首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Stream waters draining granitic terrains from the highest part (850 to 2200 m a.s.l.) of Sierras Pampeanas (Córdoba, Argentina, ∼32°S, ∼65°W) were sampled in order to define sources and distribution of dissolved rare earth elements (REE), and to describe the geochemical processes that govern their mobility. The contribution of the regional granite to the dissolved REE pool in stream water is limited due to the physical conditions predominating in the area (i.e., steep slopes and semiarid climate). Therefore, precipitation is considered a seasonally significant source controlling REE concentration in stream water. Dissolved REE concentrations are inversely correlated with monthly precipitation and rainfall frequency. During the rainy season (i.e., the austral summer) REE concentrations in stream water are lower than during the dry season (i.e., austral winter). Such low concentrations reflect the balance between the REE input from precipitation and their removal by adsorption. In contrast, during the dry season, the longer residence time of water within fractures and colluvium determines an increased REE concentration in the base flow. Lower pH values also contribute to raise REE concentration through desorption from mineral surfaces.  相似文献   

2.
10Be terrestrial cosmogenic nuclide surface exposure ages from moraines on Nevado Illimani, Cordillera Real, Bolivia suggest that glaciers retreated from moraines during the periods 15.5-13.0 ka, 10.0-8.5 ka, and 3.5-2.0 ka. Late glacial moraines at Illimani are associated with an ELA depression of 400-600 m, which is consistent with other local reconstructions of late glacial ELAs in the Eastern Cordillera of the central Andes. A comparison of late glacial ELAs between the Eastern Cordillera and Western Cordillera indicates a marked change toward flattening of the east-to-west regional ELA gradient. This flattening is consistent with increased precipitation from the Pacific during the late glacial period.  相似文献   

3.
The Sierra los Cuchumatanes (3837 m), Guatemala, supported a plateau ice cap and valley glaciers around Montaña San Juan (3784 m) that totaled ∼ 43 km2 in area during the last local glacial maximum. Former ice limits are defined by sharp-crested lateral and terminal moraines that extend to elevations of ∼ 3450 m along the ice cap margin, and to ca. 3000-3300 m for the valley glaciers. Equilibrium-line altitudes (ELAs) estimated using the area-altitude balance ratio method for the maximum late Quaternary glaciation reached as low as 3470 m for the valley glaciers and 3670 m for the Mayan Ice Cap. Relative to the modern altitude of the 0°C isotherm of ∼ 4840 m, we determined ELA depressions of 1110-1436 m. If interpreted in terms of a depression of the freezing level during maximal glaciation along the modern lapse rate of − 5.3°C km− 1, this ΔELA indicates tropical highland cooling of ∼ 5.9 to 7.6 ± 1.2°C. Our data support greater glacial highland cooling than at sea level, implying a high tropical sensitivity to global climate changes. The large magnitude of ELA depression in Guatemala may have been partially forced by enhanced wetness associated with southward excursions of the boreal winter polar air mass.  相似文献   

4.
Tropical glaciers of the Cordillera Blanca, Perú are rapidly thinning and retreating as a result of climate warming. The retreat of these glaciers along narrow linear bedrock valleys has increased the number and size of moraine-dammed glacial lakes formed in the valleys. This study aims to identify the geomorphological and sedimentological characteristics of an enlarging moraine-dammed supraglacial lake (Llaca Lake) in the Cordillera Blanca. Field-based sedimentological observations and geomorphological mapping were combined with remotely sensed data and a photogrammetric model derived from aerial surveys by an uncrewed aerial vehicle to identify landform-sediment assemblages. The geomorphological and sedimentological characteristics of Llaca Lake are synthesized into three landsystem zones: Zone 1: distal portions of Llaca Lake and the latero-frontal moraine; Zone 2: the central zone of ice-cored hummocks; and Zone 3: the active glacier margin. These zones are differentiated based on the spatial distribution of landforms, sediments, and active geomorphological processes. This is the first study to describe the landform-sediment assemblages in a tropical moraine-dammed supraglacial lake system and provides a framework for further landsystem element analysis of these growing supraglacial lakes in rapidly deglaciating high-altitude environments.  相似文献   

5.
Here the hydrogeochemical constraints of a tracer dilution study are combined with Fe and Zn isotopic measurements to pinpoint metal loading sources and attenuation mechanisms in an alpine watershed impacted by acid mine drainage. In the tested mountain catchment, δ56Fe and δ66Zn isotopic signatures of filtered stream water samples varied by ∼3.5‰ and 0.4‰, respectively. The inherent differences in the aqueous geochemistry of Fe and Zn provided complimentary isotopic information. For example, variations in δ56Fe were linked to redox and precipitation reactions occurring in the stream, while changes in δ66Zn were indicative of conservative mixing of different Zn sources. Fen environments contributed distinctively light dissolved Fe (<−2.0‰) and isotopically heavy suspended Fe precipitates to the watershed, while Zn from the fen was isotopically heavy (>+0.4‰). Acidic drainage from mine wastes contributed heavier dissolved Fe (∼+0.5‰) and lighter Zn (∼+0.2‰) isotopes relative to the fen. Upwelling of Fe-rich groundwater near the mouth of the catchment was the major source of Fe (δ56Fe ∼ 0‰) leaving the watershed in surface flow, while runoff from mining wastes was the major source of Zn. The results suggest that given a strong framework for interpretation, Fe and Zn isotopes are useful tools for identifying and tracking metal sources and attenuation mechanisms in mountain watersheds.  相似文献   

6.
The Rainbow hydrothermal field is located at 36°13.8′N-33°54.15′W at 2300 m depth on the western flank of a non-volcanic ridge between the South AMAR and AMAR segments of the Mid-Atlantic Ridge. The hydrothermal field consists of 10-15 active chimneys that emit high-temperature (∼365 °C) fluid. In July 2008, vent fluids were sampled during cruise KNOX18RR, providing a rich dataset that extends in time information on subseafloor chemical and physical processes controlling vent fluid chemistry at Rainbow. Data suggest that the Mg concentration of the hydrothermal end-member is not zero, but rather 1.5-2 mmol/kg. This surprising result may be caused by a combination of factors including moderately low dissolved silica, low pH, and elevated chloride of the hydrothermal fluid. Combining end-member Mg data with analogous data for dissolved Fe, Si, Al, Ca, and H2, permits calculation of mineral saturation states for minerals thought appropriate for ultramafic-hosted hydrothermal systems at temperatures and pressures in keeping with constraints imposed by field observations. These data indicate that chlorite solid solution, talc, and magnetite achieve saturation in Rainbow vent fluid at a similar pH(T,P) (400 °C, 500 bar) of approximately 4.95, while higher pH values are indicated for serpentine, suggesting that serpentine may not coexist with the former assemblage at depth at Rainbow. The high Fe/Mg ratio of the Rainbow vent fluid notwithstanding, the mole fraction of clinochlore and chamosite components of chlorite solid solution at depth are predicted to be 0.78 and 0.22, respectively. In situ pH measurements made at Rainbow vents are in good agreement with pH(T,P) values estimated from mineral solubility calculations, when the in situ pH data are adjusted for temperature and pressure. Calculations further indicate that pH(T,P) and dissolved H2 are extremely sensitive to changes in dissolved silica owing to constraints imposed by chlorite solid solution-fluid equilibria. Indeed, the predicted correlation between dissolved silica and H2 defines a trend that is in good agreement with vent fluid data from Rainbow and other high-temperature ultramafic-hosted hydrothermal systems. We speculate that the moderate concentrations of dissolved silica in vent fluids from these systems result from hydrothermal alteration of plagioclase and olivine in the form of subsurface gabbroic intrusions, which, in turn are variably replaced by chlorite + magnetite + talc ± tremolite, with important implications for pH lowering, dissolved sulfide concentrations, and metal mobility.  相似文献   

7.
By using continuous helium flow during the crushing of calcite speleothem samples, we are able to recover liberated inclusion waters without isotopic fractionation. A paleotemperature record for the Jacklah Jill Cave locality, Vancouver Island, BC, was obtained from a 30-cm tall stalagmite that grew 10.3-6.3 Ka ago, using δ18O values of the crushed calcite and of the inclusion water as inferred from its δD. It is found that the locality experienced mean annual temperature variations up to 11 °C over a 4-Ka period in the early Holocene. At the beginning of the period, local temperature quickly increased from a minimum of ∼1 °C to around 10 °C, but this early climate optimum, about 3 °C warmer than today, only lasted for ∼1200 years. About 8.6 Ka ago, temperature had declined to ∼7 °C, approximately the same as the modern cave temperature. Since then, the study area has experienced only minor temperature fluctuations, but there was a brief fall to ∼4 °C at around 7 Ka ago, which might be caused by a short lived expansion of local alpine glaciers. The long-term T-dependence of δD was 1.47‰/°C, identical to the value in modern precipitation.  相似文献   

8.
We present a late glacial pollen record (17,700 to 8500 cal yr BP) from a Lake Naleng sediment core. Lake Naleng is located on the southeastern Tibetan Plateau (31.10°N 99.75°E, 4200 m) along the upper tree-line. Variations in the summer monsoon are evident from shifts in vegetation that correspond to late glacial climate trends from other monsoon-sensitive regions. Alpine steppe was recorded between 17,700 and 14,800 cal yr BP, indicating low effective moisture at the study site. Expansion of alpine meadows followed by advances in the position of tree-line around Lake Naleng suggest that climate became warmer and wetter between ∼ 14,800 and 12,500 cal yr BP, probably representing an enhancement of the Asian monsoon. Climatic cooling and reduced effective moisture are inferred from multivariate analysis and the upward retreat of tree-line between ∼ 12,500 and 11,700 cal yr BP. The timing and nature of these shifts to warm, wet and then cold, dry climatic conditions suggest that they correspond to the Bølling/Allerød and Younger Dryas intervals. Abies-Betula forests, representing warm and moist conditions, spread during the early Holocene.  相似文献   

9.
At least three sets of moraines mark distinct glacial stands since the last glacial maximum (LGM) in the Three Sisters region of the Oregon Cascade Range. The oldest stand predates 8.1 ka (defined here as post-LGM), followed by a second between ∼ 2 and 8 ka (Neoglacial) and a third from the Little Ice Age (LIA) advance of the last 300 years. The post-LGM equilibrium line altitudes were 260 ± 100 m lower than that of modern glaciers, requiring 23 ± 9% increased winter snowfall and 1.4 ± 0.5°C cooler summer temperatures than at present. The LIA advance had equilibrium line altitudes 110 ± 40 m lower than at present, implying 10 ± 4% greater winter snowfall and 0.6 ± 0.2°C cooler summer temperatures.  相似文献   

10.
Fluctuations of the Charquini glaciers (Cordillera Real, Bolivia) have been reconstructed for the Little Ice Age (LIA) from a set of 10 moraines extending below the present glacier termini. A lichenometric method using the Rhizocarpon geographicum was used to date the moraines and reconstruct the main glacier fluctuations over the period. The maximum glacier extent occurred in the second half of the 17th century, followed by nearly continuous retreat with three interruptions during the 18th and the 19th centuries, marked by stabilisation or minor advances. Results obtained in the Charquini area are first compared with other dating performed in the Peruvian Cordillera Blanca and then with the fluctuations of documented glaciers in the Northern Hemisphere. Glacier fluctuations along the tropical Andes (Bolivia and Peru) were in phase during the LIA and the solar forcing appears to be important during the period of glacier advance. Compared with the Northern Hemisphere mid-latitudes, the major advance observed on these glaciers during the first half of the 19th century is not present in the tropical Andes. This discrepancy may be due to regional scale climate variations. To cite this article: A. Rabatel et al., C. R. Geoscience 337 (2005).  相似文献   

11.
Forty-one metric tons of the mineral wollastonite (CaSiO3) was applied to an 11.8 hectare watershed at the Hubbard Brook Experimental Forest (HBEF; White Mountains, New Hampshire, USA) with the goal of restoring the Ca estimated to have been depleted from the soil exchange complex by acid deposition. This experiment provided an opportunity to gain qualitative information on whole watershed hydrologic flow paths by studying the response of stream water chemistry to the addition of Ca. Because the Ca/Sr and 87Sr/86Sr ratios of wollastonite strongly contrast that of other Ca sources in the watershed, the wollastonite-derived Ca can be identified and its amount estimated in various ecosystem components. Stream water chemistry at the HBEF varies seasonally due to shifts in the proportion of base flow and interflow. Prior to the wollastonite application, seasonal variations in 87Sr/86Sr ratios indicated that 87Sr/86Sr was higher during base flow than interflow, due largely to greater amounts of biotite weathering along deeper flow paths. After the application, Ca/Sr and 87Sr/86Sr changed markedly as the high Ca/Sr and low 87Sr/86Sr wollastonite dissolved and mixed with stream water. The Ca addition provided information on the response times of various flow paths and ion exchange processes to Ca addition in this small upland watershed. During the first year after the addition, wollastonite applied to the near stream zone dissolved and was partially immobilized by cation exchange sites in the hyporheic zone. In the second and third years after the addition we infer that much of this Ca and Sr was subsequently desorbed from the hyporheic zone and was exported from the watershed in stream flow. In the fourth through ninth years after the addition, Ca and Sr from wollastonite that had dissolved in upland soils was transported to the stream by interflow during wet periods when the ground water table was elevated. Between years three and nine the minimum annual Ca/Sr ratio (in late summer base flow) increased, providing evidence that Ca and Sr had increasingly infiltrated to the deepest flow paths. Strong seasonal variations in Ca/Sr and 87Sr/86Sr ratios of stream water resulted from the wollastonite addition to upland forest soils, and these ratios have become sensitive to changing flow paths during the annual cycle. Most notably, high flow events now produce large excursions in stream geochemistry toward the high Ca/Sr and low 87Sr/86Sr ratios of wollastonite. Nine years after the application we estimate that ∼360 kg of Ca from wollastonite has been exported from the watershed in stream flow. The rate of export of Ca from wollastonite dissolution has stabilized at about 11 kg of Ca per year, which accounts for ∼30% of the dissolved Ca in the stream water. Given that 19 metric tons of Ca were applied to the watershed, and assuming this current rate of loss, it should take over 1000 years for this added Ca to be transported from the watershed.  相似文献   

12.
Kaolinite, gibbsite and quartz are the dominant minerals in samples collected from two outcrops of a Cenomanian (∼95 Ma) laterite in southwestern Minnesota. A combination of measured yields and isotope ratios permitted mass balance calculations of the δD and δ18O values of the kaolinite in these samples. These calculations yielded kaolinite δD values of about −73‰ and δ18O values of about +18.7‰. The δD and δ18O values appear to preserve information on the ancient weathering system.If formed in hydrogen and oxygen isotope equilibrium with water characterized by the global meteoric water line (GMWL), the kaolinite δD and δ18O values indicate a crystallization temperature of 22 (±5) °C. A nominal paleotemperature of 22 °C implies a δ18O value for the corresponding water of −6.3‰. The combination of temperature and meteoric water δ18O values is consistent with relatively intense rainfall at that mid-paleolatitude location (∼40°N) on the eastern shore of the North American Western Interior Seaway. The inferred Cenomanian paleosol temperature of ∼22 °C is in general accord with published mid-Cretaceous continental mean annual temperatures (MAT) estimated from leaf margin analyses of fossil plants.When compared with results from a published GCM-based Cenomanian climate simulation which specifies a latitudinal sea surface temperature (SST) gradient that was either near modern or smaller-than-modern, the kaolinite paleotemperature of 22 °C is closer to the GCM-predicted MAT for a smaller equator-to-pole temperature difference in the mid-Cretaceous. Moreover, the warm, kaolinite-derived, mid-paleolatitude temperature of 22 °C is associated with proxy estimates of high concentrations of atmospheric CO2 in the Cenomanian. The overall similarity of proxy and model results suggests that the general features of Cenomanian continental climate in that North American locale are probably being revealed.  相似文献   

13.
The Cordillera Huayhuash in the central Peruvian Andes (10.3°S, 76.9°W) is an ideal mountain range in which to study regional climate through variations in paleoglacier extents. The range trends nearly north-south with modern glaciers confined to peaks >4800 m a.s.l. Geomorphology and geochronology in the nearby Cordillera Blanca and Junin Plain reveal that the Peruvian Andes preserve a detailed record of tropical glaciation. Here, we use ASTER imagery, aerial photographs, and GPS to map and date glacial features in both the western and eastern drainages of the Cordillera Huayhuash. We have used in situ produced cosmogenic 10Be concentrations in quartz bearing erratics on moraine crests and ice-polished bedrock surfaces to develop an exposure age chronology for Pleistocene glaciation within the range. We have also collected sediment cores from moraine-dammed lakes and bogs to provide limiting 14C ages for glacial deposits. In contrast to the ranges to the north and south, most glacial features within the Cordillera Huayhuash are Lateglacial in age, however we have identified features with ages that span 0.2 to 38 ka with moraine sets marking the onset of glacier retreat at 0.3 ka, 9–10 ka, 13–14 ka, 20–22 ka, and >26 ka. The range displays a pronounced east-west variation in maximum down-valley distance from the headwall of moraine crests with considerably longer paleoglaciers in the eastern drainages. Importantly, Lateglacial paleoglaciers reached a terminal elevation of 4000 m a.s.l. on both sides of the Cordillera Huayhuash; suggesting that temperature may have been a dominant factor in controlling the maximum glacier extent. We suggest that valley morphology, specifically valley slope, strongly influences down-valley distance to the maximum glacier extent and potential for moraine preservation. While regionally there is an extensive record of older (>50 ka) advances to the north (Cordillera Blanca) and to the south (Junin region), the apparent lack of old moraines in this locality may be explained by the confined morphology of the Cordillera Huayhuash valleys that has inhibited the preservation of older glacial geomorphic features.  相似文献   

14.
In this article we describe natural hazards associated with outburst floods of Palcacocha Lake and landslide events on the slopes of its moraine dam, in Cojup Valley, Cordillera Blanca (Peru). These events occurred in the last 70 years and some of them resulted in disasters, which strongly affected the city of Huarás. Field investigations and reference expression hydrodynamic tests as well as archive satellite images and aerial pictures were used to describe the evolution of hazards connected with Palcacocha Lake. Expression hydrodynamic tests proved a high permeability of sandy gravels glacial sediments, which form the present-day lake dam. Seepage through the natural dam forming small ponds below the overflow spillways occurs. A retreat of the glacial tongue causing an increase of the lake volume and unloading of the slope toe areas are the most important recent processes that influence the potential hazards affecting the Cojup valley. The research has proved that the climate warming and ongoing deglaciation play a very significant role in the change of natural hazards conditions in high mountains.  相似文献   

15.
Detailed mapping of the interfluve between the lower Tees and Swale valleys has allowed improved understanding of the sequence of Late Quaternary evolution of this watershed area, which encompasses the Devensian glaciation, glacial retreat and reoccupation of the landscape by post-glacial drainage systems. This evidence is described in the context of earlier research, including ideas of inter-relations between the Tees and Swale river systems. Although there is good evidence of meltwater transfer across the interfluve at more than one location there is no clear indication of a fluvial connection. Deglaciation left behind a disrupted and somewhat chaotic surface, with scattered depositional landforms and basins, in some of which have accumulated post-glacial sedimentary sequences from which palaeoecological records can be reconstructed. Since deglaciation the rivers have incised their valleys, typically by ∼30 m, into the glaciated landscape. Progressive stages in this incision are marked by terraces between the former 30 m landscape level and the modern floodplains.  相似文献   

16.
Low temperature vent fluids (<91 °C) issuing from the ultramafic-hosted hydrothermal system at Lost City, 30°N Mid-Atlantic Ridge, are enriched in dissolved volatiles (H2,CH4) while attaining elevated pH values, indicative of the serpentization processes that govern water/rock interactions deep in the oceanic crust. Here, we present a series of theoretical models to evaluate the extent of hydrothermal alteration and assess the effect of cooling on the systematics of pH-controlled B aqueous species. Peridotite-seawater equilibria calculations indicate that the mineral assemblage composed of diopside, brucite and chrysotile likely dictates fluid pH at moderate temperature serpentinization processes (<300 °C), by imposing constraints on the aCa++/a2H+ ratios and the activity of dissolved SiO2. Based on Sr abundances and the 87Sr/86Sr isotope ratios of vent fluids reported from Lost City, estimated water/rock mass ratios (w/r = 2-4) are consistent with published models involving dissolved CO2 and alkane concentrations. Combining the reported δ18O values of vent fluids (0.7‰) with such w/r mass ratios, allows us to bracket subseafloor reaction temperatures in the vicinity of 250 °C. These estimates are in agreement with previous theoretical studies supporting extensive conductive heat loss within the upflow zones. Experimental studies on peridotite-seawater alteration suggest that fluid pH increases during cooling which then rapidly enhances boron removal from solution and incorporation into secondary phases, providing an explanation for the highly depleted dissolved boron concentrations measured in the low temperature but alkaline Lost City vent fluids. Finally, to account for the depleted 11B composition (δ11B ∼25-30‰) of vent fluids relative to seawater, isotopic fractionation between tetrahedrally coordinated aqueous boron species with BO3-bearing mineral sites (e.g. in calcite, brucite) is proposed.  相似文献   

17.
Geotechnical characterisation is undertaken for 3 broad units comprising the bulk of the stratigraphy identified on White Island Volcano, Bay of Plenty, New Zealand, an active island stratovolcano. Field and laboratory measurements were used to describe rock mass characteristics for jointed lava flow units, and ring shear tests were undertaken to derive residual strength parameters for joint infilling materials within the lavas. Rock Mass Rating (RMR) and Geological Strength Index (GSI) values were calculated and converted to Mohr-Coulomb strength parameters using the Hoek-Brown criterion. Backanalysis of known landslide scarps was used to derive strength parameters for brecciated rock masses and hydrothermally altered rock masses. Andesite lava flows have high intact strength (σci = 184 ± 50 MN m− 2; γ = 24.7 ± 0.3 kN m− 3) and typically 3 wide, infilled joint sets, one parallel to flow direction and two steeply inclined, with spacings of 0.3-1.7 m. Joints are rough, with estimated friction angles for clean joints of ?j = 42-47°. Joint infill materials are clayey silts derived from weathering of wall rocks and primary volcanic sources; they have low plastic (54%) and liquid (84%) limits and residual strength values of cr = 0 kN m− 2 and ?r = 23.9 ± 3.1°. RMR values range from 70 to 73, giving calculated strength parameters of c′ = 1161-3391 kN m− 2 and ?′ = 50.5-62.3°. Backanalysis suggests brecciated rock masses have c′ = 0 kN m− 2 and ?′ = 35.4°, whereas GSI observations in the field suggest higher cohesion (c′ = 306-719 kN m− 2) and a range of friction angles bracketing the backanalysed result (?′ = 30.6-41.7°). Hydrothermally altered rock masses have c′ = 369 kN m− 2 and ?′ = 14.9°, indicating considerable loss of strength, especially frictional resistance, compared with the fresh lava units. Values measured at outcrop scale in this study are in keeping with other published values for similar volcanic edifices; backanalysed data suggest weaker rock mass properties than those determined at outcrop. This is interpreted as a scale issue, whereby rock mass characteristics of a large rock mass (crater wall scale) are weaker than those of small outcrops, due in part to the overestimation of friction angle from measurements on small exposures.  相似文献   

18.
We investigated chemical weathering in a high elevation granitic environment in three selected watersheds located in the Pyrenees (France). The sites were located on glacial deposits derived from similar Hercynian (∼300 Ma) granites characterized by the occurrence of zoned plagioclases and trace calcic phases (epidote, prehnite, sphene, apatite). The surface waters at those sites show high Ca/Na molar ratios (>1) which could not be explained by the dissolution of the major plagioclase (oligoclase) present in the rocks. The coupled approach of investigating stream water chemistry and the mineralogy and chemistry of rocks and soils allowed us to explore the role of the weathering of trace calcic minerals in calcium export at the watershed scale. The weathering of the trace calcic minerals which represent ∼ 1% of the total rock volume are responsible for more than 90% of the calcium export at the sites. Annual cationic fluxes (∼ 23.104 eq/km2/yr) calculated for the Estibère watershed are among the highest reported for high elevation systems draining granitic rocks and ∼ 80% of this annual cationic flux can be attributed to the weathering of trace calcic phases. Calculations based on isotopic values (87Sr/86Sr) go in the same direction. Except apatite, the trace calcic phases appear to be mainly silicates, thus the type of chemical weathering observed in the Estibère watershed may have an influence on atmospheric CO2 consumption by granite weathering. However, comparison with other watersheds draining granitic environments worldwide, and with the two other sites in the Pyrenees, indicate that the role of trace calcic phases is important in most young environments exposed to chemical weathering (e.g., high elevation catchments on glacial deposits). Other factors such as the date of glacial retreat, the physical denudation rate, the hydrological functioning of the watershed and the nature and structure of the soil cover are also important.  相似文献   

19.
Radiocarbon dated lacustrine sequences in Perú show that the chronology of glaciation during the late glacial in the tropical Andes was significantly out-of-phase with the record of climate change in the North Atlantic region. Fluvial incision of glacial-lake deposits in the Cordillera Blanca, central Perú, has exposed a glacial outwash gravel; radiocarbon dates from peat stratigraphically bounding the gravel imply that a glacier advance culminated between 11,280 and 10,990 14C yr B.P.; rapid ice recession followed. Similarly, in southern Perú, ice readvanced between 11,500 and 10,900 14C yr B.P. as shown by a basal radiocarbon date of 10,870 14C yr B.P. from a lake within 1 km of the Quelccaya Ice Cap. By 10,900 14C yr B.P. the ice front had retreated to nearly within its modern limits. Thus, glaciers in central and southern Perú advanced and retreated in near lockstep with one another. The Younger Dryas in the Peruvian Andes was apparently marked by retreating ice fronts in spite of the cool conditions that are inferred from the ∂18O record of Sajama ice. This retreat was apparently driven by reduced precipitation, which is consistent with interpretations of other paleoclimatic indicators from the region and which may have been a nonlinear response to steadily decreasing summer insolation.  相似文献   

20.
The presence of glacial sediments across the Rauer Group indicates that the East Antarctic ice sheet formerly covered the entire archipelago and has since retreated at least 15 km from its maximum extent. The degree of weathering of these glacial sediments suggests that ice retreat from this maximum position occurred sometime during the latter half of the last glacial cycle. Following this phase of retreat, the ice sheet margin has not expanded more than ∼ 1 km seaward of its present position. This pattern of ice sheet change matches that recorded in Vestfold Hills, providing further evidence that the diminutive Marine Isotope Stage 2 ice sheet advance in the nearby Larsemann Hills may have been influenced by local factors rather than a regional ice-sheet response to climate and sea-level change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号