首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Coompana Block is an essentially unknown basement province that separates the Gawler Craton of South Australia from the Yilgarn Craton of Western Australia. Previously unstudied granitic gneiss intersected by deep drilling in the Coompana Block represents an important period of within-plate magmatism during a time of relative magmatic quiescence in the Australian Proterozoic. Granitic gneiss intersected at ~1500 m depth in Mallabie 1 diamond drillhole is metaluminous and dominantly granodioritic in composition. The granodiorites have distinctive A-type chemistry characterised by high contents of Zr, Nb, Y, Ga, LREE with low Mg#, Sr, CaO and HREE. U – Pb LA-ICPMS dating of magmatic zircons provides an age of 1505 ± 7 Ma, interpreted as the crystallisation age of the granite protolith. ? Nd values are high with respect to exposed crust of the Musgrave Province and Gawler Craton, and range from +1.2 to +3.3 at 1.5 Ga. The granitic gneiss is interpreted to be a fractionated melt of a mantle-derived parental melt. The tectonic environment into which the precursor granite was emplaced is not clear. One possibility is emplacement within an extensional environment. Regardless, the granitic gneiss intersected in Mallabie 1 represents magmatic activity during the ‘Australian Mesoproterozoic magmatic gap’ of ca 1.50 – 1.35 Ga, and is a possible source for ca 1.50 detrital zircons found in sedimentary rocks of Tasmania and Antarctica, and metasedimentary rocks of the eastern Musgrave Province.  相似文献   

2.
The Terre Adélie Craton displays superimposed strain fields related to the Neoarchean (2.6–2.4 Ga, M1) and Paleo-Mesoproterozoic (1.7–1.5 Ga, M2) metamorphic events. M1 is a regional granulite facies event, constrained by P-T modelling at ~0.8–1.0 GPa – 800–850 °C, followed by a decompressional retrogression in the upper amphibolite facies at ~0.6 GPa – 750 °C. M2 Stage 1 P-T peak is constrained at 0.6–0.7 GPa – 670–700 °C, followed by a steep P-T path down to 0.3 GPa – 550 °C. Retrogression after M2 PT peak occurred in a context of dextral shearing along the Mertz Shear Zone along with thrust motions within the eastern Terre Adélie Craton. In this paper, we present a series of 63 new 40Ar/39Ar ages of biotite and amphibole pairs in mafic rocks from a complete traverse of the Terre Adélie Craton. 40Ar/39Ar dating constrains M2 amphibolite facies metamorphism at a regional scale between 1700 and 1650 Ma, during stage 1 peak metamorphism. During retrogression, lower amphibolite facies recrystallization mainly occurred along vertical shear zones and mafic dykes between 1650 and 1600 Ma (Stage 2), followed by amphibolite to greenschist facies metamorphism until after 1500 Ma (Stage 3). At the scale of the Mawson continent, this event is related to the growth of an active margin above an oblique subduction zone. The supra-subduction model best explains opening of Dumont D'Urville and Hunter basins at 1.71 Ga followed by their rapid closure and metamorphism at 1.70 Ga. In this context, episodic shear zone reactivation and magmatic dyke emplacement led to a partial reequilibration of the 40Ar/39Ar system until <1500 Ma. This latter phase of mafic magmatism largely coincides with a hot spot event at the scale of the Gawler Craton and western Laurentia paleocontinent.  相似文献   

3.
U–Pb zircon analyses from a series of orthogneisses sampled in drill core in the northern Gawler Craton provide crystallisation ages at ca 1775–1750 Ma, which is an uncommon age in the Gawler Craton. Metamorphic zircon and monazite give ages of ca 1730–1710 Ma indicating that the igneous protoliths underwent metamorphism during the craton-wide Kimban Orogeny. Isotopic Hf zircon data show that 1780–1750 Ma zircons are somewhat evolved with initial εHf values –4 to +0.9, and model ages of ca 2.3 to 2.2 Ga. Isotopic whole rock Sm–Nd values from most samples have relatively evolved initial εNd values of –3.7 to –1.4. In contrast, a mafic unit from drill hole Middle Bore 1 has a juvenile isotopic signature with initial εHf zircon values of ca +5.2 to +8.2, and initial εNd values of +3.5 to +3.8. The presence of 1775–1750 Ma zircon forming magmatic rocks in the northern Gawler Craton provides a possible source for similarly aged detrital zircons in Paleoproterozoic basin systems of the Gawler Craton and adjacent Curnamona Province. Previous provenance studies on these Paleoproterozoic basins have appealed to the Arunta Region of the North Australian Craton to provide 1780–1750 Ma detrital zircons, and isotopically and geochemically similar basin fill. The orthogneisses in the northern Gawler Craton also match the source criteria and display geochemical similarities between coeval magmatism in the Arunta Region of the North Australian Craton, providing further support for paleogeographic reconstructions that link the Gawler Craton and North Australian Craton during the Paleoproterozoic.  相似文献   

4.
An arguable point regarding the Neoarchean and Paleoproterozoic crustal evolution of the North China Craton(NCC)is whether the tectonic setting in the central belt during the mid-Paleoproterozoic(2.35-2.0 Ga)was dominated by an extensional regime or an oceanic subduction-arc regime.A review of the midPaleoproterozoic magmatism and sedimentation for the Hengshan-Wutai-Fuping region suggests that a back-arc extension regime was dominant in this region.This conclusion is consistent with the observation that the 2.35-2.0 Ga magmatism shows a typical bimodal distribution where the mafic rocks mostly have arc affinities and the acidic rocks mainly comprise highly-fractioned calc-alkaline to alkaline(or A-type)granites,and that this magmatism was coeval with development of extensional basins characteristic of transgressive sequences with volcanic interlayers such as in the Hutuo Group.Although the final amalgamation of the NCC was believed to occur at ~1.85 Ga,recent zircon U-Pb age dating for mica schist in the Wutai Group suggests a collisional event may have occurred at ~1.95 Ga.The metamorphic ages of ~1.85 Ga,obtained mostly from the high-grade rocks using the zircon U-Pb approach,most probably indicate uplifting and cooling of these high-grade terranes.This is because(i)phase modeling suggests that newly-grown zircon grains in highgrade rocks with a melt phase cannot date the age of peak pressure and temperature stages,but the age of melt crystallization in cooling stages;(ii)the metamorphic P-T paths with isobaric cooling under 6-7 kb for the Hengshan and Fuping granulites suggest their prolonged stay in the middle-lower crust;and(iii)the obtained metamorphic age data show a continuous distribution from 1.95 to 1.80 Ga.Thus,an alternative tectonic scenario for the Hengshan-Wutai-Fuping region involves:(i)formation of a proto-NCC at ~2.5 Ga;(ii)back-arc extension during 2.35-2.0 Ga resulting in bimodal magmatism and sedimentation in rifting basins on an Archean basement;?  相似文献   

5.
Mesoproterozoic A‐type magmatic rocks in the Gawler Craton, Curnamona Province and eastern Mount Isa Inlier, form a palaeo‐curvilinear belt for reconstructed plate orientations. The oldest igneous rocks in the Gawler Craton are the Hiltaba Granite Suite: c. 1600–1575 Ma. The youngest in the Mount Isa Inlier are the Williams‐Naraku Batholiths: c. 1545–1500 Ma. The belt is interpreted as a segment of a hotspot track that evolved between c. 1600 and 1500 Ma. This hotspot track may define a quasilinear part of Australia’s motion between 1636 and 1500 Ma, and suggests that Australia drifted to high latitudes. An implication of this interpretation is that Australia and Laurentia may not have been fellow travellers leading to the formation of Rodinia. A hotspot model for A‐type magmatism in Australia differs from geodynamic models for this style of magmatism on other continents. This suggests that multiple geologic processes may be responsible for the genesis of Proterozoic A‐type magmas.  相似文献   

6.
LA-ICPMS U–Pb data from metamorphic monazite in upper amphibolite and granulite-grade metasedimentary rocks indicate that the Nawa Domain of the northern Gawler Craton in southern Australia underwent multiple high-grade metamorphic events in the Late Paleoproterozoic and Early Mesoproterozoic. Five of the six samples investigated here record metamorphic monazite growth during the period 1730–1690 Ma, coincident with the Kimban Orogeny, which shaped the crustal architecture of the southeastern Gawler Craton. Combined with existing detrital zircon U–Pb data, the metamorphic monazite ages constrain deposition of the northern Gawler metasedimentary protoliths to the interval ca 1750–1720 Ma. The new age data highlight the craton-wide nature of the 1730–1690 Ma Kimban Orogeny in the Gawler Craton. In the Mabel Creek Ridge region of the Nawa Domain, rocks metamorphosed during the Kimban Orogeny were reworked during the Kararan Orogeny (1570–1555 Ma). The obtained Kararan Orogeny monazite ages are within uncertainty of ca 1590–1575 Ma zircon U–Pb metamorphic ages from the Mt Woods Domain in the central-eastern Gawler Craton, which indicate that high-grade metamorphism and associated deformation were coeval with the craton-scale Hiltaba magmatic event. The timing of this deformation, and the implied compressional vector, is similar to the latter stages of the Olarian Orogeny in the adjacent Curnamona Province and appears to be part of a westward migration in the timing of deformation and metamorphism in the southern Australian Proterozoic over the interval 1600–1545 Ma. This pattern of westward-shifting tectonism is defined by the Olarian Orogeny (1600–1585 Ma, Curnamona Province), Mt Woods deformation (1590–1575 Ma), Mabel Creek Ridge deformation (1570–1555 Ma, Kararan Orogeny) and Fowler Domain deformation (1555–1545 Ma, Kararan Orogeny). This westward migration of deformation suggests the existence of a large evolving tectonic system that encompassed the emplacement of the voluminous Hiltaba Suite and associated volcanic and mineral systems.  相似文献   

7.
The Paleoproterozoic Wernecke Supergroup of Yukon was deposited when the northwestern margin of Laurentia was undergoing major adjustments related to the assembly of the supercontinent Columbia (Nuna) from 1.75 to 1.60 Ga. U–Pb detrital zircon geochronology coupled with Nd isotope geochemistry and major and trace element geochemistry are used to characterize the evolution of the Wernecke basin. The maximum depositional age of the Wernecke Supergroup is reevaluated and is estimated at 1649 ± 14 Ma. Detrital zircon age spectra show a bimodal age distribution that reflects derivation from cratonic Laurentia, with a prominent peak at 1900 Ma. Going upsection, the late Paleoproterozoic peak shifts from 1900 Ma to 1850–1800 Ma, and the proportion of Archean and early Paleoproterozoic zircon decreases. These modifications are a consequence of a change in the drainage system in western Laurentia caused by early phase of the Forward orogeny, several hundred km to the east. The exposed lower and middle parts of the Wernecke Supergroup are correlated with the Hornby Bay Group. Zircon younger than 1.75 Ga appear throughout the sedimentary succession and may have originated from small igneous suites in northern Laurentia, larger source regions such as magmatic arc terranes of the Yavapai and early Mazatzal orogenies in southern Laurentia, and possible arc complexes such as Bonnetia that may have flanked the eastern margin of East Australia. Basins with similar age and character include the Tarcoola Formation (Gawler Craton) and the Willyama Supergroup (Curnamona Province) of South Australia, the Isan Supergroup of North Australia, and the Dongchuan–Dahongshan–Hondo successions of southeast Yangtze Craton (South China). Nd isotope ratios of the Wernecke Supergroup are comparable with values from Proterozoic Laurentia, the Isan and Curnamona assemblages of east Australia, the Gawler Craton, and the Dahongshan–Dongchuan–Hondo successions of the Yangtze Craton of South China. These similarities are compelling evidence for a shared depositional system among these successions. Western Columbia in the Late Paleoproterozoic may have had a dynamic SWEAT-like configuration involving Australia, East Antarctica and South China moving along western Laurentia.  相似文献   

8.
Rhyodacite and rhyolite blocks found in numerous moraines on the Terre Adélie Craton in Antarctica are samples of a high‐temperature high‐K calc‐alkaline to alkali‐calcic igneous suite emplaced at ca 1.60 Ga. They comprise lavas and pyroclastic rocks, including ignimbritic varieties, chemically representative of anorogenic and post‐orogenic igneous suites. The eruptive centres are probably close to the coast according to radar satellite images that show the trace of the ice streams. The volcanic suite is similar in age, petrography and chemical composition (major and trace elements as well as Nd isotopes) to the Gawler Range Volcanics from the Gawler Craton of South Australia. These similarities strengthen correlations previously established between the Gawler Craton and the Terre Adélie Craton (Mawson Continent). Moreover, the present petrological, geochemical and geochronological data give a new insight into the last major thermal event affecting the Mawson Continent. The results also highlight the useful contribution of moraines to our knowledge of Antarctic geology.  相似文献   

9.
The Amazonian Craton hosts world-class metallogenic provinces with a wide range of styles of primary precious, rare, base metal, and placer deposits. This paper provides a synthesis of the geological database with regard to granitoid magmatic suites, spatio temporal distribution, tectonic settings, and the nature of selected mineral deposits. The Archean Carajás Mineral Province comprises greenstone belts (3.04–2.97 Ga), metavolcanic-sedimentary units (2.76–2.74 Ga), granitoids (3.07–2.84 Ga) formed in a magmatic arc and syn-collisional setting, post-orogenic A2-type granites as well as gabbros (ca. 2.74 Ga), and anorogenic granites (1.88 Ga). Archean iron oxide-Cu-Au (IOCG) deposits were synchronous or later than bimodal magmatism (2.74–2.70 Ga). Paleoproterozoic IOCG deposits, emplaced at shallow-crustal levels, are enriched with Nb–Y–Sn–Be–U. The latter, as well as Sn–W and Au-EGP deposits are coeval with ca. 1.88 Ga A2-type granites. The Tapajós Mineral Province includes a low-grade meta-volcano-sedimentary sequence (2.01 Ga), tonalites to granites (2.0–1.87 Ga), two calc-alkaline volcanic sequences (2.0–1.95 Ga to 1.89–1.87 Ga) and A-type rhyolites and granites (1.88 Ga). The calc-alkaline volcanic rocks host epithermal Au and base metal mineralization, whereas Cu–Au and Cu–Mo ± Au porphyry-type mineralization is associated with sub-volcanic felsic rocks, formed in two continental magmatic arcs related to an accretionary event, resulting from an Andean-type northwards subduction. The Alta Floresta Gold Province consists of Paleoproterozoic plutono-volcanic sequences (1.98–1.75 Ga), generated in ocean–ocean orogenies. Disseminated and vein-type Au ± Cu and Au + base metal deposits are hosted by calc-alkaline I-type granitic intrusions (1.98 Ga, 1.90 Ga, and 1.87 Ga) and quartz-feldspar porphyries (ca. 1.77 Ga). Timing of the gold deposits has been constrained between 1.78 Ga and 1.77 Ga and linked to post-collisional Juruena arc felsic magmatism (e.g., Colíder and Teles Pires suites). The Transamazonas Province corresponds to a N–S-trending orogenic belt, consolidated during the Transamazonian cycle (2.26–1.95 Ga), comprising the Lourenço, Amapá, Carecuru, Bacajá, and Santana do Araguaia tectonic domains. They show a protracted tectonic evolution, and are host to the pre-, syn-, and post-orogenic to anorogenic granitic magmatism. Gold mineralization associated with magmatic events is still unclear. Greisen and pegmatite Sn–Nb–Ta deposits are related to 1.84 to 1.75 Ga late-orogenic to anorogenic A-type granites. The Pitinga Tin Province includes the Madeira Sn–Nb–Ta–F deposit, Sn-greisens and Sn-episyenites. These are associated with A-type granites of the Madeira Suite (1.84–1.82 Ga), which occur within a cauldron complex (Iricoumé Group). The A-type magmatism evolved from a post-collisional extension, towards a within-plate setting. The hydrothermal processes (400 °C–100 °C) resulted in albitization and formation of disseminated cryolite, pyrochlore columbitization, and formation of a massive cryolite deposit in the core of the Madeira deposit. The Rondônia Tin Province hosts rare-metal (Ta, Nb, Be) and Sn–W mineralization, which is associated with the São Lourenço-Caripunas (1.31–1.30 Ga), related to the post-collisional stage of the Rondônia San Ignácio Province (1.56–1.30 Ga), and to the Santa Clara (1.08–1.07 Ga) and Younger Granites of Rondônia (0.99–0.97 Ga) A-type granites. The latter are linked to the evolution of the Sunsás-Aguapeí Province (1.20–0.95 Ga). Rare-metal polymetallic deposits are associated with late stage peraluminous granites, mainly as greisen, quartz vein, and pegmatite types.  相似文献   

10.
The Gawler Craton forms the bulk of the South Australian Craton and occupies a pivotal location that links rock systems in Antarctica to those in northern Australia. The western Gawler Craton is a virtually unexposed region where the timing of basin development and metamorphism is largely unknown, making the region ambiguous in the context of models seeking to reconstruct the Australian Proterozoic.Detrital zircon data from metasedimentary rocks in the central Fowler Domain in the western Gawler Craton provide maximum depositional ages between 1760 and 1700 Ma, with rare older detrital components ranging in age up to 3130 Ma. In the bulk of samples, ?Nd(1700 Ma) values range between ?4.3 and ?3.8. The combination of these data suggest on average, comparatively evolved but age-restricted source regions. Lu–Hf isotopic data from the ca 1700 Ma aged zircons provide a wide range of values (?Hf(1700 Ma) +6 to ?6). Monazite U–Pb data from granulite-grade metasedimentary rocks yield metamorphic ages of 1690–1670 Ma. This range overlaps with and extends the timing of the widespread Kimban Orogeny in the Gawler Craton, and provides minimum depositional age constraints, indicating that basin development immediately preceded medium to high grade metamorphism.The timing of Paleoproterozoic basin development and metamorphism in the western Gawler Craton coincides with that in the northern and eastern Gawler Craton, and also in the adjacent Curnamona Province, suggesting protoliths to the rocks within the Fowler Domain may have originally formed part of a large ca 1760–1700 Ma basin system in the southern Australian Proterozoic. Provenance characteristics between these basins are remarkably similar and point to the Arunta Region in the North Australian Craton as a potential source. In this context there is little support for tectonic reconstruction models that: (1) suggest components of the Gawler Craton accreted together at different stages in the interval ca 1760–1680 Ma; and (2) that the North Australian Craton and the southern Australian Proterozoic were separate continental fragments between 1760 and 1700 Ma.  相似文献   

11.
《Gondwana Research》2014,25(2):649-667
The Palaeoproterozoic lower crust, forming several belts and domains, is a major component of the crystalline basement within the large region to the southeast of the Baltic Sea in Belarus, Lithuania and Poland. Four stages of high grade metamorphism have been determined in the Western Lithuanian Granulite domain (WLG) and Belarus–Podlasie Granulite belt (BPG), the western East European Craton (EEC). We have carried out P–T studies, secondary ion mass-spectrometry (SIMS) zircon- and electron probe (EPMA) — monazite dating of peak metamorphism. The first stage occurred at 1.81–1.79 Ga under 800–900 °C and 8–10 kbar and was related to both accretionary and postcollisional tectonics in the South Baltic region, whereas the stages at 1.73–1.68 Ga (700–800 °C, 6–7 kbar), 1.62–1.58 Ga (700 °C, 4–5 kbar), and 1.52–1.50 Ga (900 °C, c. 10 kbar) can be attributed to extensional intracratonic regimes. The 1.81–1.79 Ga stage was connected both to the major Sarmatia–Fennoscandia collision and the eastward accretion, which led to the formation of Baltica (East-European Craton) during the assembly of the Columbia (Nuna) supercontinent. The later high grade events associated with intracratonic extensions and magmatism may be distal manifestations of accretionary processes along the long-lived common Laurentia–Baltica margin. The 1.52–1.50 Ga metamorphism was associated with extensive anorthosite–mangerite–charnockite–granite magmatism in already consolidated crust.  相似文献   

12.
《Gondwana Research》2009,15(4):663-674
The presence of 1.52–1.50 Ga charnockites from the anorthosite–mangerite–charnockite–granite (AMCG) Mazury complex in southern Lithuania and NE Poland, in the western East European Craton (EEC) is revealed by secondary ion mass-spectrometry (SIMS) and EPMA geochronology. Early 1.85–1.82 Ga charnockites are related to major orogeny in the region whereas the newly studied charnockites intrude the already consolidated crust. The 1.52–1.50 Ga charnockite magmatism (SIMS data on zircon) was followed by high-grade metamorphism (EPMA data on monazite), which strongly affected the surrounding rocks. The 1.85–1.81 Ga zircon cores in Lazdijai and 1.81 Ga monazite domains in the Lanowicze charnockites represent the protolith age of a volcanic island arc. The 1.52–1.50 Ga charnockite magmatism and metamorphism are likely related to the distal, Danopolonian, orogeny further to the west, at the margin of Baltica. The c.1.52–1.50 Ga AMCG magmatism and metamorphism in the western EEC as well as the paired accretionary-rapakivi suites in Amazonia, may be the inboard manifestations of the same early Mesoproterozoic orogeny associated with the juxtaposition of Amazonia and Baltica during the amalgamation of the supercontinent Columbia.  相似文献   

13.
ABSTRACT

Due to sparse data for deciphering the late Neoproterozoic tectonic history, there is still considerable debate on whether long-lasting superplume-related or long-duration subduction-related dynamics dominated the Tarim Craton. In this contribution, our field investigations detail the late Neoproterozoic siliciclastic successions, and we report the first granitic conglomerates with zircon U–Pb ages of 753.9 ± 3.7 Ma in the SW Tarim Craton. Importantly, detrital zircons from the thick Cryogenian sedimentary basin also contain a major zircon population at ca. 750 Ma. Together with seismic data, this suggests a large ca. 750 Ma magmatic event in the SW Tarim Craton. Geochemically, the granitic clasts exhibit A-type granite features with high SiO2, high alkali but extremely low K, high FeOT/MgO and Ga/Al, and high high-field strength elements (HFSEs) (i.e. Nb, Hf, and Ta) with significant depletion in Rb, K, Sr, P, Eu, and Ti, and significant negative Eu anomalies (Eu* = 0.13–0.36), showing ferroan granite affinities. Including the detrital zircons, the ca. 750 Ma zircons have a large range of negative εHf(t) values (?19.46 to ?1.16). Elemental and zircon Hf isotope data suggest that the granites were derived from Palaeoproterozoic reworked continental crust and are probably related to crustal thinning and extension. By comparison with previous studies, we conclude that Rodinia breakup was diachronous in the outer parts of the supercontinent.  相似文献   

14.
ABSTRACT

We report the oldest I-type granites in the Lengshui Complex of the Yangtze Craton, providing new insights for its tectonic evolution during the Neoarchean. An approach-combined study of zircon U-Pb dating and Lu-Hf isotopes, as well as whole-rock element geochemistry and Nd isotopes, were employed. LA-ICP-MS zircon U-Pb dating for the monzogranite sample LSG03 and LSG16 yielded ages of 2732 ± 13 Ma and 2738 ± 25 Ma, respectively. The more precise age of 2732 ± 13 Ma for the sample LSG03 was taken as the crystallization age of the monzogranite. These rocks have high SiO2 (73.11–74.01 wt%), K2O (3.93–5.48 wt%), Na2O (3.93–4.86 wt%) and low CaO (0.30–0.69 wt%), MgO (0.17–0.30 wt%), TiO2 (0.14–0.17 wt%), P2O5 (0.01–0.06 wt%), Al2O3 (14.11–14.37 wt%) content with weakly peraluminous affinity (A/CNK = 1.04–1.11). Geochemically, they belong to I-type granites, indicating partial melting of a thickened lower crust. Their relatively high Nb/Ta (15.2–34.8) ratios further suggest they formed under eclogite-facies conditions. The consistent whole-rock Nd and zircon Hf isotopic compositions indicate a homogeneous source. According to their εHf(t) values (?2.0 to 0.8), two-stage Hf model ages (3.1 to 3.2 Ga) and positive εNd(t) (1.4 to 2.1), we argue that they were probably generated by partial melting of a juvenile lower crust with little ancient materials. Monzogranites formed in a late-orogenic or collisional compressive tectonic regime, whereas subsequent ca. 2.73 Ga and 2.67–2.62 Ga A-type granites in the Zhongxiang Uplift (including the Lengshui Complex) may represent a prolonged extensional setting. Thus, Archean subduction (probably unlike modern subduction) likely occurred prior to ca. 2.73 Ga. Similar magmatism in the Kongling Complex implies that the Zhongxiang Uplift may have accrete to the Kongling Complex during the early Neoarchean. The transition from I-type to A-type magmatism may have resulted from a change in the geodynamic regime from the late-orogenic or collisional compressive environment to an extensional environment caused by the subsequent lithospheric collapse and mantle upwelling, suggesting an early Neoarchean orogenic event in the eastern Yangtze Craton.  相似文献   

15.
Garnet granulite and pyroxenite xenoliths from the Grib kimberlite pipe (Arkhangelsk, NW Russia) represent the lower crust beneath Russian platform in close vicinity to the cratonic region of the north-eastern Baltic (Fennoscandian) Shield. Many of the xenoliths have experienced strong interaction with the kimberlite host, but in others some primary granulite-facies minerals are preserved. Calculated bulk compositions for the granulites suggest that their protoliths were basic to intermediate igneous rocks; pyroxenites were ultrabasic to basic cumulates. A few samples are probably metasedimentary in origin. Zircons are abundant in the xenoliths; they exhibit complex zoning in cathodoluminescence with relic cores and various metamorphic rims. Cores include oscillatory zircon crystallized in magmatic protoliths, and metamorphic and magmatic sector-zoned zircons. Recrystallization of older zircons led to the formation of bright homogeneous rims. In some samples, homogeneous shells are surrounded by darker convoluted overgrowths that were formed by subsolidus growth when a change in mineral association occurred. The source of Zr was a phase consumed during a reaction, which produced garnet. Late-generation zircons in all xenoliths show concordant U–Pb ages of 1.81–1.84 Ga (1,826 ± 11 Ma), interpreted as the age of last granulite-facies metamorphism. This event completely resets most zircon cores. An earlier metamorphic event at 1.96–1.94 Ga is recorded by some rare cores, and a few magmatic oscillatory zircons have retained a Neoarchaean age of 2,719 ± 14 Ma. The assemblage of metaigneous and metasedimentary rocks was probably formed before the event at 1.96 Ga. Inherited magmatic zircons indicate the existence of continental crust by the time of intrusion of magmatic protoliths in the Late Archaean. The U–Pb zircon ages correspond to major events recorded in upper crustal rocks of the region: collisional metamorphism and magmatism 2.7 Ga ago and reworking of Archaean rocks at around 1.95–1.75 Ga. However, formation of the granulitic paragenesis in lower crustal rocks occurred significantly later than the last granulite-facies event seen in the upper crust and correlates instead with retrograde metamorphism and small-volume magmatism in the upper crust.  相似文献   

16.
Oxidised metasediments in the western Gawler Craton southern Australia record late Paleoproterozoic high-temperature (HT) to ultrahigh-temperature (UHT) metamorphism. The HT-UHT rocks are magnetite-rich and come from drill core in an unexposed region of the Gawler Craton. Coarse-grained cordierite-bearing assemblages that potentially contained osumilite are overprinted by orthopyroxene-sillimanite-bearing assemblages, which in turn are overprinted by garnet. This microstructural record indicates a metamorphic evolution involving early high-T, low-P conditions that were overprinted by lower thermal gradient assemblages. In situ LA–ICP–MS monazite U-Pb age dating yields a range of ages between 1850 and 1530 Ma with large populations at ca 1690–1650 Ma and ca 1600 Ma. Elsewhere in the Gawler Craton HT and UHT metamorphism occurred in the earliest Mesoproterozoic (ca 1580 Ma). The timing of the Australian UHT events coincides with several other documented examples and occurred during the postulated existence of the Columbia supercontinent. If arguments that link the formation of UHT belts to supercontinental amalgamation are valid, then the existence of ca 1700 to 1600 Ma UHT metamorphism may place additional constraints on the timing of Columbian assembly.  相似文献   

17.
通化地区古元古代晚期花岗质岩浆作用与地壳演化   总被引:20,自引:10,他引:10  
广泛出露于华北板块东部辽吉地区的古元古代变质杂岩,多年来一直被认为是古老的陆内裂谷作用的产物,我们通过详细的野外地质调查工作发现,该变质杂岩中以往所划定的混合岩实际是不同变质程度和变形特征的岩浆成因花岗岩岩体,其岩石类型除典型的片麻状角闪正长花岗岩(俗称“条痕状花岗岩”或“辽吉花岗岩”)外,另有片麻状石英闪长岩、巨斑状黑云母二长花岗岩、巨斑状一环斑状舍石榴石花岗岩和角闪辉石正长岩等、,应用SHRIMP技术,本文对片麻状石英闪长岩和巨斑状一环斑状含石榴石花岗岩进行了结石U—Pb同位素年龄测定,结果显示它们的侵位时代为1872~1850Ma,与巨癍状黑云母二长花岗岩和角闪辉石正长杂岩侵位时代相近,岩石学一地球化学特征显示片麻状石英闪长岩是“Ⅰ”型花岗岩,具有岛弧型花岗岩地球化学特征;而巨斑状一环斑状含石榴石花岗岩(局部具有球斑状结构)属“S”型花岗岩结合区内与花岗岩形成同时发生的变质作用P—T特征,这种I-、S-和A-型花岗岩的同时产出,反映他们可能形成于造山后构造背景,结合朝鲜狼林一中国辽南和龙岗太古宙陆块的结晶基底差别,可以认定华北板块在太古宙末期并非仅由东、西部陆块组成,在东部陆块至少还存在朝鲜狼林-辽南-胶东联合陆块和龙岗-鲁西-五准陆块两个微陆块,这两个微陆块大约在1.90Ga左右发生拼合,然后它们再于1.85Ga左右与西部地块拼合  相似文献   

18.
Several subcropping anorthosite–mangerite–charnockite–granite (AMCG) plutonic suites are aligned along E–W trending lineaments in the Lithuanian part of the East European Craton. The Rukai quartz monzodiorite from the Nemunas suite yields a zircon U–Pb intrusion age of 1447 ± 5 Ma, and the Geluva granite an age of 1445 ± 8 Ma, both obtained using secondary ion mass spectrometry. These rocks are 50 Myr younger than the 1.53–1.50 Ga Mazury AMCG complex in southern Lithuania and northern Poland. The Nemunas and Geluva AMCG rocks correlate in age with Bornholm granitoids in the Baltic Sea and Blekinge granites in southern Sweden, and are similarly aligned along E–W trending lineaments. This regional 1.45 Ga magmatic event across the Baltic Sea may be regarded as an inboard manifestation of the accretionary 1.50 Ga Danopolonian orogeny (cf. Pol. Mineral. Soc. Spec. Publ., 2005, 26: 18) farther west.  相似文献   

19.
U–Pb zircon geochronological, geochemical, and whole-rock Sr–Nd isotopic analyses are reported for a suite of Karamay A-type granites from the Central Asian Orogenic Belt (CAOB) in the western Junggar region of northern Xinjiang, Northwest China, with the aim of investigating the sources and petrogenesis of A-type granites. The Karamay pluton includes monzogranite and syenogranite. Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating yielded a concordant weighted mean 206Pb/238U age of 304 ± 5 Ma (n = 11), defining a late Carboniferous magmatic event. Geochemically, the rock suite is characterized by high SiO2, FeOt/MgO, total alkalies (K2O + Na2O), Zr, Nb, Y, Ta, Ga/Al, and rare earth elements (REEs) (except for Eu), and low contents of MgO, CaO, and P2O5, with negative Ba, Sr, P, Eu, and Ti anomalies. These features indicate an A-type affinity for the Karamay granitic intrusions. Isotopically, they display consistently depleted Sr–Nd isotopic compositions (initial 87Sr/86Sr = 0.7014–0.7022, ?Nd(t) = +5.6–+7.0). Geochronological, geochemical, and isotopic data suggest that the Karamay A-type granites were derived from remelting juvenile lower crust, followed by fractional crystallization. The Karamay A-type granites as well as widespread late Carboniferous magmatism in the western Junggar region of the southwestern CAOB may have been related to ridge subduction and a resultant slab window. This further demonstrates the importance of the late Palaeozoic granitic magmatism in terms of vertical crustal growth in northern Xinjiang.  相似文献   

20.
SHRIMP U–Pb geochronology and monazite EPMA chemical dating from the southeast Gawler Craton has constrained the timing of high-grade reworking of the Early Paleoproterozoic (ca 2450 Ma) Sleaford Complex during the Paleoproterozoic Kimban Orogeny. SHRIMP monazite geochronology from mylonitic and migmatitic high-strain zones that deform the ca 2450 Ma peraluminous granites indicates that they formed at 1725 ± 2 and 1721 ± 3 Ma. These are within error of EPMA monazite chemical ages of the same high-strain zones which range between 1736 and 1691 Ma. SHRIMP dating of titanite from peak metamorphic (1000 MPa at 730°C) mafic assemblages gives ages of 1712 ± 8 and 1708 ± 12 Ma. The post-peak evolution is constrained by partial to complete replacement of garnet–clinopyroxene-bearing mafic assemblages by hornblende–plagioclase symplectites, which record conditions of ~600 MPa at 700°C, implying a steeply decompressional exhumation path. The timing of Paleoproterozoic reworking corresponds to widespread deformation along the eastern margin of the Gawler Craton and the development of the Kalinjala Shear Zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号