient cycling by quantifying macrophyte wrack inputs and examining relationships between wrack accumulation and pore water nutrients during the summer dry season. Macrophyte inputs, primarily giant kelp Macrocystis pyrifera, exceeded 2.3 kg m−1 day−1. Mean wrack biomass varied 100-fold among beaches (range = 0.41 to 46.43 kg m−1). Mean concentrations of dissolved inorganic nitrogen (DIN), primarily NOx-N, and dissolved organic nitrogen (DON) in intertidal pore water varied significantly among beaches (ranges = 1 to 6,553 μM and 7 to 2,006 μM, respectively). Intertidal DIN and DON concentrations were significantly correlated with wrack biomass. Surf zone concentrations of DIN were also strongly correlated with wrack biomass and with intertidal DIN, suggesting export of nutrients from re-mineralized wrack. Our results suggest beach ecosystems can process and re-mineralize substantial organic inputs and accumulate dissolved nutrients, which are subsequently available to nearshore waters and primary producers.  相似文献   

9.
Sediment instabilities are common on the prodeltas of the seismically active continental margins of Western Greece. Sediment failures on the low-angle (0.5°–2°) prodelta slopes manifest themselves as successions of peripheral rotational block slumps restricted to the foresets of the late highstand systems tract (HST). The individual slump blocks are about 80–150 m long and are bounded by growth faults acting as curved slip planes that extend to a mean depth of 10–15 m below seafloor. Shear planes develop in the lower part of muddy and/or gas charged HST foresets. Deeper basal transparent muddy layers of the early HST bottomset, together with the late Pleistocene transgressive systems tract sequences (TST), are mostly unaffected. On the steeper (2°–6°) fan delta slopes of the western Gulf of Corinth debris flows and avalanches with a significant retrogressive component dominate slope destabilisation. Sediment cores taken from landslide scarps and slide planes penetrated gas bubble releasing sediments thereby indicating that failure planes are in the late HST foresets/upper part of the early HST bottomsets gas charged zone. The foresets of the HST prodelta deposits display high water content (30–80%), low bulk density (1.4–1.9 g cm−3) and relatively low values of undrained shear strength (3–20 kPa). The water content of the HST distal muddy bottomsets is relatively higher (50–110%) and bulk density relatively lower (1.3–1.7 g cm−3) with low values of shear strength (2–10 kPa). The shear strength of the gas releasing sediment layer displays lower values (2–9 kPa) relative to the overlying, post failure, muddy sediments of the late 100–300 years. Slope stability was calculated using the normalised soil parameter (NSP) method under undrained conditions for normally consolidated prodelta sediments. This analysis indicates that instabilities could be induced by critical earthquake ground accelerations of 26.6–29.6% g for the HST foresets and 12.4–14.1% g for the basal transparent layer belonging to the early HST bottomsets. Consequently the early HST bottomsets has to be considered a potentially unstable layer since the regional peak ground accelerations (PGAs) for the next 50 years are expected to range from 19 to 30% g. Moreover, our results show that new glide planes in the prodeltaic sediment bodies of the seismically active continental margins of Western Greece will likely develop from the gas charged sediments of the lower part of the HST foresets to the upper part of early HST bottomsets.  相似文献   

10.
In order to avoid the pollution of trace metals in marine environment, it is necessary to establish the data and understand the mechanisms influencing the distribution of trace metals in marine environment. The concentration of heavy metals (Fe, Mn, Cr, Cu, Ni, Pb, Zn, Co and Cd) were studied in sediments of Ennore shelf, to understand the metal contamination due to heavily industrialized area of Ennore, south-east coast of India. Concentration of metals shows significant variability and range from 1.7 to 3.7% for Fe, 284–460 μg g−1 for Mn, 148.6–243.2 μg g−1 for Cr, 385–657 μg g−1 for Cu, 19.8–53.4 μg g−1 for Ni, 5.8–11.8 μg g−1 for Co, 24.9–40 μg g−1 for Pb, 71.3–201 μg g−1 for Zn and 4.6–7.5 μg g−1 for Cd. For various metals the contamination factor (CF) and geoaccumulation index (I geo) has been calculated to assess the degree of pollution in sediments. The geoaccumulation index shows that Cd, Cr and Cu moderately to extremely pollute the sediments. This study shows that the major sources of metal contamination in the Ennore shelf are land-based anthropogenic ones, such as discharge of industrial wastewater, municipal sewage and run-off through the Ennore estuary. The intermetallic relationship revealed the identical behavior of metals during its transport in the marine environment.  相似文献   

11.
Sediment cores were sampled from Xiamen Western Bay at five sites during the summer and winter of 2006 and Hg–Au microelectrodes were used to make on board measurements of the concentration gradients of dissolved oxygen, Mn2+, and Fe2+ within the sediments. The O2 concentrations decreased sharply from about 200 μmol L−1 in the bottom seawater to zero within a depth of a few millimeters into the sediment. Dissolved Mn2+ was detected below the oxic zones with peak concentrations up to 600 μmol L−1, whereas dissolved Fe2+ had peak concentrations up to 1,000 μmol L−1 in deeper layers. The elemental contents of organic carbon and nitrogen within the sediments were analyzed and their C/N ratios were in the range of 9.0 to 10.1, indicative of heavy terrestrial origin. Sediments from two sites near municipal wastewater discharge outlets had higher organic contents than those from the other sites. These high organic contents corresponded to shallow O2 penetration depths, high dissolved Mn2+ and Fe2+ concentrations, and negative redox potentials within the sediments. This indicated that the high organic matter content had promoted microbial respiration within the sediments. Overall, the organic content did not show any appreciable decrease with increasing sediment depths, so a quadratic polynomial function was used to fit the curve of O2 profiles within the sediments. Based on the O2 profiles, O2 fluxes across the seawater and sediment interface were estimated to be in the range 6.07 to 14.9 mmol m−2 day−1, and organic carbon consumption rates within the surface sediments were estimated to be in the range 3.3 to 20.8 mgC cm−3 a−1. The case demonstrated that biogeochemistry within the sediments of the bay was very sensitive to human activities such as sewage discharge.  相似文献   

12.
Iron oxyhydroxide precipitates associated with acid mine drainage (AMD) from the Stearns Coal Zone in southeastern Kentucky were analyzed for their metal (Al, Cu, Pb, Mn, Ni, and Zn) content. The most concentrated metals within these sediments are nickel (27–32×103μmol/kg), manganese (16–29×103μmol/kg), and aluminum (13–22×103μmol/kg) as determined by HCl-HNO3 digestion. Metal concentrations associated with the organic fraction as determined by H2O2 digestion were generally far lower, with the exception of aluminum. "Batch" experiments (at initial pH=2.0) were used to analyze the stability of these metals associated with a contaminated soil. Aluminum was the most mobile of the metals, presumably the result of the formation of aluminum-sulfate aqueous complexes. The solubilization rates for nickel and iron were very similar, suggesting that nickel, unlike the other metals, coprecipitated with iron in these sulfatic oxyhydroxides. Received: 9 October 1997 · Accepted: 15 December 1997  相似文献   

13.
Geospatial modeling for assessing the nutrient load of a Himalayan lake   总被引:1,自引:0,他引:1  
This research makes use of the remote sensing, simulation modeling and field observations to assess the non-point source pollution load of a Himalayan lake from its catchment. The lake catchment, spread over an area of about 11 km2, is covered by different land cover types including wasteland (36%), rocky outcrops (30%), agriculture (12%), plantation (12.2%), horticulture (6.2%) and built-up (3.1%) The GIS-based distributed modeling approach employed relied on the use of geospatial data sets for simulating runoff, sediment, and nutrient (N and P) loadings from a watershed, given variable-size source areas, on a continuous basis using daily time steps for weather data and water balance calculations. The model simulations showed that the highest amount of nutrient loadings are observed during wet season in the month of March (905.65 kg of dissolved N, 10 kg of dissolved P, 10,386.81 kg of total N and 2,381.89 kg of total P). During the wet season, the runoff being the highest, almost all the excess soil nutrients that are trapped in the soil are easily flushed out and thus contribute to higher nutrient loading into the lake during this time period. The 11-year simulations (1994–2004) showed that the main source areas of nutrient pollution are agriculture lands and wastelands. On an average basis, the source areas generated about 3,969.66 kg/year of total nitrogen and 817.25 kg/year of total phosphorous. Nash–Sutcliffe coefficients of correlation between the daily observed and predicted nutrient load ranged in value from 0.80 to 0.91 for both nitrogen and phosphorus.  相似文献   

14.
The study was designed to establish the distributions of trace metals, dissolved organic carbon, and inorganic nutrients as well as to assess the extent of anthropogenic inputs into the Narmada and Tapti rivers. Water and sediment qualities are variable in the rivers, and there are major pollution problems at certain locations, mainly associated with urban and industrial centers. The metal concentrations of samples of the aquatic compartments investigated were close to the maximum permissible concentration for the survival of aquatic life, except for higher values of Cu (5–763 μg l−1), Pb (24–376 μg l−1), Zn (24–730 μg l−1), and Cr (70–740 μg l−1) and for drinking water except for elevated concentrations of metals such as Pb, Fe (850–2,060 μg l−1), Cr, and Ni (20–120 μg l−1). In general, the concentrations of trace metals in the rivers vary down stream which may affect the “health” of the aquatic ecosystem and may also affect the health of the rural community that depends on the untreated river water directly for domestic use. The assessment of EF, I geo, and PLI in the sediments reveals overall moderate pollution in the river basins.  相似文献   

15.
The study region covers 1,650 km2 of the Mid-Ganga Basin in Bihar, experiencing intensive groundwater draft. The area forms a part of the Gangetic alluvial plain where high incidence of arsenic groundwater contamination (>50 μg/l) has recently been detected. Seventy-seven groundwater samples have been collected and analysed for major ions, iron and arsenic. Arsenic contamination (max 620 μg/l) is confined in hand pump zones (15–35 m) within the newer alluvium deposited during Middle Holocene to Recent age. The older alluvial aquifers are arsenic-safe and recorded maximum concentration as 9 μg/l. Out of 12 hydrochemical facies identified, four have been found arsenic-affected: Ca–HCO3, Mg–HCO3, Ca–Mg–HCO3 and Mg–Ca–HCO3. The geochemical evolution of groundwater, as investigated by graphical interpretation and statistical techniques (correlation, principal component analysis) revealed that dissolution of detrital calcite, dolomite and infiltration of rainwater are the major processes shaping the groundwater chemistry in the newer alluvium. Arsenic and iron showed strong positive correlation. Rainfall infiltration, carrying organic matter from recently accumulated biomass from this flood-prone belt, plays a critical role in releasing arsenic and iron present in the sediments. Geochemical evolution of groundwater in older alluvium follows a different path, where cation-exchange has been identified as a significant process.  相似文献   

16.
We investigated the accumulation and influence of bioavailable P (BAP) in sediments of a stream located in an agricultural area of the Lake Mendota watershed in Wisconsin, USA. During hydrologic events, the stream carried high concentrations of suspended sediment (up to 250 mg/l) and BAP (up to 2.5 mg/l). Bed sediments were highly enriched in BAP, as inventories of BAP in the top 10 cm of sediment ranged from 143 to 14,500 μg P/cm2. Space variations in BAP inventories were related to site-specific hydrodynamics and geochemical factors, including iron (Fe; r 2 = 0.71) and aluminum (Al; r 2 = 0.54) concentrations. Most sites behaved as potential sinks for dissolved reactive phosphate during hydrologic events and potential sources during base-flow periods. Through the combination of site-specific factors and geochemical controls, Dorn Creek modifies the amount, timing, and composition of P delivered from the watershed to downstream sites and water bodies.  相似文献   

17.
Antimony (Sb) is strongly concentrated into hydrothermal mineral deposits, commonly with gold, in metasedimentary sequences around the Pacific Rim. These deposits represent potential point sources for Sb in the downstream environment, particularly when mines are developed. This study documents the magnitude and scale of Sb mobility near some mineral deposits in Australia and New Zealand. Two examples of New Zealand historic mining areas demonstrate that natural groundwater dissolution of Sb from mineral deposits dominates the Sb load in drainage waters, with Sb concentrations between 3 and 24 μg/L in major streams. Mine-related discharges can exceed 200 μg/L Sb, but volumes are small. Sb flux in principal stream waters is ca 1–14 mg/s, compared to mine tunnel fluxes of ca 0.001 mg/s. Dissolved Sb is strongly attenuated near some mine tunnels by adsorption on to iron oxyhydroxide precipitates. Similar Sb mobilisation and attenuation processes are occurring downstream of the historic/active Hillgrove antimony–gold mine of New South Wales, Australia, but historic discharges of Sb-bearing debris has resulted in elevated Sb levels in stream sediments (ca 10–100+ mg/kg) and riparian plants (up to 100 mg/kg) for ca 300 km downstream. Dissolution of Sb from these sediments ensures that river waters have elevated Sb (ca 10–1,000 μg/L) over that distance. Total Sb flux reaching the Pacific Ocean from the Hillgrove area is ca 8 tonnes/year, of which 7 tonnes/year is particulate and 1 tonne/year is dissolved.  相似文献   

18.
Fifteen stations (st) were selected along Dubai coastal region to delineate the distribution and the source of total petroleum hydrocarbon (TPH), total organic carbon (TOC), total Kjeldhal nitrogen (TKN), polycyclic aromatic hydrocarbon (PAHs) and polychlorinated biphenyls. The concentrations of TPH fluctuated between 2 μg g −1 and 48018 μg g −1 and the values of TOC were in the range of 0.16–5.9 wt%, while TPAHs ranged from 0.09 μg g −1 to 161.72 μg g −1. On the other hand, TPCBs showed values between 0.8 μg kg−1 and 93.3 μg kg−1 and TKN values varied from 218 μg g−1 to 2457 μg g −1. Distribution of oil and organic compounds in Dubai sediments are safe compared with previous studies except for limited areas at the northeastern offshore. These readings are probably due to: (1) presence of commercial or industrial ports, dry docks and fishing harbours and (2) population centers mainly concentrated at the northern part of the study area. Results indicate that TOC can be used as indicator of oil pollution only in heavily oiled sediments. The highest values of TOC, TPH, TPAHs and TPCBs corresponded to the stations covered with fine sand, due to adsorption properties and larger surface area. The evaporation of low boiling point compounds from surface layers led to enrichment of sediments with the thick residual. Al-Hamriya St 3 exhibited the highest values of TPH, TOC, TPAHs and TPCBs and the second highest value of TKN.  相似文献   

19.
Deep Bay is a semienclosed bay that receives sewage from Shenzhen, a fast-growing city in China. NH4 is the main N component of the sewage (>50% of total N) in the inner bay, and a twofold increase in NH4 and PO4 concentrations is attributed to increased sewage loading over the 21-year period (1986–2006). During this time series, the maximum annual average NH4 and PO4 concentrations exceeded 500 and 39 μM, respectively. The inner bay (Stns DM1 and DM2) has a long residence time and very high nutrient loads and yet much lower phytoplankton biomass (chlorophyll (Chl) <10 μg L−1 except for Jan, July, and Aug) and few severe long-term hypoxic events (dissolved oxygen (DO) generally >2 mg L−1) than expected. Because it is shallow (~2 m), phytoplankton growth is likely limited by light due to mixing and suspended sediments, as well as by ammonium toxicity, and biomass accumulation is reduced by grazing, which may reduce the occurrence of hypoxia. Since nutrients were not limiting in the inner bay, the significant long-term increase in Chl a (0.52–0.57 μg L−1 year−1) was attributed to climatic effects in which the significant increase in rainfall (11 mm year−1) decreased salinity, increased stratification, and improved water stability. The outer bay (DM3 to DM5) has a high flushing rate (0.2 day−1), is deeper (3 to 5 m), and has summer stratification, yet there are few large algal blooms and hypoxic events since dilution by the Pearl River discharge in summer, and the invasion of coastal water in winter is likely greater than the phytoplankton growth rate. A significant long-term increase in NO3 (0.45–0.94 μM year−1) occurred in the outer bay, but no increasing trend was observed for SiO4 or PO4, and these long-term trends in NO3, PO4, and SiO4 in the outer bay agreed with those long-term trends in the Pearl River discharge. Dissolved inorganic nitrogen (DIN) has approximately doubled from 35–62 to 68–107 μM in the outer bay during the last two decades, and consequently DIN to PO4 molar ratios have also increased over twofold since there was no change in PO4. The rapid increase in salinity and DO and the decrease in nutrients and suspended solids from the inner to the outer bay suggest that the sewage effluent from the inner bay is rapidly diluted and appears to have a limited effect on the phytoplankton of the adjacent waters beyond Deep Bay. Therefore, physical processes play a key role in reducing the risk of algal blooms and hypoxic events in Deep Bay.  相似文献   

20.
The results of eight radiocarbon datings of Lake Chapala sediments (site T46) are presented, the age inversions (AI) observed and their age progression discussed. As deduced from some AIs and the 210Pb activity (site CHP4), the bioturbation zone in the lake varies over a depth of 5–25 cm. The linear sedimentation rates (LSRs) calculated from 14C ages do not match the LSR calculated from unsupported 210Pb activity for the upper sediments. This demonstrates the usefulness of dating sediments with complementary radiometric techniques such as short-lived isotope counting (SLIC), i.e., 210Pb and 137Cs. This approach leads to the following conclusions: (1) The incorporation of detrital particles with ancient carbon into the sedimentary column of the lake occurred by a combination of: (a) the presence of outcrops of hydrothermal petroleum with ages >40 ka (ka = thousands of years) in the lake, and (b) mass transport due to the presence of two elongated gyre circulation patterns integrated by cyclonic circulation (counterclockwise) in the north portion of the lake and anticyclonic circulation in the southern part. (2) Consequently, the 14C ages of shallow lake sediments have geologic ages one order of magnitude greater compared to their ages determined by the 210Pb method. (3) A bioturbation mechanism is not necessary to explain the 14C AI in the top 70 cm and from 110 to 150 cm depth of the sediments. (4) According to the biological proxies data for the last 600 years B.P., the paleoclimate at Lake Chapala has changed from sub-humid to dry environmental conditions, and eutrophication has increased over the past 100 years due to local input from ongoing agricultural activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号