首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 145 毫秒
1.
The occurrence of mining areas in the vicinities of salt marshes may affect their ecological functions and facilitate the transfer of pollutants into the food chain. The mobilisation of metals in salt marsh soils is controlled by abiotic (pH, redox potential) and biotic (influence of rhizosphere) factors. The effect of the rhizosphere of two plant species (Sarcocornia fruticosa and Phragmites australis) and different flooding regimes on potentially harmful metals and As mobilisation from salt marsh soil polluted by mining activities were investigated (total concentrations: 536 mg kg−1 As, 37 mg kg−1 Cd, 6746 mg kg−1 Pb, 15,320 mg kg−1 Zn). The results show that the changes in redox conditions (from 300 mV to −100 mV) and pH after flooding and rewetting periods may mobilise the contaminant elements into soil solution (e.g., 100 μg L−1 Cd, 30 μg L−1 Pb, 7 mg L−1 Zn), where they are available for plants or may be leached from the soil. Drying periods generated peaks of concentrations in the soil solution (up to 120 μg L−1 Cd and 50 μg L−1 Pb). The risk assessment of As and metal-polluted salt marshes should take into account flood dynamics in order to prevent metal(loid) mobilisation.  相似文献   

2.
Fifty soil samples collected from agricultural land in four regions of Poland with different anthropopressure were analysed for their content of 16PAHs by GC/MS. The regions correspond to Polish administrative units (voievodeships): Podlaskie and Lubelskie are situated in the rural East part of the country and more industrialised Slaskie and Dolnoslaskie voievodeships – in the South-West part. Basic physicochemical properties as well as the content of selected potentially harmful metals (Pb and Zn) were included in the soil analysis. Overall accumulation of Σ16PAHs in the upper soil layer was within the range 73–1800 μg kg−1 with a geometric mean (GM) of 252 μg kg−1, while the mean benzo(a)pyrene (BaP) load was 20 μg kg−1. This corresponds with data for other European countries. Carcinogenic compounds contributed nearly in 50% to the total PAHs loads. In uncontaminated rural regions the mean Σ16PAHs and BaP contents were 113–159 μg kg−1 and 11–13 μg kg−1, respectively. Regional conditions strongly influenced the accumulation of PAHs ?4-rings, which were highly dependent (over 95%) on local anthropopressure expressed as dust and 4PAHs emission indexes. Soil acidity was the main soil parameter related to the accumulation of higher molecular weight PAHs in soils. In more contaminated regions a significant link between soil OM and PAH loads was noted. The same regions were characterised by associations between PAHs and potentially harmful metals implying common sources of pollution. Those relationships were not observed in the uncontaminated part of the country. The lower molecular weight PAHs contributed to a smaller extent (about 20%) to the total PAHs content in soils, and were less affected by anthropogenic factors.  相似文献   

3.
Sixty five urban road dust samples were collected from different land use areas of ∼240 km2 in Xi’an, China. The concentrations of Ag, As, Cr, Cu, Hg, Pb, Sb and Zn were determined to investigate potentially harmful element (PHE) contamination, distribution and possible sources. In addition, the concentrations in different size fractions were measured to assess their potential impact on human health. The highest concentrations were found in the fraction with particle diameters between 80 μm and 101 μm, the finest particles (<63 μm) were not the most important carriers for Ag, As, Cd, Cr, Cu, Hg, Pb and Zn. The percentages of these elements in particles with diameters less than 63 μm (PM63) and less than 101 μm (PM101) were in the range of 7–15%, and 30–55%, respectively. Three main factors influencing element distributions have been identified: (a) industrial activities; (b) prior agricultural land use; and (c) other activities commonly found in urban areas, such as traffic, coal combustion, waste dumping, and building construction/renovation. The highest concentrations were found in industrial areas for As (20 mg kg−1), Cr (853 mg kg−1), Cu (1071 mg kg−1), Pb (3060 mg kg−1) and Zn (2112 mg kg−1), and in previous agricultural areas for Ag and Hg, indicating significant contributions from industrial activities and prior agricultural activities.  相似文献   

4.
The Xunyang Hg mine (XMM) situated in Shaanxi Province is an active Hg mine in China. Gaseous elemental Hg (GEM) concentrations in ambient air were determined to evaluate its distribution pattern as a consequence of the active mining and retorting in the region. Total Hg (HgT) and methylmercury (MeHg) concentrations in riparian soil, sediment and rice grain samples (polished) as well as Hg speciation in surface water samples were measured to show local dispersion of Hg contamination. As expected, elevated concentrations of GEM were found, ranging from 7.4 to 410 ng m−3. High concentrations of HgT and MeHg were also obtained in riparian soils, ranged from 5.4 to 120 mg kg−1 and 1.2 to 11 μg kg−1, respectively. Concentrations of HgT and MeHg in sediment samples varied widely from 0.048 to 1600 mg kg−1 and 1.0 to 39 μg kg−1, respectively. Surface water samples showed elevated HgT concentrations, ranging from 6.2 to 23,500 ng L−1, but low MeHg concentrations, ranging from 0.022 to 3.7 ng L−1. Rice samples exhibited high concentrations of 50–200 μg kg−1 in HgT and of 8.2–80 μg kg−1 in MeHg. The spatial distribution patterns of Hg speciation in the local environmental compartments suggest that the XMM is the source of Hg contaminations in the study area.  相似文献   

5.
Chemometric modelling of soil element concentrations from diffuse visible and near-infrared (VSWIR, 350–2500 nm) reflectance spectroscopic measurements holds potential for soil element analyses. Research has demonstrated it particularly for organic agricultural soils, yet little is known about the VSWIR response of glacial tills. Soils with low organic matter content developed on unstratified glacial materials were studied at two geologically similar sites on the mafic metavolcanic rocks of the Lapland Greenstone belt in northern Finland. The till samples (n = 217) were composed primarily of quartz, plagioclase and amphibole having less than 3% of clinochlore, talc and illite. VSWIR spectra of mineral powder (<0.06 mm) samples were measured in the laboratory, and the spectral reflectance was regressed against partial elemental concentrations of till obtained by inductively coupled plasma atomic emission spectrometry (ICP-AES) following hot aqua regia digestion. Partial least-squares regression (PLSR) analyses resulted in simultaneous prediction (R2 = 0.80–0.89) of several soil chemical elements such as Al (validation RMSE 1802 mg kg−1), Ba (5.85 mg kg−1), Co (0.86 mg kg−1), Cr (6.94 mg kg−1), Cu (2.54 mg kg−1), Fe (2088 mg kg−1), Mg (449.6 mg kg−1), Mn (0.82 mg kg−1), Ni (3.24 mg kg−1), V (4.88 mg kg−1), and Zn (0.80 mg kg−1). The electronic and vibrational molecular processes causing absorption might be responsible for accurate predictions of major elements such as Al, Fe and Mg. However, the concentrations of other major and trace elements could be predicted by the PLSR because they were cross-correlated to spectrally active soil elements or extraneous soil properties. Therefore, the applicability of the results is highly sample set specific. Further, the results show that in local scale studies at geologically fairly homogenous areas the limited spread of the data may restrict the use of the spectroscopic–chemometric approach. This paper demonstrates the capability of laboratory VSWIR spectroscopy for determining element concentrations of glacial tills. Further work should focus on overcoming the issues of sampling scale and understanding the causality for cross-correlation in quantification of the elements.  相似文献   

6.
The magnitude and sources of lead (Pb) pollution in the Gulf of California Ecoregion (GCE) in northwest Mexico were evaluated using various samples collected from urban and rural areas around two typical subtropical coastal ecosystems. Lead concentrations and isotopic compositions (206Pb/207Pb, 208Pb/207Pb, 206Pb/204Pb and 208Pb/204Pb) were measured using high resolution inductively-coupled plasma mass spectrometry (HR-ICP-MS) and thermal ionization mass spectrometry (TIMS). Urban street dust (157 ± 10.1 μg g− 1) was heavily enriched with Pb, compared to the Pb enrichment of agricultural soils (29.0 ± 16.0 μg g− 1) and surface estuary sediments (35.6 ± 15.4 μg g− 1), all of which contained higher Pb concentrations than found in the natural bedrock (16.0 ± 5.0 μg g− 1). Pb concentrations in SPM (> 95% of total Pb) were significantly higher in sewage effluent (132 ± 49.9 μg g− 1) than in agricultural effluents (29.3 ± 5.9 μg g− 1), and river runoff (7.3 ± 4.2 μg g− 1). SPM in estuary water column averaged 68.3 ± 48.0 μg g−1. The isotopic composition of Pb (206Pb/207Pb, 208Pb/207Pb) in rural samples of aerosols (1.181 ± 0.001, 2.444 ± 0.003) and soil runoff (1.181 ± 0.003, 2.441 ± 0.004) was comparable to that of natural Pb-bearing bedrock (1.188 ± 0.005, 2.455 ± 0.008); while urban samples of aerosols, street dust, and sewage (1.190–1.207, 2.452–2.467) showed a significant contribution from automotive emissions from past leaded gasoline combustion (1.201 ± 0.006, 2.475 ± 0.005). The absence of lead from fertilizer (1.387 ± 0.008, 2.892 ± 0.005) suggests that this mixture is not representative of the GCE. A mixing model revealed that the Pb content in the environmental samples is predominantly derived from natural weathering and the past leaded gasoline combustion with the later influence of inputs from a more radiogenic source related with anthropogenic lead of North American origin (1.21 ± 0.02; 2.455 ± 0.02).  相似文献   

7.
Industrialization, urbanization, and agricultural practices are 3 of the most important sources of metal accumulations in soils. Concentrations of Cr, Mn, Ni, Cu, Pb, Zn and Cd were determined in surface soils collected under different land uses, including urban (UR), industrial (IN-1 and IN-2), agricultural (AG), abandoned unused (AB), and natural (NA) sites to examine the influence of anthropogenic activities on metals in soils formed in a typical Mediterranean environment. The highest concentrations of Cr, Cd, and Pb observed in the NW industrial area (IN-2) were 63.7, 3.34 and 2330 mg metal kg−1 soil, for each metal, respectively. The SW industrial area (IN-1) contained the highest Zn content at 135 mg kg−1. However, soils with the highest concentrations of Ni and Cu were located in AG sites at 30.9 and 64.9 mg kg−1 soil, respectively. Sampling locations with the highest concentrations of Mn were identified in AB sites. Using the concentrations of metals at the NA sites as the baseline levels, soils collected from all other land uses in the study area exhibited significantly higher total contents of Zn, Mn, Cr and Ni. Metal enrichment was attributed to fertilizer and pesticide applications, industrial activities, and metal deposition from a high volume of vehicular traffic (for Pb and Cd). High concentrations of Mn in some samples were attributed to parent materials. The study demonstrated that anthropogenic activities associated with various land uses contribute to metal accumulation in soils and indicated a need to closely monitor land management practices to reduce human and ecological risks from environmental pollution.  相似文献   

8.
The presence of PAHs, n-alkanes, pristane, and phytanes in core sediment from the Vossoroca reservoir (Parana, southern Brazil) was investigated. The total concentration of the 16 PAHs varied from 15.5 to 1646 μg kg−1. Naphthalene was present in all layers (3.34–74.0 μg kg−1). The most abundant and dominant n-alkanes were n-C15 and n-C36, with average concentrations of 198.1 ± 46.8 and 522.9 ± 167.7 μg kg−1, respectively. Lighter n-alkanes were distributed more evenly through the layers and showed less variation, specially n-C9, n-C12, and n-C18, with average concentrations of 14.6 ± 3.0, 31.6 ± 1.9, and 95.0 ± 5.2 μg kg−1, respectively; heavier n-alkanes were more unevenly distributed.  相似文献   

9.
Sediments from the Aquia aquifer in coastal Maryland were collected as part of a larger study of As in the Aquia groundwater flow system where As concentration are reported to reach levels as high as 1072 nmol kg−1, (i.e., ∼80 μg/L). To test whether As release is microbially mediated by reductive dissolution of Fe(III) oxides/oxyhydroxides within the aquifer sediments, the Aquia aquifer sediment samples were employed in a series of microcosm experiments. The microcosm experiments consisted of sterilized serum bottles prepared with aquifer sediments and sterilized (i.e., autoclaved), artificial groundwater using four experimental conditions and one control condition. The four experimental conditions included the following scenarios: (1) aerobic; (2) anaerobic; (3) anaerobic + acetate; and (4) anaerobic + acetate + AQDS (anthraquinone-2,6-disulfonic acid). AQDS acts as an electron shuttle. The control condition contained sterilized aquifer sediments kept under anaerobic conditions with an addition of AQDS. Over the course of the 27 day microcosm experiments, dissolved As in the unamended (aerobic and anaerobic) microcosms remained constant at around ∼28 nmol kg−1 (2 μg/L). With the addition of acetate, the amount of As released to the solution approximately doubled reaching ∼51 nmol kg−1 (3.8 μg/L). For microcosm experiments amended with acetate and AQDS, the dissolved As concentrations exceeded 75 nmol kg−1 (5.6 μg/L). The As concentrations in the acetate and acetate + AQDS amended microcosms are of similar orders of magnitude to As concentrations in groundwaters from the aquifer sediment sampling site (127-170 nmol kg−1). Arsenic concentrations in the sterilized control experiments were generally less than 15 nmol kg−1 (1.1 μg/L), which is interpreted to be the amount of As released from Aquia aquifer sediments owing to abiotic, surface exchange processes. Iron concentrations released to solution in each of the microcosm experiments were higher and more variable than the As concentrations, but generally exhibited similar trends to the As concentrations. Specifically, the acetate and acetate + AQDS amended microcosm typically exhibited the highest Fe concentrations (up to 1725 and 6566 nmol kg−1, respectively). The increase in both As and Fe in the artificial groundwater solutions in these amended microcosm experiments strongly suggests that microbes within the Aquia aquifer sediments mobilize As from the sediment substrate to the groundwaters via Fe(III) reduction.  相似文献   

10.
Zinc smelting and chlor-alkali production are major sources of Hg contamination to the environment, potentially leading to serious impacts on the health of the local population. Huludao, NE China has been heavily contaminated by Hg due to long-term Zn smelting and chlor-alkali production. The aim of this work was to determine Hg accumulation in the aquatic and terrestrial environment, as well as in the human population of Huludao. The investigation included: (a) Hg accumulation in sediments, Spirogyra algae, crucian carp and shrimp, (b) Hg distribution in soil, vegetables and corn, and (c) assessment of potential health effects of Hg exposure associated with total Hg (T-Hg) concentrations in human hair. Measured T-Hg concentrations in sediments of Wuli River ranged from 0.15 to 15.4 mg kg−1, with the maximum Hg concentration in sediment exceeding the background levels in Liaoning Province by 438 times. The maximum T-Hg levels in Spirogyra, crucian carp and shrimp were 13.6, 0.36, and 0.44 mg kg−1, respectively. Total-Hg concentrations in hair of the human population varied from 0.05 to 3.25 mg kg−1 (average 0.43 mg kg−1). However, the frequency of paraesthesia to most inhabitants in Huludao was estimated to be lower than 5%, with only one person rated at 50%. The results indicated minimal adverse health effects of Hg exposure to the inhabitants of Huludao, despite the serious Hg contamination of the environment.  相似文献   

11.
Cadmium (Cd) is a toxic trace element and due to human activities soils and waters are contaminated by Cd both on a local and global scale. It is widely accepted that chemical interactions with functional groups of natural organic matter (NOM) is vital for the bioavailability and mobility of trace elements. In this study the binding strength of cadmium (Cd) to soil organic matter (SOM) was determined in an organic (49% organic C) soil as a function of reaction time, pH and Cd concentration. In experiments conducted at native Cd concentrations in soil (0.23 μg g−1 dry soil), halides (Cl, Br) were used as competing ligands to functional groups in SOM. The concentration of Cd in the aqueous phase was determined by isotope-dilution (ID) inductively-coupled-plasma-mass-spectrometry (ICP-MS), and the activity of Cd2+ was calculated from the well-established Cd-halide constants. At higher Cd loading (500-54,000 μg g−1), the Cd2+ activity was directly determined by an ion-selective electrode (ISE). On the basis of results from extended X-ray absorption fine structure (EXAFS) spectroscopy, a model with one thiolate group (RS) was used to describe the complexation (Cd2+ + RS ? CdSR+; log KCdSR) at native Cd concentrations. The concentration of thiols (RSH; 0.047 mol kg−1 C) was independently determined by X-ray absorption near-edge structure (XANES) spectroscopy. Log KCdSR values of 11.2-11.6 (pKa for RSH = 9.96), determined in the pH range 3.1-4.6, compare favorably with stability constants for the association between Cd and well-defined thiolates like glutathione. In the concentration range 500-54,000 μg Cd g−1, a model consisting of one thiolate and one carboxylate (RCOO) gave the best fit to data, indicating an increasing role for RCOOH groups as RSH groups become saturated. The determined log KCdOOCR of 3.2 (Cd2+ +  RCOO ? CdOOCR+; log KCdOOCR; pKa for RCOOH = 4.5) is in accordance with stability constants determined for the association between Cd and well-defined carboxylates. Given a concentration of reduced sulfur groups of 0.2% or higher in NOM, we conclude that the complexation to organic RSH groups may control the speciation of Cd in soils, and most likely also in surface waters, with a total concentration less than 5 mg Cd g−1 organic C.  相似文献   

12.
At a watershed scale, sediments and soil weathering exerts a control on solid and dissolved transport of trace elements in surface waters and it can be considered as a source of pollution. The studied subwatershed (1.5 km2) was located on an As-geochemical anomaly. The studied soil profile showed a significant decrease of As content from 1500 mg kg−1 in the 135–165 cm deepest soil layer to 385 mg kg−1 in the upper 0–5 cm soil layer. Directly in the stream, suspended matter and the <63 μm fraction of bed sediments had As concentrations greater than 400 mg kg−1. In all these solid fractions, the main representative As-bearing phases were determined at two different observation scales: bulk analyses using X-ray absorption structure spectroscopy (XAS) and microanalyses using scanning electron microscope (SEM) and associated electron probe microanalyses (EPMA), as well as micro-Raman spectroscopy and synchrotron-based micro-scanning X-ray diffraction (μSXRD) characterization. Three main As-bearing phases were identified: (i) arsenates (mostly pharmacosiderite), the most concentrated phases As in both the coherent weathered bedrock and the 135–165 cm soil layer but not observed in the river solid fraction, (ii) Fe-oxyhydroxides with in situ As content up to 15.4 wt.% in the deepest soil layer, and (iii) aluminosilicates, the least concentrated As carriers. The mineralogical evolution of As-bearing phases in the soil profile, coupled with the decrease of bulk As content, may be related to pedogenesis processes, suggesting an evolution of arsenates into As-rich Fe-oxyhydroxides. Therefore, weathering and mineralogical evolution of these As-rich phases may release As to surface waters.  相似文献   

13.
Willow Slough, a seasonally irrigated agricultural watershed in the Sacramento River valley, California, was sampled weekly in 2006 in order to investigate seasonal concentrations and compositions of dissolved organic carbon (DOC). Average DOC concentrations nearly doubled from winter baseflow (2.75 mg L−1) to summer irrigation (5.14 mg L−1), while a concomitant increase in carbon-normalized vanillyl phenols (0.11 mg 100 mg OC−1 increasing to 0.31 mg 100 mg OC−1, on average) indicates that this additional carbon is likely vascular plant-derived. A strong linear relationship between lignin concentration and total suspended sediments (r2 = 0.79) demonstrates that agricultural management practices that mobilize sediments will likely have a direct and significant impact on DOC composition. The original source of vascular plant-derived DOC to Willow Slough appears to be the same throughout the year as evidenced by similar syringyl to vanillyl and cinnamyl to vanillyl ratios. However, differing diagenetic pathways during winter baseflow as compared to the rest of the year are evident in acid to aldehyde ratios of both vanillyl and syringyl phenols. The chromophoric dissolved organic matter (CDOM) absorption coefficient at 350 nm showed a strong correlation with lignin concentration (r2 = 0.83). Other CDOM measurements related to aromaticity and molecular weight also showed correlations with carbon-normalized yields (e.g. specific UV absorbance at 254 nm (r2 = 0.57) and spectral slope (r2 = 0.54)). Our overall findings suggest that irrigated agricultural watersheds like Willow Slough can potentially have a significant impact on mainstem DOC concentration and composition when scaled to the entire watershed of the main tributary.  相似文献   

14.
Mercury contamination of the environment is of worldwide concern because of its global presence and its potent neurotoxicity. Mining, smelting and the electronics industry are the main sources of Hg pollution. However, few studies have been performed to investigate systemic Hg contamination in metal mining regions. In this study, concentrations of Hg in air, farmland soil, and crops were measured in a Pb-Zn mining area in the karst region of Guangxi, China. Key factors that could affect Hg distribution, such as the fate of waste ore and waste residue, were analyzed. Geo-statistical methods were adopted to analyze the characteristics of spatial structure and distribution of Hg. The results show that Hg contamination in this region is serious. The total mercury (T-Hg) content is far higher than the Level II Limit Value of Chinese Soil Standards of 0.30 mg kg−1, showing obvious directional characteristics from WNW to ESE. Highest Hg concentrations were found in the WNW portion of the study area. The contamination of paddy soil is higher than that in dry farmland soil. The vertical distribution of T-Hg and its decrease with depth suggest that the important sources are waste water irrigation and the improper disposal of the waste ore and waste rock. The T-Hg concentrations in the agricultural products examined exceed the Chinese tolerance value (0.02 mg kg−1 for rice and 0.01 mg kg−1 for vegetables), indicating the seriousness of the problem. The ecological environment and the safety of food grown in this mining area are being affected, with the result that human health is possibly being affected.  相似文献   

15.
The Pb sorption capacity of apatite ore mine tailings and its potential to act as a remediation agent in a Pb polluted areas were investigated. The tailings, originating from the Siilinjärvi carbonatite complex in Finland, consist mainly of phlogopite and calcite accompanied by apatite residues. The ability of the tailings to retain Pb from an aqueous solution was investigated using an isotherm technique. Furthermore, in a 3-month incubation experiment, uncontaminated mineral soil was amended with untreated tailings and with tailings artificially weathered with acid to increase the quantity of Al and Fe (hydr)oxides. Tailings of two particle-sizes (∅ > 0.2 mm and ∅ < 0.2 mm) somewhat differing in their mineralogical composition were investigated as separate amendments. All tailings materials were added to the soil in two dosages (5 g and 10 g of tailings per 125 g of soil). Following incubation, tailings-induced changes in the Pb sorption capacity of the soil were investigated with the isotherm technique. Finally, to investigate the distribution of sorbed Pb among various chemical pools, the soil samples amended with tailings were contaminated with Pb and then subjected to sequential fractionation analysis. The results revealed efficient removal of Pb from an aqueous solution by the tailings, presumably through precipitation and surface complexation mechanisms. Amending the soil with the tailings increased the mass-based maximum Pb sorption capacity from 10.8 mg kg−1 of the control soil to 14–20.5 mg kg−1 for the untreated tailings and to 32.1–72.1 mg kg−1 for the acid-treated material. The tailings transferred Pb from the exchangeable pool to the non-extracted one and thereby substantially decreased its bioavailability. The material with a particle diameter of less than 0.2 mm had a higher mass-based Pb sorption capacity than the large-sized material. The results suggest that the tailings may potentially serve as an immobilizing agent in polluted areas.  相似文献   

16.
The shallow aquifer beneath the Western Snake River Plain (Idaho, USA) exhibits widespread elevated arsenic concentrations (up to 120 μg L−1). While semi-arid, crop irrigation has increased annual recharge to the aquifer from approximately 1 cm prior to a current rate of >50 cm year−1. The highest aqueous arsenic concentrations are found in proximity to the water table (all values >50 μg L−1 within 50 m) and concentrations decline with depth. Despite strong vertical redox stratification within the aquifer, spatial distribution of aqueous species indicates that redox processes are not primary drivers of arsenic mobilization. Arsenic release and transport occur under oxidizing conditions; groundwater wells containing dissolved arsenic at >50 μg L−1 exhibit elevated concentrations of O2 (average 4 mg L−1) and NO3 (average 8 mg L−1) and low concentrations of dissolved Fe (<20 μg L−1). Sequential extractions and spectroscopic analysis of surficial soils and sediments indicate solid phase arsenic is primarily arsenate and is present at elevated concentrations (4–45 mg kg−1, average: 17 mg kg−1) relative to global sedimentary abundances. The highest concentrations of easily mobilized arsenic (up to 7 mg kg−1) are associated with surficial soils and sediments visibly stained with iron oxides. Batch leaching experiments on these materials using irrigation waters produce pore water arsenic concentrations approximating those observed in the shallow aquifer (up to 152 μg L−1). While As:Cl aqueous phase relationships suggest minor evaporative enrichment, this appears to be a relic of the pre-irrigation environment. Collectively, these data indicate that infiltrating irrigation waters leach arsenic from surficial sediments to the underlying aquifer.  相似文献   

17.
The influence of soil organisms on metal mobility and bioavailability in soils is not currently fully understood. We conducted experiments to determine whether calcium carbonate granules secreted by the earthworm Lumbricus terrestris could incorporate and immobilise lead in lead- and calcium-amended artificial soils. Soil lead concentrations were up to 2000 mg kg−1 and lead:calcium ratios by mass were 0.5-8. Average granule production rates of 0.39 ± 0.04 mgcalcite earthworm−1 day−1 did not vary with soil lead concentration. The lead:calcium ratio in granules increased significantly with that of the soil (r2 = 0.81, p = 0.015) with lead concentrations in granules reaching 1577 mg kg−1. X-ray diffraction detected calcite and aragonite in the granules with indications that lead was incorporated into the calcite at the surface of the granules. In addition to the presence of calcite and aragonite X-ray absorption spectroscopy indicated that lead was present in the granules mainly as complexes sorbed to the surface but with traces of lead-bearing calcite and cerussite. The impact that lead-incorporation into earthworm calcite granules has on lead mobility at lead-contaminated sites will depend on the fraction of total soil lead that would be otherwise mobile.  相似文献   

18.
19.
The contents of different organic matter components and dissolved organic matter (DOM) release kinetics of the sediments from the middle and lower reaches of the Yangtze River region were investigated, and their relationships discussed. The results show that organic C (OC) ranged from 8.14 to 43.65 g kg−1, dissolved organic C (DOC) from 0.38 to 1.38 g kg−1, active organic C (AOC) from 1.12 to 4.45 g kg−1, heavy fraction organic C (HFOC) from 6.86 to 39.08 g kg−1, accounting for 2.42-9.34%, 8.66-29.72% and 84.29-93.18% of OC, respectively. With increasing of OC content the ratios of DOC to OC and AOC to OC decreased. The contents of AOC, DOC, light fraction organic C (LFOC) and their contribution ratios to OC in studied sediments were higher than those reported in soils. The DOM release process of the studied sediments includes rapid and slow stages, and the rapid release occurred within 30 min, mainly in 5 min. The DOM release kinetic data in this investigation can be best fitted by the Power Function model. The correlations between total N (TN), total P (TP), OC, DOC, AOC, LFOC, HFOC and the DOM release kinetic parameters (k, c, a, b, rate30) of the sediments were significant. There were also significant correlations between TN, TP, OC, DOC, LFOC and HFOC in sediments. So the DOM release from sediment was not only related to the OC content, but also related to the organic matter composition characteristics, especially the contents of DOC, AOC and LFOC.  相似文献   

20.
Specific surface area (SSA) of headwater stream bed sediments is a fundamental property which determines the nature of sediment surface reactions and influences ecosystem-level, biological processes. Measurements of SSA – commonly undertaken by BET nitrogen adsorption – are relatively costly in terms of instrumentation and operator time. A novel approach is presented for estimating fine (<150 μm) stream bed sediment SSA from their geochemistry – after removal of organic matter – for agricultural headwater catchments across 15,400 km2 of central England, UK. From a regional set of 1972 stream bed sediment sites with common characteristics for which geochemical data were available, 60 samples were selected – based on maximising their variation in Al concentrations – and their BET SSA measured by N2 adsorption. After careful selection of potential regression predictors following a principal component analysis and removal of a subset of samples with the largest Mo concentrations (>2.5 mg kg−1), four elements were identified as significant predictors of SSA (ordered by decreasing predictive power): V > Ca > Al > Rb. The optimum model from these four elements accounted for 73% of the variation in bed sediment SSA (range 6–46 m2 g−1) with a root mean squared error of prediction – based on leave-one-out cross-validation – of 6.3 m2 g−1. It is believed that V is the most significant predictor because its concentration is strongly correlated both with the quantity of Fe-oxides and clay minerals in the stream bed sediments, which dominate sediment SSA. Sample heterogeneity in SSA – based on triplicate measurements of sub-samples – was a substantial source of variation (standard error = 2.2 m2 g−1) which cannot be accounted for in the regression model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号