首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 642 毫秒
1.
This study describes a previously unidentified Neoproterozoic mafic dyke emplaced in the northern flank of the Langshan Tectonic Belt. This dyke intruded into the micaquartz schist of the Zhaertaishan Group, and yielded an age of 908 ± 8 Ma. The youngest U-Pb ages of micaquartz schist from the Zhaertaishan Group in the Langshan area were 1118 ± 33 Ma,1187 ± 3 Ma and 1189 ± 39 Ma,suggesting that the depositional age of the protolith of the schist was between 908 ± 8 Ma and 1118 ± 33 Ma. In addition, 436 U-Pb age data and 155 Lu-Hf isotopic data from six samples in the Langshan Tectonic Belt and one Permian greywacke from the Wuhai area show distinct differences between the northern and southern flanks of the Main Langshan area. The U-Pb ages of the northern flank are primarily Meso-Neoproterozoic; similar ages have not been identified in the southern flank to date.Moreover, two-stage Hf model ages of the northern flank feature three age peaks at ~900 Ma,~1700 Ma and ~2600 Ma; this differs from Hf model ages of the southern flank, which feature one strong age peak at ~2700 Ma. These results suggest that the northern and southern flanks of the Main Langshan area have different geochronologic characteristics and should be divided further. Based on the U-Pb ages and Hf model ages, the northern and southern flanks of the Main Langshan area are named the North and South Langshan Tectonic Belts. Comparison of the U-Pb age and two-stage Hf model age distributions from the North Langshan Tectonic Belt, South Langshan Tectonic Belt, Alxa Block and the North China Craton(NCC) reveal that the North Langshan Tectonic Belt is similar to the Alxa Block and that the South Langshan Tectonic Belt is similar to the NCC. In addition, the zircon U-Pb age of 860 ±7 Ma commonly observed in the Alxa Block was detected in the Permian greywacke from the Wuhai area of the NCC, which suggests that the amalgamation of the North and South Langshan Tectonic belts(i.e.,the amalgamation of the Alxa Block and the NCC), occurred between Devonian and late Permian.  相似文献   

2.
阿拉善东缘奥陶纪地层位于鄂尔多斯(华北地块)与北祁连早古生代造山带之间的过渡地区,该区的构造背景一直是长期争论的问题,它涉及到阿拉善地块是否与华北地块相连、奥陶系的物源以及"贺兰拗拉槽"是否存在等问题。分布于阿拉善地块东缘的中奥陶统米钵山组的碎屑锆石LA-ICP-MSU-Pb年龄测试表明,样品中数量最多的锆石年龄为900~950Ma,Alxa-1的峰值年龄为916Ma,Alxa-2的峰值年龄为953Ma,次者在494~623Ma之间,这个区间内存在多个峰值,如Alxa-1存在505Ma和588Ma两个主要峰值,Alxa-2则存在494Ma、517Ma、623Ma等几个峰值。在2.5Ga左右两个样品都存在一个弱的峰值,Alxa-1峰值为2517Ma,而Alxa-2峰值为2552Ma和2670Ma。除此之外,两个样品都有个别大于3.0Ga的成分,Alxa-1样品中最年轻的锆石为451±8Ma,Alxa-2样品则为483±4Ma。这些年龄以及沉积特征表明:(1)传统认为的奥陶纪"贺兰拗拉槽"并不存在,鄂尔多斯西南缘地区以及阿拉善东部地区当时属于北祁连早古生代周缘前陆盆地系统;(2)早古生代主要物源来自北祁连造山带,新元古代物源来自阿拉善地块;(3)鄂尔多斯西缘整个米钵山组的锆石年龄分布及其变化,指示出北祁连造山带(岛弧)逐渐靠近阿拉善地块,其间洋盆逐渐消失的过程;(4)阿拉善地块基底与华北有明显差别,阿拉善地块明显受到新元古代和古生代构造热事件的影响,两者可能是在中奥陶世或之后才拼贴在一起。  相似文献   

3.
矽卡岩型钨矿是赣南地区的一种重要钨矿床类型。本文以焦里和宝山两个典型的矽卡岩型钨多金属矿床为例,开展了系统的成岩成矿年代学和岩石地球化学研究,结合区域钨锡矿床最新年代学研究成果,探讨了赣南地区钨矿的成岩成矿时代及形成构造环境。结果表明,焦里矽卡岩型钨多金属矿区斑状花岗闪长岩SHRIMP锆石U-Pb年龄为164.4±1.1Ma,辉钼矿Re-Os等时线年龄为170.6±4.6Ma;宝山矽卡岩型钨矿区花岗岩SHRIMP锆石U-Pb年龄为156.6±3.9Ma,辉钼矿Re-Os模式年龄加权平均值为161.0±1.9Ma,厘定了它们的成岩成矿年龄为中-晚侏罗世,同一矿区的成岩和成矿年龄在误差范围内基本一致。结合赣南崇(义)-(大)余-(上)犹钨锡矿集区已有的年代学资料,指出本区的成岩成矿年龄介于170~150Ma,集中在160~150Ma,认为赣南钨矿形成于华南中生代岩石圈伸展-减薄时期的侏罗纪板内拉张的地球动力学背景,系同一成岩成矿系统的产物。  相似文献   

4.
ABSTRACT

The Mesozoic tectonic transition from the Palaeo-Tethys tectonic regime to the Palaeo-Pacific tectonic regime in the eastern South China Block has long been debated. Geochemical and zircon U–Pb–Hf isotopic studies were conducted on the Dashuang complex in the eastern Zhejiang Province. The Dashuang complex consists mainly of quartz syenite in the northwestern part and quartz monzonite in the southeastern part. New laser ablation inductively coupled plasma mass spectrometry zircon U–Pb data show that the quartz syenite, the quartz monzonite, and its chilled margin (fine-grained granite) crystallized at 235 ± 4 Ma, 232 ± 3 Ma, and 230 ± 1 Ma, respectively. The Dashuang complex intrudes into the Chencai Group gneiss that postdated ~646 Ma and underwent anatexis at 443 ± 14 Ma. The quartz monzonite shows A-type granite affinity, characterized by high K2O + Na2O and Zr + Nb + Ce + Y, high FeOT/(MgO + FeOT) and Ga/Al ratios, an enrichment in light rare earth elements, and depletions in Ba, Sr, and Eu. The quartz monzonite has zircon εHf(t) values of ?14.2 to –11.9 and two-stage model ages of 1788–1922 Ma. Zircon εHf(t) values of the chilled margin (fine-grained granite) and wall rock (gneiss) are scattered (?18.2 to –6.3 and ?19.5 to 10.2). The corresponding two-stage model ages are 1482–2133 Ma and 1184–2471 Ma, respectively. The Dashuang complex was derived mainly from partial melting of Neoproterozoic clastic rocks in the Cathaysia Block. Geochemical data indicate that the quartz monzonite formed in a post-collision extensional environment. These results, considered with previous data, indicate that the transition from the Palaeo-Tethys to the Palaeo-Pacific tectonic regimes of the eastern South China Block occurred during the Late Triassic (225–215 Ma).  相似文献   

5.
宋彪  乔秀夫 《地学前缘》2008,15(3):250-262
辽东半岛北部铁岭市泛河流域位于郯庐断裂北段,归属于中朝板块华北块体的东北端。此地区发育巨厚的玄武岩(二道沟组)及辉绿岩墙(床)群,过去认为系中元古代时期的基性岩浆活动。对玄武岩及辉绿岩锆石SHRIMP年龄测定,获得二道沟组玄武岩喷发定位的时间在古近纪始新世((36.4±1.8)Ma);辉绿岩浆侵位结晶时间为晚白垩世((93.5±1.4)Ma)。辽北基性岩岩浆定位年龄明确显示,分割中朝板块内部华北块体与胶辽朝块体的北部边界——郯庐断裂北段在晚白垩世处于东西向伸展拉张构造环境,导致辉绿岩侵位;古近纪发育了近南北向的拉张构造,伸展作用进一步发展,形成二道沟组巨厚玄武岩。新的SHRIMP锆石U-Pb年龄不支持辉绿岩及二道沟组玄武岩形成年代为中元古代的传统认识。  相似文献   

6.
本文利用锆石和磷灰石裂变径迹方法探讨了班韦乌卢地块泛非期以来的主要构造演化时间.为研究班韦乌卢地块的构造活动,本文从班韦乌卢地块中部卡帕图地区的沉积盖层姆波罗科索群的姆巴拉组、萨马组和卡布韦卢马组中采集多件新鲜的岩石样品,并获得5件锆石和2件磷灰石样品裂变径迹分析结果.5件锆石裂变径迹年龄介于575±35~380±22 Ma之间,其峰值年龄组为600~572 Ma和420~390 Ma.2件磷灰石裂变径迹年龄介于59±6~27±4 Ma之间,其峰值年龄组为99~80 Ma和19~11 Ma.它们的峰值年龄组分别对应的主要时代为新元古代的埃迪卡拉纪、早泥盆世、晚白垩世和中新世.对比区域上已有的年龄数据可知,南部非洲地区新元古代的埃迪卡拉纪、早泥盆世和晚白垩世的构造活动是一个区域性的构造事件,仅中新世(19~11 Ma)的构造活动在区域上的表现尚不明确.综合前人成果资料,自泛非构造运动以来,班韦乌卢地块至少经历600~572 Ma、488~441 Ma、420~390 Ma、375~293 Ma、99~80 Ma及19~11 Ma六个构造事件.班韦乌卢地块泛非期以来的构造演化研究程度很低,此次研究成果可为今后在该地区的深入研究提供重要参考.  相似文献   

7.
阿拉善地块西部的北大山地区识别出两期韧性变形构造,早期的韧性变形以从南(南东)向北(北西)逆冲为特征,晚期的韧性变形以近东西向左行剪切为特征。利用LA-ICP-MS锆石U-Pb测年方法,在记录早期韧性变形的片麻岩中获得锆石的变质年龄为422±1 Ma,代表晚志留世变质事件;在记录晚期韧性变形的2件二长花岗岩中获得锆石结晶年龄分别为326.2±1.2 Ma和323.8±2.6 Ma,代表早石炭世岩浆活动。结合前人研究成果,发现阿拉善地块西部北大山地区的两期韧性变形特征、变形时代与阿拉善地块东部巴彦乌拉山-狼山地区相似,同时阿拉善地块东、西部晚奥陶世-石炭纪多期岩浆活动的岩石类型、期次、地化及Nd同位素等特征也非常相似。以上特征表明,阿拉善地块东、西部经历了相同的构造演化历史,形成一条发育在早前寒武纪变质基底之上、呈近东西向弧形展布的晚奥陶世-石炭纪构造-岩浆岩带(西起桃花拉山,经北大山、诺尔公-巴彦乌拉山,东到狼山),其成因与古亚洲洋的俯冲造山事件密切相关。  相似文献   

8.
The Solonker suture zone of the Central Asian Orogenic Belt (CAOB) records the final closure of the Paleo-Asian Ocean. The nature and timing of final collision along the Solonker suture has long been controversial, partly because of an incomplete record of isotopic ages and differing interpretations of the geological environments of key tectonic units. The Xilin Gol Complex, consisting of strongly deformed gneisses, schists and amphibolites, is such a key tectonic unit within the CAOB. Lenticular or quasi-lamellar amphibolites are dispersed throughout the complex, intercalated with biotite–plagioclase gneiss. Both rock types experienced amphibolite-facies metamorphism. The protolith of the amphibolite is a basic rock that intruded into the biotite–plagioclase gneiss at 319 ± 4 Ma based on LA-ICPMS zircon U–Pb dating. The basic intrusion was sourced from a modified magma that experienced crystal fractionation and was admixed with slab-derived fluids. The slab-derived fluids, which formed during Early Paleozoic oceanic subduction along the north-dipping Sonidzuoqi–Xilinhot subduction zone, mixed with the magma source and produced subduction-related geochemical signatures superimposed on volcanic arc chemistry. After Early Paleozoic oceanic subduction and arc-continent collision, a transient stage of extension occurred between 313 and 280 Ma in the Sonidzuoqi–Xilinhot area. Deformation and recrystallization during the switch from compression to extension and reheating by the later magmatic intrusions reset the isotope systems of minerals in the Xilin Gol Complex, recorded by a 312.2 ± 1.5 Ma biotite 40Ar/39Ar age from biotite–plagioclase gneiss, a 309 ± 12 Ma zircon intercept age and a 307.5 ± 3.5 Ma hornblende 40Ar/39Ar age from amphibolites in the complex. There was an arc/forearc-related marine basin at the southern margin of the Xilin Gol Complex during the Permian. The closure of the oceanic basin led to Late Paleozoic–Middle Triassic north-dipping subduction beneath the Xilin Gol Complex and induced the amphibolite-facies metamorphism of the complex. The final suturing of the Solonker zone occurred from 269 to 231 Ma. This latest amphibolite-facies metamorphism with pressures of 0.31–0.39 GPa and temperatures of 620–660 °C was recorded at 263.4 ± 1.4 Ma to the Xilin Gol Complex, as indicated by the hornblende 40Ar/39Ar age from the amphibolites, as well as several zircon ages of 260 ± 3–231 ± 3 Ma. The Xilin Gol Complex documented the progressive accretion of a single, long-lived subduction system at the southern margin of the south Mongolian microcontinent from the Early Paleozoic (~452 Ma) to Middle Triassic (~231 Ma). The CAOB shows protracted collision prior to final suturing.  相似文献   

9.
Detrital zircons are important proxies for crustal provenance and have been widely used in tracing source characteristics and continental reconstructions. Southern Peninsular India constituted the central segment of the late Neoproterozoic supercontinent Gondwana and is composed of crustal blocks ranging in age from Mesoarchean to late Neoproterozoic–Cambrian. Here we investigate detrital zircon grains from a suite of quartzites accreted along the southern part of the Madurai Block. Our LA-ICPMS U-Pb dating reveals multiple populations of magmatic zircons, among which the oldest group ranges in age from Mesoarchean to Paleoproterozoic (ca. 2980–1670 Ma, with peaks at 2900–2800 Ma, 2700–2600 Ma, 2500–2300 Ma, 2100–2000 Ma). Zircons in two samples show magmatic zircons with dominantly Neoproterozoic (950–550 Ma) ages. The metamorphic zircons from the quartzites define ages in the range of 580–500 Ma, correlating with the timing of metamorphism reported from the adjacent Trivandrum Block as well as from other adjacent crustal fragments within the Gondwana assembly. The zircon trace element data are mostly characterized by LREE depletion and HREE enrichment, positive Ce, Sm anomalies and negative Eu, Pr, Nd anomalies. The Mesoarchean to Neoproterozoic age range and the contrasting petrogenetic features as indicated from zircon chemistry suggest that the detritus were sourced from multiple provenances involving a range of lithologies of varying ages. Since the exposed basement of the southern Madurai Block is largely composed of Neoproterozoic orthogneisses, the data presented in our study indicate derivation of the detritus from distal source regions implying an open ocean environment. Samples carrying exclusive Neoproterozoic detrital zircon population in the absence of older zircons suggest proximal sources in the southern Madurai Block. Our results suggest that a branch of the Mozambique ocean might have separated the southern Madurai Block to the north and the Nagercoil Block to the south, with the metasediments of the khondalite belt in Trivandrum Block marking the zone of ocean closure, part of which were accreted onto the southern Madurai Block during the collisional amalgamation of the Gondwana supercontinent in latest Neoproterozoic–Cambrian.  相似文献   

10.
罗金海  畅莹磊  陈卓 《地学前缘》2022,29(6):314-324
鄂尔多斯盆地西南部中奥陶统马家沟组灰岩内部发育多条辉绿岩脉。辉绿岩富集高场强元素(HFSE)Nb、Ta、Ti、Zr、Hf等,具有板内拉斑玄武岩的地球化学特征,其地球化学数据显示原始岩浆经历过比较强烈的结晶分异演化。对辉绿岩的锆石进行U-Pb LA-ICP-MS测年获得的206Pb/238U年龄为750~195 Ma。根据峰值年龄并结合区域地质资料,本文把辉绿岩的形成年龄确定为224 Ma(晚三叠世)。辉绿岩反映鄂尔多斯盆地西南部在晚三叠世处于类似大陆裂谷的伸展构造环境,晚三叠世西邻陇山地区发生的强烈碰撞后伸展作用也可能有助于进一步强化鄂尔多斯盆地西南部的伸展构造环境。当时该地区岩石圈的稳定性相对较弱,为该地区后续的早侏罗世和早白垩世岩浆活动提供了物质基础。晚三叠世及后期的岩浆活动提高了鄂尔多斯盆地西南部的地温梯度并加快了该地区烃源岩的热演化进程,可能对该地区的油气成藏条件造成潜在影响。  相似文献   

11.
新疆中天山南缘库米什地区的榆树沟和铜花山蛇绿混杂岩包括地幔橄榄岩,辉石岩、辉长岩、斜长岩等堆晶岩,辉绿岩墙和基性熔岩,以及上部的硅质岩等。岩石地球化学研究表明,蛇绿岩的岩石类型来自MORB型和SSZ型两种构造背景。蛇绿岩及有关岩石的锆石U-Pb同位素年代学的研究表明,与中天山南缘洋盆扩张和闭合有关的事件至少可以分为4期: (1)奥陶纪-志留纪的洋盆形成事件,证据来自蛇绿岩斜长花岗岩和斜长岩,两者的年龄分别为435.1±2.8Ma、439.3±1.8Ma;(2)志留纪的岛弧岩浆作用,获得岛弧火山岩英安岩年龄422.1±2.6Ma 和花岗闪长岩年龄423.1±1.8Ma;(3)泥盆纪的剪切变形和糜棱岩化变质作用,由于板块斜向俯冲和碰撞作用,产生大规模的走滑作用和与之伴生的由剪切作用形成的糜棱岩,糜棱岩的形成年龄为402.8±1Ma,为早泥盆世;(4)俯冲碰撞后的造山带伸展阶段的岩浆作用,在俯冲碰撞作用之后发生与垂直主受力面张裂作用伴生岩浆作用,获得石英正长斑岩294.8±1.2Ma年龄,即晚石炭世。 此外,认为榆树沟蛇绿岩北部出露的麻粒岩是一个很特殊的构造岩块,岩石的锆石中普遍存在500~1800Ma的老核,表明其原岩很复杂,不属于蛇绿岩的组合 。  相似文献   

12.
阿拉善地块北缘恩格尔乌苏地区发现志留纪侵入体   总被引:8,自引:0,他引:8  
阿拉善地块北缘地区位于中亚造山带的南缘中段,连接了兴蒙造山带和北山造山带等构造单元,其古生代的构造演化对于中亚造山带南缘构造单元的对比连接具有重要的意义,是研究中亚造山带古生代构造演化的关键位置。统计归纳近年来阿拉善地块北缘地区的年代学数据发现,该地区的岩浆活动主要集中在晚古生代期间,特别是二叠期间,尚没有早古生代侵入岩的报道。恩格尔乌苏蛇绿混杂岩是阿拉善地块北缘地区出露的一条重要蛇绿岩带,本次研究在该混杂岩带中发现了早古生代的黑云母花岗岩。通过锆石LA-ICP-MS U-Pb年代学测试发现其时代为423±4.5 Ma和434±1Ma,代表了其岩浆结晶年龄,表明该侵入岩形成于志留纪期间,是阿拉善地块北缘地区最早发现的早古生代侵入体之一。该志留纪岩体的发现,表明恩格尔乌苏混杂岩在带志留纪期间已经出现岩浆活动,具有多期活动的特征。该志留纪岩体的发现,是研究、认识阿拉善地块北缘地区早古生代构造环境的重要对象,对于连接对比东、西相邻构造单元具有重要的意义。结合相邻白山组地层的碎屑锆石时代及晚泥盆世侵入岩的发现等研究成果推断,阿拉善地块北缘地区在早古生代开始就存在岩浆活动,该地区可能并非是早古生代的稳定被动大陆边缘。  相似文献   

13.
《Tectonophysics》1999,301(1-2):145-158
The Mersin ophiolite is located on the southern flank of the E–W-trending central Tauride belt in Turkey. It is one of the Late Cretaceous Neotethyan oceanic lithospheric remnants. The Mersin ophiolite formed in a suprasubduction zone tectonic setting in southern Turkey at the beginning of the Late Cretaceous. The Mersin ophiolite is one of the best examples in Turkey in order to study reconstruction of ophiolite emplacement along the Alpine–Himalayan orogenic belt. 40Ar/39Ar incremental-heating measurements were performed on seven obduction-related subophiolitic metamorphic rocks. Hornblende separates yielded isochron ages ranging from 96.0±0.7 Ma to 91.6±0.3 Ma (all errors ±1σ). Five of the seven hornblende age determinations are indistinguishable at the 95% confidence level and have a weighted mean age of 92.6±0.2 (2σ) Ma. We interpret these ages as the date of cooling below 500°C. Intraoceanic thrusting occurred (∼4 Ma) soon after formation of oceanic crust. The sole was crosscut by microgabbro–diabase dikes less than 3 m.y. later. The final obduction onto the Tauride platform occurred during the Late Cretaceous–Early Paleocene. Our new high-precision ages constrain intraoceanic thrusting for a single ophiolite (Mersin) in the Tauride belt.  相似文献   

14.
ABSTRACT

The Ordovician plutons in the Erguna Block, NE China, can be classified into two groups: Early Ordovician diorites with zircon U–Pb ages ranging from 486 to 485 Ma and Middle Ordovician gabbros and granites with zircon U–Pb ages ranging from 466 to 463 Ma. The diorites are calc-alkaline in nature and are characterized by weak to moderate enrichments of large ion lithophile elements (LILE) and light rare earth elements (LREE) relative to high field strength elements (HFSE) and heavy rare earth elements (HREE). The gabbros and granites have high total alkali contents, and all samples are enriched in LREE and LILE and depleted in HFSE such as Nb, Ta, and Ti. Isotopically, Early Ordovician diorites display values that are less radiogenic [εHf(t) = + 9.9–+16.8] compared to those of Middle Ordovician gabbros [εHf(t) = ? 3.0–+5.0]. Middle Ordovician granites have positive εHf(t) values of +1.4 to +4.3 and two-stage Hf model ages (TDM2) of 1167 to 1356 Ma. These data indicate that the diorites may have been generated by the partial melting of a recently metasomatized mantle source, whereas the gabbros and granites may have been formed by the partial melting of enriched lithospheric mantle and Mesoproterozoic crust, respectively. Our results, combined with other regional results, suggest that Early Ordovician magmatism was likely associated with the northward subduction of the Heihe–Xilinhot oceanic plate beneath the Erguna–Xing’an Block, whereas the Middle Ordovician gabbros and granites were most likely formed in an extensional setting controlled by the rollback of this subducted oceanic plate.  相似文献   

15.
The Triassic (Indosinian) granites in the South China Block (SCB) have important tectonic significance for understanding the evolution of Eastern Asia. The Dengfuxian biotite granite in eastern Hunan Province, China, reported in this article, was recognized as Late Triassic (late Indosinian) weakly peraluminous A-type granite with a zircon laser ablation inductively coupled plasma mass spectrometry U–Pb age of 225.7 ± 1.6 Ma. It is enriched in F, Cs, Rb, Th, high field strength elements, and rare earth elements (REEs) and depleted in Ba, Sr, P, Ti, Nb, and Ta, with high Ga/Al ratios and zircon saturation temperatures. The Dengfuxian biotite granite shows high initial Sr isotope values (0.715932 to 0.716499) and negative ?Nd(t) (?10.46 to ?9.67) and ?Hf(t) (?9.92 to ?6.29) values, corresponding to the Nd model ages of 1.79 to 1.85 Ga and the Hf model ages of 1.65 to 1.88 Ga. It is proposed that the Dengfuxian biotite granite was derived from high-temperature partial melting of the Palaeoproterozoic lower crust undergoing granulitization. Some Late Triassic A-type granites were recently identified in the SCB with the ages between 202 and 232 Ma. These A-type granites have the same geochemical characteristics and petrogenesis as Dengfuxian A-type granite, and show A2-subtype granite affinity. The Late Triassic A-type granite formed a NE-trending granite belt, which is consistent with the main NE-trending faults in the SCB. The formation of these A-type granites was in response to the subduction of the palaeo-Pacific plate underneath the SCB, and indicates an extensional tectonic environment in the SCB. Combined with previous studies on tectonic evolution, we suggest that there may be a tectonic transition inside the SCB from compression to extension at least from 225 to 230 Ma.  相似文献   

16.
The Jurassic–Early Cretaceous Yilashan mafic–ultramafic complex is located in the middle part of the Bangong–Nujiang suture zone, central Tibet. It features a mantle sequence composed of peridotites and a crustal sequence composed of cumulate peridotites and gabbros that are intruded by diabases with some basalts. This article presents new whole-rock geochemical and geochronological data for peridotites, gabbros, diabases and basalts to revisit the petrogenesis and tectonic setting of the Yilashan mafic–ultramafic complex. Zircon laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) U–Pb ages of three diabase samples are 169.6 ± 3.3 Ma, 132.5 ± 2.5 Ma, and 133.6 ± 4.9 Ma, respectively. These ages together with previous studies indicate that the Yilashan mafic–ultramafic complex probably formed during the Jurassic–Early Cretaceous. The peridotites exhibit nearly U-shaped REE patterns and are distinct from abyssal peridotites. The diabase and basalt samples show arc features with selective enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILEs; e.g. Rb, U, and Sr) and depletion in high field strength elements (HFSEs; e.g. Nb, Ta, and Ti). The gabbro samples display cumulate features with selective enrichment in LILEs (e.g. Rb, Ba, and Sr) but depletion in LREEs and HFSEs (e.g. Nb, Zr, and Ti). Combing the positive εNd(t) values (+6.1 to +10.0) and negative zircon εHf(t) values (–16.5 to –11.7 and –13.6 to –0.4) with older Hf model ages for the mafic rocks, these signatures suggest that the Yilashan mafic and ultramafic rocks likely originated from an ancient lithospheric mantle source with the addition of asthenospheric mantle materials and subducted fluids coupled with limited crustal contamination in a continental arc setting as a result of the southward subduction of the Bangong–Nujiang Tethys Ocean beneath the Lhasa terrane during the Jurassic–Early Cretaceous.  相似文献   

17.
Five volcanic rock samples and two granite samples taken from the volcanic basins in western Fujian and southern Jiangxi were dated by using the zircon laser albation-inductively coupled plasma mass spectrometry U-Pb method. Together with previously dated ages, the dates obtained provide important constraints on the timing of late Mesozoic tectonic events in SE China. The volcanic rock samples yield ages of 183.1±3.5 Ma, ca. 141 Ma to 135.8±1.1 Ma, 100.4±1.5 to 97.6±1.1 Ma, confirming three episodes of late Mesozoic volcanic activities, which peaked at 180±5 Ma, 140±5 Ma and 100±5 Ma, respectively, along the Wuyishan belt. Moreover, based on field investigations of these volcano-sedimentary basins, we have recognized two compressional tectonic events along this belt. The early one was characterized by Upper Triassic to Middle Jurassic NNE-trending folds that were intruded by late Jurassic granites; and the late one caused the Lower Cretaceous volcano-sedimentary layer to be tilted. The dated age 152.9±1.4 Ma of the granitic samples from the Hetian granitic pluton in the Changting Basin and that from the Baishiding granitic pluton, 100.2±1.8 Ma, in the Jianning Basin, give the upper boundaries of these two tectonic events respectively. Hence, the late Mesozoic tectonic evolution of SE China was alternated between extension and compression.  相似文献   

18.
The Çöpler epithermal Au deposit and related subeconomic porphyry Cu–Au deposit is hosted by the middle Eocene Çöpler–Kabata? magmatic complex in central eastern Anatolia. The intrusive rocks of the complex were emplaced into Late Paleozoic–Mesozoic metamorphosed sedimentary basement rocks near the northeastern margin of the Tauride-Anatolide Block. Igneous biotite from two samples of the magmatic complex yielded 40Ar/39Ar plateau ages of 43.75?±?0.26 Ma and 44.19?±?0.23, whereas igneous hornblende from a third sample yielded a plateau age of 44.13?±?0.38. These ages closely overlap with 40Ar/39Ar ages of hydrothermal sericite (44.44?±?0.28 Ma) and biotite (43.84?±?0.26 Ma), and Re–Os ages from two molybdenite samples (44.6?±?0.2 and 43.9?±?0.2 Ma) suggesting a short-lived (<1 my) magmatic and hydrothermal history at Çöpler. No suitable minerals were found that could be used to date the epithermal system, but it is inferred to be close in age to the precursor porphyry system. The Çöpler–Kabata? intrusive rocks show I-type calc-alkaline affinities. Their normalized trace element patterns show enrichments in large ion lithophile and light rare earth elements and relative depletions in middle and heavy rare earth elements, resembling magmas generated in convergent margins. However, given its distance from the coeval Eocene Maden–Helete volcanic arc, the complex is interpreted to be formed in a back-arc setting, in response to Paleocene slab roll-back and upper-plate extension. The tectonomagmatic environment of porphyry-epithermal mineralization at Çöpler is comparable to some other isolated back-arc porphyry systems such as Bajo de la Alumbrera (Argentina) or Bingham Canyon (USA).  相似文献   

19.
The Shi-Hang Belt is a Mesozoic tectonic zone and has always been regarded as the boundary between the Yangtze and Cathaysia blocks. It occupies a key tectonic location and attracts considerable attention due to its dynamic formation mechanism. However, its Cenozoic dynamic process is poorly constrained. The Cenozoic activation of the Shi-Hang Belt, as well as its cooling and exhumation, aids in dating the onset time of the formation of the mountain ranges and reveals the deformation process of the South China Block. To uncover the history of its Cenozoic cooling and denudation, apatite fission-track (AFT) thermochronology was applied to batholiths and strata spread across the Shi-Hang Belt in the Hunan Province. Twenty-three samples are dated with ages ranging from 23.6 ± 1.5 to 45.8 ± 3.0 Ma. Except for two older ages (42.1 ± 2.6 and 45.8 ± 3.0 Ma), the other ages range from 23 to 36 Ma with less variation on both sides of the Chenzhou–Linwu fault. The thermochronological modelling of 15 measured samples demonstrates that rocks rapidly passed through the AFT partial annealing zone to the near surface at different onset times from 36 to 23 Ma. The regional AFT cooling pattern is unrelated to the internal structures of the Shi-Hang Belt characterized by a Mesozoic fold-thrust feature. We attribute the Cenozoic exhumation of the Shi-Hang Belt to the dynamic topography of the South China Block, which is related to mantle downwellings and upwellings due to several episodes of quick subduction of the Pacific Plate underneath Eurasia during the Late Cretaceous–early Cenozoic and the Oligocene–early Miocene. The far-field effect of the India–Tibet collision may have contributed to the exhumation of the Shi-Hang Belt.  相似文献   

20.
《International Geology Review》2012,54(15):1887-1908
ABSTRACT

The widespread migmatites in the northwestern part of the Sulu Orogen, China, indicate regional anatexis that is of great significance when discussing the tectonic evolution of this continental orogenic belt. Cathodoluminescence (CL) images, U–Pb ages, and in situ trace element compositions of zircons from four pegmatite veins within these migmatites provide clear evidence for the nature of the post-collisional evolution of the Sulu Orogen. The inherited zircon cores reveal that the protoliths of the migmatites were middle Neoproterozoic magmatic rocks (810–620 Ma) of the South China Block. The protoliths underwent two partial melting events. The mantle domains of the inherited zircons record a Late Triassic (222.0–204.0 Ma) partial melting event that occurred during the exhumation and retrograde metamorphism, after ultrahigh-pressure (UHP) metamorphism. Subsequent newly grown zircons record a Middle–Late Jurassic to Early Cretaceous (164.1–125.5 Ma) anatexis event, indicating that the late Mesozoic anatexis started before ca. 164.1 Ma, reached a peak at ca. 152.1 Ma, and ceased at ca. 125.5 Ma. Combined with previous results of studies on the Sulu orogen, the late Mesozoic anatexis suggested that the thickened crust of the Sulu Orogen had started to become unstable before 164.1 Ma. The duration of ~164.1–137 Ma corresponds to a period of transition in the tectonic regime of the Sulu Orogen, enabling the early high-temperature ductile deformation. After ca. 137 Ma, the tectonic regime was fully transformed into extension and the Sulu Orogen underwent rapid thinning and collapse, thus leading to the late medium–low temperature ductile deformation (137–121 Ma) and laying the foundations for the large-scale magmatic emplacement during the late Early Cretaceous (127–115 Ma). These two partial melting events together promoted the rapid exhumation of the Sulu UHP rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号