首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Northeast USA is experiencing severe impacts of a changing climate, including increased winter temperatures and accelerated relative sea level rise (RSLR). The sediment-poor, organic-rich nature of many Southern New England salt marshes makes them particularly vulnerable to these changes. In order to assess how marsh accretion has changed over time, we returned to Narragansett Bay, RI where salt marsh vertical accretion rates were documented almost 30 years ago. Using radionuclide tracers (210Pb and 137Cs), we observe no significant change in overall accretion rates (0.27–0.69 cm year?1) compared to historical averages (0.24–0.60 cm year?1), but we document a shift in how these marshes maintain elevation. Organic matter now plays a smaller role in contributing to vertical accretion across all study sites, declining by 22 % on average. We attribute this reduction to potentially higher decomposition rates fueled by higher water temperature. Inorganic matter also contributes less to accretion (declining by 44 % on average at marshes located more internal to the estuary), likely due to diminishing sediment supply in this region. With organic and inorganic solids accounting for less of the total accretion, several of the marshes are experiencing symptoms of swelling, with water and porespace contributing more towards accretion compared to historical values. Accretion rates (0.27–0.45 cm year?1) at these organic-rich (>40 % sediment organic matter) marshes are predominantly lower than the current (30 years) rate of RSLR (0.41?±?0.07 cm year?1). These results, combined with the increased rate of RSLR and the hardened shorelines inhibiting landward migration, call into question the long-term survivability of these marshes.  相似文献   

2.
We used a combined field and modeling approach to estimate the potential for submergence for one rapidly deteriorating (Bayou Chitigue Marsh) and one apparently stable (Old Oyster Bayou Marsh) saltmarsh wetland in coastal Louisiana, given two eustatic sea level rise scenarios: the current rate (0.15 cm year−1); and the central value predicted by the Intergovernmental Panel on Climate Change (48 cm by the year 2100). We also used the model to determine what processes were most critical for maintaining and influencing salt marsh elevation including, mineral matter deposition, organic matter production, shallow subsidence (organic matter decomposition + primary sediment compaction), deep subsidence, and sediment pulsing events (e.g., hurricanes). Eight years of field measurements from feldspar marker horizons and surface elevation tables revealed that the rates of vertical accretion at the Bayou Chitigue Marsh were high (2.26 (0.09) cm yr−1 (mean ± SE)) because the marsh exists at the lower end of the tidal range. The rate of shallow subsidence was also high (2.04 (0.1) cm yr−1), resulting in little net elevation gain (0.22 (0.06) cm yr−1). In contrast, vertical accretion at the Old Oyster Bayou Marsh, which is 10 cm higher in elevation, was 0.48 (0.09) cm yr−1. However, there was a net elevation gain of 0.36 (0.08) cm yr−1 because there was no significant shallow subsidence. When these rates of elevation gain were compared to rates of relative sea level rise (deep subsidence plus eustatic sea level rise), both sites showed a net elevation deficit although the Bayou Chitigue site was subsiding at approximately twice the rate of the Old Oyster Bayou site (1.1 cm yr−1 versus 0.49 cm yr−1 respectively). These field data were used to modify, initialize, and calibrate a previously published wetland soil development model that simulates primary production and mineral matter deposition as, feedback functions of elevation. Sensitivity analyses revealed that wetland elevation was most sensitive to changes in the rates of deep subsidence, a model forcing function that is difficult to measure in the field and for which estimates in the literature vary widely. The model also revealed that, given both the current rate of sea level rise and the central value estimate, surface elevation at both sites would fall below mean sea level over the next 100 years. Although these results were in agreement with the field study, they contradicted long term observations that the Old Oyster Bayou site has been in equilibrium with sea level for at least the past 50 years. Further simulations showed that the elevation at the Old Oyster Bayou site could keep pace with current rates of sea level rise if either a lower rate for deep subsidence was used as a forcing function, or if a periodic sediment pulsing function (e.g., from hurricanes) was programmed into the model.  相似文献   

3.
In order to test the assumption that accretion rates of intertidal salt marshes are approximately equal to rates of sea-level rise along the Rhode Island coast,210Pb analyses were carried out and accretion rates calculated using constant flux and constant activity models applied to sediment cores collected from lowSpartina alterniflora marshes at four sites from the head to the mouth of Narragansett Bay. A core was also collected from a highSpartina patens marsh at one site. Additional low marsh cores from a tidal river entering the bay and a coastal lagoon on Block Island Sound were also analyzed. Accretion rates for all cores were also calculated from copper concentration data assuming that anthropogenic copper increases began at all sites between 1865 and 1885. Bulk density and weight-loss-on-ignition of the sediments were measured in order to assess the relative importance of inorganic and organic accumulation. During the past 60 yr, accretion rates at the eight low marsh sites averaged 0.43±0.13 cm yr?1 (0.25 to 0.60 cm yr?1) based on the constant flux model, 0.40±0.15 cm yr?1 (0.15 to 0.58 cm yr?1) based on the constant activity model, and 0.44±0.11 cm yr?1 (0.30 to 0.59 cm yr?1) based on copper concentration data, with no apparent trend down-bay. High marsh rates were 0.24±0.02 (constant flux), 0.25±0.01 (constant activity), and 0.47±0.04 (copper concentration data). The cores showing closest agreement between the three methods are those for which the excess210Pb inventories are consistent with atmospheric inputs. These rates compare to a tide gauge record from the mouth of the bay that shows an average sea-level rise of 0.26±0.02 cm yr?1 from 1931 to 1986. Low marshes in this area appear to accrete at rates 1.5–1.7 times greater than local relative sea-level rise, while the high marsh accretion rate is equal to the rise in sea level. The variability among the low marsh sites suggests that marshes may not be poised at mean water level to within better than ±several cm on time scales of decades. Inorganic and organic dry solids each contributed about 9% by volume to low marsh accretion, while organic dry solids contributed 11% and inorganic 4% to high marsh accretion. Water/pore space accounted for the majority of accretion in both low and high marshes. If water associated with the organic component is considered, organic matter accounts for an average of 91% of low marsh and 96% of high marsh accretion. A dramatic increase in the organic content at a depth of 60 to 90 cm in the cores from Narragansett Bay appears to mark the start of marsh development on prograding sand flats.  相似文献   

4.
Twenty-three estimates of soil subsidence rates arising under the influence of local hydrologic changes from flap-gates, weirs, dikes, and culverts in tidal wetlands were compared to 75 examples of subsidence in drained agricultural wetlands. The induced subsidence rates from these hydrologic modifications in tidal wetlands can continue for more than 100 years, and range between 1.67 to 0.10 cm yr−1 within 1 to 155 years after the hydrologic modifications commence. These subsidence rates are lower than in freshwater wetlands drained for agricultural purposes, decline with age, and are significant in comparison to the rates of global sea level rise or the average soil accretion rates. The elevation change resulting from local hydrologic manipulations is significant with respect to the narrow range of flood tolerances of salt marsh plants, especially in microtidal environments.  相似文献   

5.
Accretion rates were measured in fringe and basin mangrove forests in river and tidally dominated sites in Terminos Lagoon, Mexico, and a basin mangrove forest in Rookery Bay, Florida, USA. Accretion rates were determined using the radionuclides210Pb and137Cs. Consolidation-corrected accretion rates for the Rookery Bay cores, ranged from 1.4 to 1.7 mm yr?1, with an average rate of 1.6 mm yr?1. Rates at the Mexico sites ranged from 1.0 to 4.4 mm yr?1, with an average of 2.4 mm yr?1. Determination of rates in these mangrove forests was greatly affected by the consolidation corrections which decreased the apparent accretion rate by over 50% in one case. Accretion rates at basin sites compare favorably with a reported 1.4 to 1.6 mm yr?1 rate of sea-level rise, indicating little or no subsidence at inland locations. Accretion rates in fringe sites are generally greater than basin sites, indicating greater subsidence rates in these sediments over longer time intervals.  相似文献   

6.
Undulating landscapes of Chhotanagpur plateau of the Indian state of Jharkhand suffer from soil erosion vulnerability of varying degrees. An investigation was undertaken in some sections of the Upper Subarnarekha River Basin falling within this state. An empirical equation known as Universal Soil Loss Equation (USLE) was utilized for estimating the soil loss. Analysis of remote sensing satellite data, digital elevation model (DEM) and geographical information system (GIS)–based geospatial approach together with USLE led to the soil erosion assessment. Erosion vulnerability assessment was performed by analyzing raster grids of topography acquired from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global DEM data. LANDSAT TM and ETM+ satellite data of March 2001 and March 2011 were used for inferring the land use–land cover characteristics of the watershed for these years, respectively. USLE equation was computed within the GIS framework to derive annual soil erosion rates and also the areas with varying degrees of erosion vulnerability. Erosion vulnerability units thus identified covered five severity classes of erosion ranging from very low (0–5 ton ha?1 yr?1) to very severe (> 40 ton ha?1 yr?1). Results indicated an overall increase of erosion in the year 2011 as compared to the erosion computed for the year 2001. Maximum soil erosion rate during the year 2001 was found up to 40 ton ha?1 yr?1, whereas this went up to 49.80 ton ha?1 yr?1 for the year 2011. Factors for the increase in overall erosion could be variation in rainfall, decrease in vegetation or protective land covers and most important but not limited to the increase in built-up or impervious areas as well.  相似文献   

7.
Recent (6–12 month) marsh sediment accretion and accumulation rates were measured with feldspar marker horizons in the vicinity of natural waterways and man-made canals with spoil banks in the rapidly subsiding environment of coastal Louisiana. Annual accretion rates in aSpartina alterniflora salt marsh in the Mississippi deltaic plain averaged 6 mm in marsh adjacent to canals compared to 10 mm in marsh adjacent to natural waterways. The rates, however, were not statistically significantly different. The average rate of sediment accretion in the same salt marsh region for a transect perpendicular to a canal (13 mm yr?1) was significantly greater than the rate measured for a transect perpendicular to a natural waterway (7 mm yr?1). Measurements of soil bulk density and organic matter content from the two transects were also different. This spatial variability in accretion rates is probably related to (1) spoil bank influences on local hydrology; and (2) a locally high rate of sediment input from lateral erosion associated with pond enlargement. In a brackishSpartina patens marsh on Louisiana’s Chenier plain, vertical accretion rates were the same along natural and canal waterways (3–4 mm yr?1) in a hydrologically restricted marsh region. However, the accretion rates for both waterways were significantly lower than the rates along a nonhydrologically restricted natural waterway nearby (11 mm yr?1). The vertical accretion of matter displayed semi-annual differences in the brackish marsh environment.  相似文献   

8.
In an attempt to characterize localized rates of sediment accretion, 10 sediment cores were collected from the lower reach of the Passaic River, a major tributary of Newark Bay, New Jersey. Sediments were assayed for 210Pb activity at predetermined depths and the rate of sediment accretion (cm yr?1) was estimated from the least squares regression of the log of unsupported activity versus depth. Sediment accretion rates, derived from 210Pb measurements (RPb) were used to predict the depth interval within the core containing sediments deposited around 1954; subsequent 137Cs analyses were focused on this depth interval. Sediment accretion rates derived from 137Cs measurements (RCs) were extrapolated from the depth of the 1954 horizon. Lead-210 derived sediment accretion rates in cores collected from a sediment bench extending along the inside bend on the southern shore of a meander in the river, ranged from 4.1 cm yr?1 to 10.2 cm yr?1 and averaged 6.8 cm yr?1. The RCs estimates for cores from this area ranged from 3.8 cm yr?1 to 8.9 cm yr?1 and averaged 6.6 cm yr?1. The RCs for cores collected in a more hydrologically dynamic reach of the river upstream of the sediment bench, were only 0.41 cm yr?1 and 0.66 cm yr?1. The results of this investigation indicate that this reach of the lower Passaic River is an area of high sediment accumulation, retaining much of the sediment load deposited from upstream and downstream sources. The rates of sediment accretion in the lower Passaic River are among the highest reported anywhere in the Newark Bay estuary.  相似文献   

9.
The present analysis adjusts previous estimates of global ocean CaCO3 production rates substantially upward, to 133 × 1012 mol yr?1 plankton production and 42 × 1012 mol yr?1 shelf benthos production. The plankton adjustment is consistent with recent satellite-based estimates; the benthos adjustment includes primarily an upward adjustment of CaCO3 production on so-called carbonate-poor sedimentary shelves and secondarily pays greater attention to high CaCO3 mass (calcimass) and turnover of shelf communities on temperate and polar shelves. Estimated CaCO3 sediment accumulation rates remain about the same as they have been for some years: ~20 × 1012 mol yr?1 on shelves and 11 × 1012 mol yr?1 in the deep ocean. The differences between production and accumulation of calcareous materials call for dissolution of ~22 × 1012 mol yr?1 (~50 %) of shelf benthonic carbonate production and 122 × 1012 mol yr?1 (>90 %) of planktonic production. Most CaCO3 production, whether planktonic or benthonic, is assumed to take place in water depths of <100 m, while most dissolution is assumed to occur below this depth. The molar ratio of CO2 release to CaCO3 precipitation (CO2↑/CaCO3↓) is <1.0 and varies with depth. This ratio, Ψ, is presently about 0.66 in surface seawater and 0.85 in ocean waters deeper than about 1000 m. The net flux of CO2 associated with CaCO3 reactions in the global ocean in late preindustrial time is estimated to be an apparent influx from the atmosphere to the ocean, of +7 × 1012 mol C yr?1, at a time scale of 102–103 years. The CaCO3-mediated influx of CO2 is approximately offset by CO2 release from organic C oxidation in the water column. Continuing ocean acidification will have effects on CaCO3 and organic C metabolic responses to the oceanic inorganic C cycle, although those responses remain poorly quantified.  相似文献   

10.
A 115-year-old railroad levee bisecting a tidal freshwater marsh perpendicular to the Patuxent River (Maryland) channel has created a northern, upstream marsh and a southern, downstream marsh. The main purpose of this study was to determine how this levee may affect the ability of the marsh system to gain elevation and to determine the levee’s impact on the marsh’s long-term sustainability to local relative sea level rise (RSLR). Previously unpublished data from 1989 to 1992 showed that suspended solids and short-term sediment deposition were greater in the south marsh compared to the north marsh; wetland surface elevation change data (1999 to 2009) showed significantly higher elevation gain in the south marsh compared to the north (6?±?2 vs. 0?±?2 mm year?1, respectively). However, marsh surface accretion (2007 to 2009) showed no significant differences between north and south marshes (23?±?8 and 26?±?7 mm year?1, respectively), and showed that shallow subsidence was an important process in both marshes. A strong seasonal effect was evident for both accretion and elevation change, with significant gains during the growing season and elevation loss during the non-growing season. Sediment transport, deposition and accretion decreased along the intertidal gradient, although no clear patterns in elevation change were recorded. Given the range in local RSLR rates in the Chesapeake Bay (2.9 to 5.8 mm year?1), only the south marsh is keeping pace with sea level at the present time. Although one would expect the north marsh to benefit from high accretion of abundant riverine sediments, these results suggest that long-term elevation gain is a more nuanced process involving more than riverine sediments. Overall, other factors such as infrequent episodic coastal events may be important in allowing the south marsh to keep pace with sea level rise. Finally, caution should be exercised when using data sets spanning only a couple of years to estimate wetland sustainability as they may not be representative of long-term cumulative effects. Two years of data do not seem to be enough to establish long-term elevation change rates at Jug Bay, but instead a decadal time frame is more appropriate.  相似文献   

11.
Analyses of organic content, pollen, and the carbon-isotopic composition of a 3.5-m sediment core collected from a subsided tidal marsh located in South San Francisco Bay, California, have provided a 500-yr record of sediment accretion and vegetation change before, during, and after a rapid 1 m increase in sea level. Core chronology was established using14C dating of fossil plant material, the first appearance of pollen types produced by plants not native to California, and changes in lead concentrations coincident with anthropogenic contamination. Prior to the mid 19th century, rates of sediment accretion were between 1 and 4 mm yr−1; sediment accretion accelerated to an average of 22 mm yr−1 following the initiation of subsidence. Changes in tidal marsh vegetation also accompanied this depositional change. Vegetation shifted from a high to low marsh assemblage, as indicated by a larger percentage of grass pollen, rhizomes ofSpartina foliosa, and a strong C4 signal. Between 1980 and 2001, Triangle marsh again developed high marsh vegetation, as indicated by higher percentages of the Amaranthaceane pollen type, seed deposition, includingSalicornia spp., and more negative carbon isotopic ratios.  相似文献   

12.
We evaluated the biogeomorphic processes of a large (309 ha) tidal salt marsh and examined factors that influence its ability to keep pace with relative sea-level rise (SLR). Detailed elevation data from 1995 and 2008 were compared with digital elevation models (DEMs) to assess marsh surface elevation change during this time. Overall, 37 % (113 ha) of the marsh increased in elevation at a rate that exceeded SLR, whereas 63 % (196 ha) of the area did not keep pace with SLR. Of the total area, 55 % (169 ha) subsided during the study period, but subsidence varied spatially across the marsh surface. To determine which biogeomorphic and spatial factors contributed to measured elevation change, we collected soil cores and determined percent and origin of organic matter (OM), particle size, bulk density (BD), and distance to nearest bay edge, levee, and channel. We then used Akaike Information Criterion (AICc) model selection to assess those variables most important to determine measured elevation change. Soil stable isotope compositions were evaluated to assess the source of the OM. The samples had limited percent OM by weight (<5.5 %), with mean bulk densities of 0.58 g cm-3, indicating that the soils had high mineral content with a relatively low proportion of pore space. The most parsimonious model with the highest AICc weight (0.53) included distance from bay's edge (i.e., lower intertidal) and distance from levee (i.e., upper intertidal). Close proximity to sediment source was the greatest factor in determining whether an area increased in elevation, whereas areas near landward levees experienced subsidence. Our study indicated that the ability of a marsh to keep pace with SLR varied across the surface, and assessing changes in elevation over time provides an alternative method to long-term accretion monitoring. SLR models that do not consider spatial variability of biogeomorphic and accretion processes may not correctly forecast marsh drowning rates, which may be especially true in modified and urbanized estuaries. In light of SLR, improving our understanding of elevation change in these dynamic marsh systems will play a crucial role in forecasting potential impacts to their sustainability and the survival of these ecosystems.  相似文献   

13.
Four years of GPS measurements were done since 1996 in southwestern Taiwan in order to investigate crustal deformation and land subsidence. The network of 48 stations revealed the velocity field in the Pingtung Plain. Horizontal velocities range from 31 to 54 mm?yr?1 towards azimuths 247° to 273°. They show clear anti-clockwise deviation in the coastal area, consistent with tectonic transtension related to lateral escape at the transition collision–subduction. The deformation resembles a particle flow towards a free boundary, and is not a rigid rotation. Vertical velocities range from +13 to ?25mmyr?1. Twenty stations show fast subsidence in the coastal area, with rates averaging ?16mm/yr. The comparison with Holocene subsidence suggests that about 75% of the present-day subsidence result from decreasing groundwater level induced by over-pumping, adding significant short-term component to the natural risk resulting from long-term tectonic subsidence. To cite this article: C.-S. Hou et al., C. R. Geoscience 337 (2005).  相似文献   

14.
We report on a decadal trend of accretionary dynamics in the wetlands of several northwestern Mediterranean deltas and a lagoon system, all of them with high rates of wetland loss. Wetland vertical accretion and surface elevation change were measured at 55 riverine, marine, and impounded sites in four coastal systems: the Ebro delta, Spain; the Rhône delta, France; and the Po delta and Venice Lagoon, Italy. Vertical accretion and elevation change ranged between 0 and 25 mm year?1 and were strongly correlated. The highest rates of elevation gain occurred at riverine sites where vertical accretion was highest. We conclude that areas with high sediment input, mainly riverine, are the only ones likely to survive accelerated sea-level rise, especially if recent higher estimates of 1 m or more in the twenty-first century prove to be accurate. This is the first study where the importance of river input on wetland survival has been demonstrated at a decadal time scale over a broad geographical area.  相似文献   

15.
The Susquehanna River is the major contributor to sediment loadings in the Chesapeake Bay. Because many environmental contaminants are associated with suspended particulates, the degree of particle retention within the reservoirs of the lower Susquehanna River is an important consideration in evaluating contaminant loadings to the Chesapeake Bay. Profiles of weapons-test Cs-137, nuclear power plant-related Cs-134 and Cs-137, and naturally-derived Pb-120 were used to estimate rates of sediment accretion in the conowingo Reservioir, an impoundment of the Susquehanna River along the Maryland-Pennsylvania border. Net accretion rates ranged from about 2 cm yr?1 downstream of a nuclear power plant cooling discharge to a high of about 7 cm yr?1 at the mount of an incoming creek. Slight, but consistent, increases in the annual rate of accretion since the creation of the reservoir in 1928 are apparent. The current net average annual sediment load reatined by the reservoir is estimated to be 0.4×106 to 1.5 × 106 metric tons yr?1. The retained sediment load represents about 8–23% of the long-time average sediment input to the reservoir.  相似文献   

16.
We studied organic matter cycling in two Gulf Coast tidal, nonsaline marsh sites where subsidence causes marine intrusion and rapid submergence, which mimics increased sea-level rise. The sites experienced equally rapid submergence but different degrees of marine intrusion. Vegetation was hummocked and much of the marsh lacked rooted vegetation. Aboveground standing crop and production, as measured by sequential harvesting, were low relative to other Gulf CoastSpartina patens marshes. Soil bulk density was lower than reported for healthyS. alterniflora growth but that may be unimportant at the current, moderate sulfate levels. Belowground production, as measured by sequential harvesting, was extremely fast within hummocks, but much of the marsh received little or no belowground inputs. Aboveground production was slower at the more saline site (681 g m?2 yr?1) than at the less saline site (1,252 g m?2 yr?1). Belowground production over the entire marsh surface averaged 1,401 g m?2 yr?1 at the less saline site and 585 g m?2 yr?1 at the more saline site. Respiration, as measured by CO2 emissions in the field and corrected for CH4 emissions, was slower at the less saline site (956 g m?2 yr?1) than at the more saline site (1,438 g m?2 yr?1), reflecting greater contributions byS. alterniflora at the more saline site which is known to decompose more rapidly thanS. patens. Burial of organic matter was faster at the less saline site (796 g m?2 yr?1) than at the more saline site (434 g m?2, yr?1), likely in response to faster production and slower decomposition at the less saline site. Thus vertical accretion was faster at the less saline site (1.3 cm yr?1) than at the more saline site (0.85 cm yr?1); slower vertical accretion increased flooding at the more saline site. More organic matter was available for export at the less saline site (1,377 g m?2 yr?1) than at the more saline site (98 g m?2 yr?1). These data indicated that organic matter production decreased and burial increased in response to greenhouse-like conditions brought on by subsidence. *** DIRECT SUPPORT *** A01BY069 00016  相似文献   

17.
The influence of canals on vertical marsh accretion, including mineral sediment and organic matter accumulation, was evaluated at three locations along the Louisiana coast representing different geographic regions. The isotopes210Pb and157Cs were used to determine vertical accretion along transects representing a canal and a control site. Rapid rates of vertical accretion were measured at all sites and ranged from 0.47 cm yr?1 to 0.90 cm yr?1. Results indicated that there was no measurable effect of canals on marsh accretionary processes. In general, greater variation in vertical accretion, including mineral sediment deposition and organic matter accumulation, was observed between geographical regions than between canal and control sites within a region. Statistical analysis of data suggest that any difference between canal and control site would be less than 0.20 cm yr?1. Such a change in marsh surface-water level relationships as a result of any canal influence on marsh accretionary processes would be less than reported eustatic sea-level rise for the Gulf of Mexico. Results suggest that any change in the marsh surface-water level relationship could be the influence of canals on local hydrology, resulting in increased water level rather than any appreciable reduction in accretionary processes. Such changes in hydrology under certain conditions could stress vegetation, resulting in marsh deterioration.  相似文献   

18.
In this paper, we discuss historical and recent land subsidence in the Modern Yellow River Delta. Integrated analysis of leveling and relevant background data, including groundwater level, oil extraction, and geological structure, has revealed that land displacement is driven by natural and induced components acting at various depths. Since the 1950s, intense settlements occurred in the modern estuary delta lobes. Between 2002 and 2008, the subsidence center of Dongying and Guangrao exhibited a typical subsidence area with subsidence rates of 28.2 and 64.7 mm/years, respectively. Higher magnitudes are associated with groundwater withdrawals and oil–gas field exploitations, which induce the compaction of a deep clayey layer. There existed a significant linear positive correlation between groundwater level and elevation in the center of the deep groundwater depression cone. The major contributor of natural subsidence is tectonic movements, while moderate sinking due to the natural consolidation of the recent delta subsoil is still acting.  相似文献   

19.
Effects of sediment extraction and dam construction on changes of riverbed characteristics over yearly to decadal scales in the lower Tedori River of Japan are clarified. Over 1950–1991, the riverbed degraded in excess of 0.5–3.5 m. Concurrently, riverbed sediment volume of the 0–16 km reach decreased by 12.7 × 106 m3. Intensive sediment extraction was the dominant cause of riverbed degradation during the period. During 1991–2007, an increase in riverbed sediment volume of 0.6 × 106 m3 resulted in accretion of the riverbed by average depth 0.04 m. The cessation of sand and gravel mining (SGM), coupled with Tedorigawa Dam operation since 1980, was responsible for that accretion. Temporal change in riverbed elevation during 1950–2007 indicates that there were five phases of vertical adjustment. Combination of nonlinear regression models described four of these phases well. During 1950–1979, the first four modes of empirical orthogonal function analysis successfully captured temporal and spatial responses of the riverbed to natural and anthropogenic impacts. That is, the first mode explained the mean riverbed profile and temporal variation in riverbed sediment volume. The second through fourth spatial eigenfunctions reflected spatial variation in vertical adjustment rate for phases II, III and I, respectively. The corresponding temporal eigenfunctions explained the respective effects on the riverbed of SGM, of imbalance between sediment transport capacity and sediment supply, and of dredging activity.  相似文献   

20.
Growing wetland loss along a coastal area in China was examined through shoreline recession and land use changes. Carbon storage or sequestration in coastal wetland soils was based on vertical marsh accretion and aerial change data. Marshes sequester significant amounts of carbon through vertical accretion; however, large amounts of carbon previously sequestered in the soil profile are lost through rapid land use changes and shoreline recessions. The Liaohe Delta (LHD) was divided into nine landscape types based on Landsat TM digital images from 1991 to 2011. The distributed areas and transfer matrices of each landscape type were calculated. Combined with the organic carbon content and bulk density of 202 soil surface samples from field investigations in 2012, the soil organic carbon pools and stocks were estimated. Results showed that the soil organic carbon pools varied from 0.58 to 9.75 kg m?2, and organic carbon storage in the upper 20 cm of soil was 1935.92 × 104 and 1863.87 × 104 t in 1991 and 2011, respectively. We attributed these large losses of carbon to rapid land use changes. The construction of levees along the shoreline has triggered large instantaneous losses of previously sequestered carbon through the destruction of 278.06 km2 of tidal flats. Our results reveal that the LHD wetlands might not serve as a desired sink of carbon if maladministration practices are applied. These results can provide scientific guidance for decision makers in determining an effective way to maintain the soil carbon pool in the wetlands of the LHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号