首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We establish the ‘subduction initiation rule’ (SIR) which predicts that most ophiolites form during subduction initiation (SI) and that the diagnostic magmatic chemostratigraphic progression for SIR ophiolites is from less to more HFSE-depleted and LILE-enriched compositions. This chemostratigraphic evolution reflects formation of what ultimately becomes forearc lithosphere as a result of mantle melting that is progressively influenced by subduction zone enrichment during SI. The magmatic chemostratigraphic progression for the Izu–Bonin–Mariana (IBM) forearc and most Tethyan ophiolites is specifically from MORB-like to arc-like (volcanic arc basalts or VAB ± boninites or BON) because SI progressed until establishment of a mature subduction zone. MORB-like lavas result from decompression melting of upwelling asthenosphere and are the first magmatic expression of SI. The contribution of fluids from dehydrating oceanic crust and sediments on the sinking slab is negligible in early SI, but continued melting results in a depleted, harzburgitic residue that is progressively metasomatized by fluids from the sinking slab; subsequent partial melting of this residue yields ‘typical’ SSZ-like lavas in the latter stages of SI. If SI is arrested early, e.g., as a result of collision, ‘MORB-only’ ophiolites might be expected. Consequently, MORB- and SSZ-only ophiolites may represent end-members of the SI ophiolite spectrum. The chemostratigraphic similarity of the Mariana forearc with that of ophiolites that follow the SIR intimates that a model linking such ophiolites, oceanic forearcs, and SI is globally applicable.  相似文献   

2.
The distribution of ore‐deposit types in different sectors of the circum‐Mediterranean realm that have been affected by subduction processes since the Cretaceous varies in space and time. Sectors involved in W‐directed subduction (Sardinia, Apennines–Maghrebides, Internal Betics, Tyrrhenian, Western–Eastern Carpathians) are dominated by relatively low‐sulphidation epithermal (±VMS) deposits. Orogens formed by NE‐directed subduction (Dinarides–Hellenides–Pontides–Anatolides–Taurides; DHPAT) were initially dominated by pluton‐related porphyry–skarn–high‐sulphidation epithermal associations. These distinct metallogenic styles can be related to the systematic tectono‐magmatic asymmetry of E–NE‐ and W‐directed subduction systems and are analogous to the relationship observed in circum‐Pacific belts. Exceptions to this simple pattern occurred in the DHPAT in the Cenozoic, when deposit associations typical of both E‐directed and W‐directed systems were formed. Such exceptions are interpreted to reflect superimposition of contrasting subduction trends and inheritance from earlier metallogenic stages (Apuseni) or the interference of subduction processes with subduction‐unrelated extension (Hellenides, West Anatolia).  相似文献   

3.
Levin  B. W.  Rodkin  M. V.  Sasorova  E. V. 《Doklady Earth Sciences》2017,476(1):1109-1112
Doklady Earth Sciences - The role played by the Earth’s rotation is very important in problems of physics of the atmosphere and ocean. The importance of inertia forces is traditionally...  相似文献   

4.
5.
RenzoSartori 《《幕》》2003,26(3):217-221
A deep, narrow, and distorted Benioff zone, plunging from the Ionian Sea towards the southern Tyrrhenian basin, is the remnant of a long and eastward migrating subduction of eastern Mediterranean lithosphere. From Oligocene to Recent, subduction generated the Western Mediterranean and the Tyrrhenian back-arc basins, as well as an accretionary wedge constituting the SouthernAoenninic Arc.In the Tyrrhenian Sea, stretching started in late Miocene and eventually produced two small oceanic areas: the Vavilov Plain during Pliocene (in the centralsector) and the Marsili Plain during Quaternary (in the southeastern sector). They are separated by a thicker crustal sector, called the Issel Bridge. Back-arc exten-sion was rapid and discontinuous, and affected a land locked area where continental elements of various sizesoccurred. Discontinuities in extension were mirrored bychanges in nature of the lithosphere scraped off to form the Southern Apenninic Arc. Part of the tectonic units of the southern Apennines, accreted into the wedge from late Miocene to Pliocene, had originally been laid down on thinned conti-nental lithosphere, which should constitute the deep portion of the present slab. After Plio-cene, only Ionian oceanic lithosphere wassubducted, because the large buoyancy of thewide and not thinned continental lithosphere of Apulia and Africa (Sicily) preserved the seelements from roll back of subduction. After Pliocene, the passively retreating oceanic slabhad to adjust and distort according to the geometry of these continental elements.The late onset of arc volcanism in respect to the duration of extension in the Tyrrhenian-Ionian system may find an expla-nation considering an initial stage of subduc-tion of thinned continental lithosphere. The strong Pleistocene vertical movements that occurred in the whole southeastern system(subsidence in the back-arc basin and upliftin the orogenic arc) may instead be related to the distortion of the oceanic slab.  相似文献   

6.
The transfer of fluid and trace elements from the slab to the mantle wedge cannot be adequately explained by simple models of slab devolatilization. The eclogite-facies mélange belt of northern New Caledonia represents previously subducted oceanic crust and contains a significant proportion of talc and chlorite schists associated with serpentinite. These rocks host large quantities of H2O and CO2 and may transport volatiles to deep levels in subduction zones. The bulk-rock and stable isotope compositions of talc and chlorite schist and serpentinite indicate that the serpentinite was formed by seawater alteration of oceanic lithosphere prior to subduction, whereas the talc and chlorite schists were formed by fluid-induced metasomatism of a mélange of mafic, ultramafic and metasedimentary rocks during subduction. In subduction zones, dehydration of talc and chlorite schists should occur at sub-arc depths and at significantly higher temperatures (∼ 800°C) than other lithologies (400–650°C). Fluids released under these conditions could carry high trace-element contents and may trigger partial melting of adjacent pelitic and mafic rocks, and hence may be vital for transferring volatile and trace elements to the source regions of arc magmas. In contrast, these hybrid rocks are unlikely to undergo significant decarbonation during subduction and so may be important for recycling carbon into the deep mantle. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Sub-ophiolitic greenschist facies metamorphic rocks occur at the sole of ophiolite slices and as blocks in the mélange zone beneath the Andaman ophiolite. These are represented by metabasics as actinolite schist to actinolite–chlorite schist and metasediments as garnetiferous quartzo-feldspathic mica–chlorite schist and piemontite quartzite to piemontite bearing quartz–muscovite–chlorite schist to muscovite–quartz-chlorite schist. Actinolite occurs along the schistosity and also as porphyroblasts. Syn to post-tectonic garnet shows no compositional zoning and represent almandine–spessartine solid solution (Alm44–47, Sps23–27, Gros13–17, Pyr9–10). The metabasics are enriched in LILE and depleted in Zr and Y compared to N-MORB.The lithological features suggest that residual heat was the main heat source for greenschist-facies metamorphism. Top part of the subducting slab and overlying trench sediments were metamorphosed and dislocated by the close spaced thrusts in an accretionary prism setting. The field association indicates that metamorphism and the uplift of metamorphic rocks along with ophiolite slices were bracketed in between Cretaceous and Oligocene period. These processes were later than the Pre-Cretaceous emplacement of the ophiolites of Sumatra and Java.  相似文献   

8.
The Burmese Arc seismic activity is not uniform for its ∼ 1100 km length; only the Northern Burmese Arc (NBA) is intensely active. Six large earthquakes in the magnitude range 6.1–7.4 have originated from the NBA Benioff zone between 1954–2011, within an area of 200 × 300 km2 where the Indian plate subducts eastward to depths beyond 200 km below the Burma plate. An analysis on seismogenesis of this interplate region suggests that while the subducting lithosphere is characterized by profuse seismicity, seismicity in the overriding plate is rather few. Large earthquakes occurring in the overriding plate are associated with the backarc Shan-Sagaing Fault (SSF) further east. The forecasting performance of the Benioff zone earthquakes in NBA as forerunner is analysed here by: (i) spatial earthquake clustering, (ii) seismic cycles and their temporal quiescence and (iii) the characteristic temporal b-value changes. Three such clusters (C1–C3) are identified from NBA Benioff Zones I & II that are capable of generating earthquakes in the magnitude ranges of 7.38 to 7.93. Seismic cycles evidenced for the Zone I displayed distinct quiescence (Q1, Q2 and Q3) prior to the 6th August 1988 (M 6.6) earthquake. Similar cycles were used to forecast an earthquake (Dasgupta et al. 2010) to come from the Zone I (cluster C1); which, actually struck on 4 February 2011 (M 6.3). The preparatory activity for an event has already been set in the Zone II and we speculate its occurrence as a large event (M > 6.0) possibly within the year 2012, somewhere close to cluster C3. Temporal analysis of b-value indicates a rise before an ensuing large earthquake.  相似文献   

9.
Several major volcanic zones are distributed across the eastern North China Craton, from northwest to southeast: the Greater Xing’an Range, Jibei-Liaoxi, Xishan, and Songliao Basins, and the Yanji, Huanghua, and Ludong volcanic zones. The Huanghua depression within the Bohai Bay Basin was filled by middle Late Mesozoic volcanic rocks and abundant Cenozoic alkaline basalts. Zircon LA-ICP-MS and SHRIMP U–Pb dating show that basicintermediate volcanic rocks were extruded in the Early Cretaceous of 118.8 ± 1.0 Ma (weighted mean 206Pb/238U age), before Late Cretaceous acid lavas at 71.5 ± 2.6 Ma. An inherited zircon from andesite has a Paleoprotoerozoic core crystallization age of 2,424 ± 22 Ma (206Pb/207Pb age) indicating that the basement of the Bohai Bay Basin is part of the North China Craton. Early Cretaceous basic and intermediate lavas are characterized by strong enrichments in LREE and LILE and depletions in HREE and HFSE, indicating a volcanic arc origin related to oceanic subduction. Depletion in Zr only occurs in basic and intermediate volcanic rocks, while depletions in Sr and Ti exist only in acid samples, indicating that the acid series is not genetically related to the basic–intermediate series. Formation ages and geochemical features indicate that the Late Cretaceous acid lavas are products of crustal remelting in an extensional regime. Combined information from all these volcanic zones shows that subduction-related volcanic rocks were generated in the Jibei-Liaoxi and Xishan volcanic zones during the Early Jurassic, about 60 Ma earlier than their analogues extruded in the Huanghua and Ludong volcanic zones during the Early Cretaceous. This younging trend also exists in the youngest extension-related volcanism in each of these zones: Early Cretaceous asthenosphere-derived alkaline basalts in the northwest and Late Cretaceous in the southeast. A tectonic model of northwestward subduction and continuous oceanward retreat of the Paleo-Pacific Plate is proposed to explain the migration pattern of both arc-related and post-subduction extension-related volcanic rocks. As the subduction zone continuously migrated, active continental margin and backarc regimes successively played their roles in different parts of North China during the Late Mesozoic (J1–K2).  相似文献   

10.
Metamorphic rocks form a minor component of the NE Arabian margin in Oman and the United Arab Emirates (UAE). Conditions span almost the entire range of crustal metamorphism from very high-P/low-T eclogite and blueschist to high-P/moderate-T epidote- to upper-amphibolite and low-P/high-T granulite facies. The NE Arabian margin experienced at least six metamorphic events, each characterized by distinct peak metamorphic temperature, depth of burial, average thermal gradient and timing. Synthesis of the available metamorphic data defines five different tectonic settings that evolved during the middle Cretaceous: [1] The Saih Hatat window exposes former continental margin crust that was buried and metamorphosed in a SW-dipping subduction system. Lower-plate units in the window include relict oceanic crust with eclogite (M1–M2) parageneses that recrystallized at pressures of ~14–23 kbar under very low thermal gradients of 7–10 °C/km. Peak metamorphism occurred at ~110 Ma. Peak assemblages were overprinted by garnet–glaucophane-blueschist foliations (M3) at about ~104–94 Ma that formed at ~10–15 kbar and 10–15 °C/km during the first-stage of isothermal exhumation. [2] Metamorphic soles in the footwall of the Semail ophiolite experienced a two-stage history of deep burial and peak metamorphism at ~96–94 Ma, followed by retrogression during obduction onto the continental margin between ~93 and 84 Ma. Peak metamorphic garnet–clinopyroxene–hornblende–plagioclase assemblages (M4s), exposed at highest structural levels, formed at 743 ± 13 °C and 10.7 ± 0.4 kbar, indicating Barrovian thermal regimes of 20.0 ± 2.2 °C/km. Burial of seafloor sediments and oceanic crust to ~38 km depth, was attained within a short-lived, NE-dipping intra-oceanic subduction system. The relatively high average thermal gradient during the peak of metamorphism was the result of heating after subcretion onto the base of hanging-wall oceanic lithosphere. [3] The Bani Hamid terrane consists of seafloor cherts and calcareous turbidites, metamorphosed to low-P/high-T granulite condition at ~96–94 Ma. Diagnostic assemblages (M4b) such as orthopyroxene–cordierite–quartz–plagioclase and orthopyroxene–sapphirine–hercynite–quartz–plagioclase, formed at conditions averaging ~915 ± 35 °C, ~6.1 ± 0.9 kbar and ~42.9 ± 6.5 °C/km. The elevated average thermal gradient, combined with significant depths of burial, is anomalous for typical oceanic settings. This suggests that these sea-floor sediments were buried to ~22 km depths within the intra-oceanic subduction system, accreted onto the hanging-wall, and metamorphosed at high-T during subduction of a recently active spreading ridge. [4] A plausible plate tectonic arrangement that can account for the different metamorphic elements on the Arabian margin is one composed of divergent subduction systems: a relatively long-lived SW-dipping subduction zone at the continental margin, and a short-lived, NE-dipping intra-oceanic subduction system. Consumption of the intervening oceanic crust led to obduction of the Semail ophiolite and accreted metamorphic soles from the upper-plate of the floundered outboard subduction system. SW-directed obduction was initiated between 93.7 and 93.2 Ma and continued until ~84 Ma, producing lower-amphibolite to sub-greenschist facies retrograde fabrics in the metamorphic soles (M5) and sub-metamorphic melange in the footwall. [5] The lower-plate of the Saih Hatat window was reworked by top-to-NE extensional shear at epidote-greenschist facies grades (M6) between ~84 and 76 Ma. Crustal-scale structures were reactivated as extensional detachments that telescoped the continental margin, leading to isothermal decompression and development of an asymmetric core complex that segmented the Semail ophiolite and formed the Saih Hatat domal window.  相似文献   

11.
In northwestern California, the Franciscan subduction complex has been subdivided into seven major tectonostratigraphic units. We report U-Pb ages of ≈2400 detrital zircon grains from 26 sandstone samples from 5 of these units. Here, we tabulate each unit’s interpreted predominant sediment source areas and depositional age range, ordered from the oldest to the youngest unit. (1) Yolla Bolly terrane: nearby Sierra Nevada batholith (SNB); ca. 118 to 98 Ma. Rare fossils had indicated that this unit was mostly 151–137 Ma, but it is mostly much younger. (2) Central Belt: SNB; ca. 103 to 53 Ma (but poorly constrained), again mostly younger than previously thought. (3) Yager terrane: distant Idaho batholith (IB); ca. 52 to 50 Ma. Much of the Yager’s detritus was shed during major core complex extension and erosion in Idaho that started 53 Ma. An Eocene Princeton River–Princeton submarine canyon system transported this detritus to the Great Valley forearc basin and thence to the Franciscan trench. (4) Coastal terrane: mostly IB, ±SNB, ±nearby Cascade arc, ±Nevada Cenozoic ignimbrite belt; 52 to <32 Ma. (5) King Range terrane: dominated by IB and SNB zircons; parts 16–14 Ma based on microfossils. Overall, some Franciscan units are younger than previously thought, making them more compatible with models for the growth of subduction complexes by progressive accretion. From ca. 118 to 70 Ma, Franciscan sediments were sourced mainly from the nearby Sierra Nevada region and were isolated from southwestern US and Mexican sources. From 53 to 49 Ma, the Franciscan was sourced from both Idaho and the Sierra Nevada. By 37–32 Ma, input from Idaho had ceased. The influx from Idaho probably reflects major tectonism in Idaho, Oregon, and Washington, plus development of a through-going Princeton River to California, rather than radical changes in the subduction system at the Franciscan trench itself.  相似文献   

12.
Understanding the dominant force responsible for supercontinent breakup is crucial for establishing Earth's geodynamic evolution that includes supercontinent cycles and plate tectonics. Conventionally,two forces have been considered: the push by mantle plumes from the sub-continental mantle which is called the active force for breakup, and the dragging force from oceanic subduction retreat which is called the passive force for breakup. However, the relative importance of these two forces is unclear. Here we model the supercontinent breakup coupled with global mantle convection in order to address this question. Our global model features a spherical harmonic degree-2 structure, which includes a major subduction girdle and two large upwelling(superplume) systems. Based on this global mantle structure,we examine the distribution of extensional stress applied to the supercontinent by both subsupercontinent mantle upwellings and subduction retreat at the supercontinent peripheral. Our results show that:(1) at the center half of the supercontinent, plume push stress is ~3 times larger than the stress induced by subduction retreat;(2) an average hot anomaly of no higher than 50 K beneath the supercontinent can produce a push force strong enough to cause the initialization of supercontinent breakup;(3) the extensional stress induced by subduction retreat concentrates on a ~600 km wide zone on the boundary of the supercontinent, but has far less impact to the interior of the supercontinent. We therefore conclude that although circum-supercontinent subduction retreat assists supercontinent breakup, sub-supercontinent mantle upwelling is the essential force.  相似文献   

13.
The Central Andean gravity high, a relic of an old subduction complex?   总被引:1,自引:0,他引:1  
The Central Andean gravity high (CAGH) is a positive anomaly in isostatic residual gravity with its center located at the western flank of the Central Andes at about 24°S. The gravity was analyzed by various methods to draw quantitative conclusions about the sources of this anomaly and their process of formation. Methods include the analysis of the gravity gradients, power spectrum, wavelength filters, and Euler deconvolution.Numerical investigations of gravity field in the area of the CAGH indicate the presence of a dense body of nearly 400 km length and about 100–140 km width, that masses lie at varying depths between 10 and 38 km. A correlation between the location of the residual anomalies and the topographic lows in the area between the Salars de Atacama and Pipanaco is observed, which indicates the strong influence of the anomalous-causing rocks of the CAGH within the formation process of the Andean orogen. An influence of these causing bodies of rock on the trend of Holocene volcanic arc is likely. Genesis of the anomalous dense formations of rock could be traced back to Ordovician–Silurian time when a pre-Andean subduction zone is postulated in the region of northern Chile with its corresponding volcanic arc in the region of the CAGH.

Zusammenfassung

El campo de gravedad alto de los Andes Centrales (CAGH) consiste en una pronunciada anomalía positiva de la gravedad isostática, cuyo centro se encuentra en el borde oeste de los Andes Centrales a los 24°S. En este estudio se analizó el campo de gravedad mediante distintos métodos, de manera de poder establecer conclusiones cuantitativas sobre el causante de esta anomalía y el proceso de formación de este causante.La investigación numérica de las anomalías gravimétricas del CAGH indica la presencia de un cuerpo de alta densidad con aproximadamente 400 km de largo y 100–140 km de ancho, que se encuentra a profundidades variables entre 10 y 38 km. Se observa una correlación entre la posición de la anomalía residual y los bajos topográficos en los areas de Salares de Atacama, Arizaro, Antofalla y Pipanaco, la cual indica una fuerte influencia de rocas productoras de la anomalía en el CAGH, dentro del proceso de formación del orógeno andino. Es probable que estos cuerpos de rocas causantes de la anomalía tengan incluso influencia en el alineamiento del arco volcánico holocénico. La generación de cuerpos de rocas con una densidad anómala puede remontarse al Ordovícico–Silúrico, tiempo para el que postula una subducción pre-Andina en la región del norte de Chile y que corresponde con el arco volcánico en la región del CAGH.  相似文献   

14.
Natural Hazards - This study surveyed 227 residents in three US Pacific Coast communities that are vulnerable to a Cascadia subduction zone tsunami. In the Brochure condition, information was...  相似文献   

15.
《Precambrian Research》2001,105(2-4):205-226
The Lewisian complex of northwest (NW) Scotland has long been correlated with intercontinental Palaeoproterozoic belts of the North Atlantic region but uncertainty about the age and origin of the supracrustal rocks of the Loch Maree Group (LMG) and the apparent lack of subduction-related intrusive rocks have precluded interpretations of a similar tectonic setting for the Lewisian. We present integrated field, geochemical and geochronological data that resolve both issues and are consistent with an intercontinental setting. The LMG is made up of two components, one oceanic (plateau basalts or primitive arcs, plus associated abyssal sediments, ferruginous hydrothermal deposits, and platform carbonates) and the other continental (deltaic flysch, greywacke shale). The metasediments have geochemical characteristics that imply a source outside the Archaean gneisses of the Lewisian, an interpretation that agrees with the detrital zircon populations (from the Flowerdale schists) that have a significant 2.2–2.0-Ga component. The Ard gneiss, formerly regarded by some as a tectonic sliver of basement, is a strongly foliated granodiorite that occurs in sheets intrusive into the LMG, and has given a UPb crystallisation age of 1903±3 Ma, consistent with its syntectonic relationship with the major D1/D2 phase of Proterozoic deformation. The gneiss has a rather primitive geochemistry, which implies that it was not generated by melting of the local metasediments but was derived by partial melting of a more mafic source. The most likely model is that the LMG evolved as an accretionary complex, modern parallels of which can be found in the Shimanto belt in Japan, Rhodope in north Greece and Colombia and the Caribbean. The various elements of the complex became tectonically intermixed and subject to extreme deformation during accretion to the overriding Lewisian continent. Eventual relaxation and exhumation of the accretionary complex may have resulted in the generation of the Ard gneiss (possibly by melting of the underplated oceanic plateau) followed by collision with the continental crust of the lower plate. The younger D3 phase of the Palaeoproterozoic deformation sequence was coincident with the emplacement of the Tollie pegmatites at 1.7 Ga, c 200 m. years after the main collisional event, and may be related to a younger accretionary event (Labradorian?).  相似文献   

16.
Recently measured partition coefficients for Rb, Th, U, Nb, La (Ce), Pb, Sr, Sm, Zr, and Y between lherzolite assemblage minerals and H2O-rich fluid (Ayers et al. 1997; Brenan et al. 1995a,b) are used in a two-component local equilibrium model to assess the effects of interaction between slab-derived aqueous fluids and wedge lherzolite on the trace element and isotopic composition of island arc basalts (IAB). The model includes four steps representing chemical processes, with each process represented by one equation with one adjustable parameter, in which aqueous fluid: (1) separates from eclogite in the subducted slab (Rayleigh distillation, mass fraction of fluid released F  fluid); (2) ascends through the mantle wedge in isolated packets, exchanging elements and isotopes with depleted lherzolite (zone refining, the rock/fluid mass ratio n); (3) mixes with depleted lherzolite (physical mixing, the mass fraction of fluid in the mixture X  fluid); (4) induces melting to form primitive IAB (batch melting, mass fraction of melt F  melt). The amount of mantle lherzolite processed by the fluid in step (2) determines its isotopic and trace element signature and the relative contributions of slab and wedge to primitive IAB. Assuming an average depleted lherzolite composition and mineralogy (70% olivine, 26% orthopyroxene, 3% clinopyroxene and 1% ilmenite) and using nonlinear regression to adjust parameter values to obtain an optimal fit to the average composition of IAB (McCulloch and Gamble 1991) yields values of F  fluid= 0.20, n= 26, X  fluid= 0.17, and F  melt= 0.15, with r  2= 0.995 and the average relative error in trace element concentration = 6%. The average composition of IAB can also effectively be modeled with no contribution from the slab other than H2O (i.e., skip model step 1): n= 27, X  fluid= 0.21, F  melt= 0.17, with r  2= 0.992. By the time the fluid reaches the IAB source, exchange with depleted wedge lherzolite reduces the 87Sr/86Sr ratio isotopic composition to near-mantle values and the slab contribution to <50% for all but the most incompatible elements (e.g., Pb). The IAB may retain the slab signature for elements such as B and Be that are highly incompatible and that have very low concentrations in the depleted mantle wedge. The relatively high equilibrium D  mineral / fluid values measured by Ayers et al. (1997), Brenan et al. (1995a) and Stalder et al. (1998) suggest that large amounts of fluid (>5 wt%) must be added to lherzolite in the IAB source. Decreasing X  fluid below 0.05 causes model results to have unacceptably high levels of error and petrologically unreasonable values of F  melt. That H2O contents of IAB are generally <6 wt% suggests that not all of the H2O that metasomatizes the IAB source remains in the source to dissolve in the subsequently formed melt. Modeling of the compositions of specific primitive IAB from oceanic settings with low sediment input and depleted mantle wedges (Tonga, Marianas) shows a generally lower level of fluid-wedge interaction (low n), and therefore a larger slab component in primitive IAB. Received: 6 October 1997 / Accepted: 8 May 1998  相似文献   

17.
The Late Cretaceous Alihoca ophiolite in the Inner Tauride suture zone (ITSZ) of South-Central Turkey represents part of a single ophiolitic thrust sheet that originated from the Inner Tauride ocean. The ophiolite contains upper mantle peridotites, cumulate wehrlites, layered-to-isotropic gabbros, and microgabbroic-to-doleritic dikes. An ophiolitic mélange beneath the Alihoca ophiolite includes blocks of limestone, peridotite, dolerite, basalt, and deep-sea sedimentary rocks (radiolarite, chert) in a matrix comprising sheared serpentinite and mudstone. Isotropic gabbro and dolerite dike rocks show enrichment in Sr, K, Rb, Ba, and Th (LILE) and depletion of Ta, Nb, Zr, Ti, and Y (HFSE), indicating an island arc tholeiite (IAT) affinity. Relatively younger dolerite rocks display low TiO2 (<0.5 wt.%) contents, concave REE profiles with low HREE concentrations, and high LREE values, typical of boninitic affinities. The Alihoca ophiolite, hence, displays an IAT to boninitic geochemical progression in its magmatic evolution, reminiscent of many other Tethyan ophiolites in the region. It represents the remnant of a forearc oceanic crust, which developed during the early stages of subduction within the Inner Tauride ocean. Volcanic, volcano-sedimentary, and sedimentary rocks of the Uluk??la–Çamard? basin north of the ITSZ disconformably overlie the mafic-ultramafic rocks of the Alihoca ophiolite. Pillowed and massive lavas of the latest Cretaceous–Palaeocene Uluk??la Formation have alkaline basalt-to-basaltic andesite compositions, displaying relatively enriched LILE and LREE patterns with negative Nb and Ta anomalies. These geochemical features suggest that magmas of the Uluk??la–Çamard? volcanic rocks formed from partial melting of a metasomatized lithospheric mantle. This melting event was triggered by the influx of asthenospheric heat through a slab breakoff-induced window in the downgoing Tethyan oceanic lithosphere.  相似文献   

18.
ABSTRACT

In order to determine the effects of fluid–rock interaction on nitrogen elemental and isotopic systematics in high-pressure metamorphic rocks, we investigated three different profiles representing three distinct scenarios of metasomatic overprinting. A profile from the Chinese Tianshan (ultra)high-pressure–low-temperature metamorphic belt represents a prograde, fluid-induced blueschist–eclogite transformation. This profile shows a systematic decrease in N concentrations from the host blueschist (~26 μg/g) via a blueschist–eclogite transition zone (19–23 μg/g) and an eclogitic selvage (12–16 μg/g) towards the former fluid pathway. Eclogites and blueschists show only a small variation in δ15Nair (+2.1 ± 0.3‰), but the systematic trend with distance is consistent with a batch devolatilization process. A second profile from the Tianshan represents a retrograde eclogite–blueschist transition. It shows increasing, but more scattered, N concentrations from the eclogite towards the blueschist and an unsystematic variation in δ15N values (δ15N = + 1.0 to +5.4‰). A third profile from the high-P/T metamorphic basement complex of the Southern Armorican Massif (Vendée, France) comprises a sequence from an eclogite lens via retrogressed eclogite and amphibolite into metasedimentary country rock gneisses. Metasedimentary gneisses have high N contents (14–52 μg/g) and positive δ15N values (+2.9 to +5.8‰), and N concentrations become lower away from the contact with 11–24 μg/g for the amphibolites, 10–14 μg/g for the retrogressed eclogite, and 2.1–3.6 μg/g for the pristine eclogite, which also has the lightest N isotopic compositions (δ15N = + 2.1 to +3.6‰).

Overall, geochemical correlations demonstrate that phengitic white mica is the major host of N in metamorphosed mafic rocks. During fluid-induced metamorphic overprint, both abundances and isotopic composition of N are controlled by the stability and presence of white mica. Phengite breakdown in high-P/T metamorphic rocks can liberate significant amounts of N into the fluid. Due to the sensitivity of the N isotope system to a sedimentary signature, it can be used to trace the extent of N transport during metasomatic processes. The Vendée profile demonstrates that this process occurs over several tens of metres and affects both N concentrations and N isotopic compositions.  相似文献   

19.
International Journal of Earth Sciences - Early Neoproterozoic metaigneous rocks occur in the central part of the Kaoko–Dom Feliciano–Gariep orogenic system along the coasts of the...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号