首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
朱永峰 《岩石学报》2012,28(7):2113-2120
在新疆西南天山科桑溶洞地区,新厘定出一套斜长角闪岩-花岗岩地质单元:侵入斜长角闪岩中的新元古代白云母花岗岩(片麻状构造)、以及侵入上述古老岩石单元的早奥陶世花岗岩(块状构造)。片麻状白云母花岗岩中锆石具有热液锆石边、岩浆锆石幔和碎屑锆石核(边-幔-核结构),剔除被热液锆石和碎屑锆石混染的SHRIMP测点,获得岩浆锆石幔的加权平均年龄752.3±5.1Ma(MSWD=0.95),代表岩浆的结晶年龄。块状花岗岩的锆石具有边-核结构,热液锆石边的U-Pb年龄(419.5±5.7Ma)明显偏低。剔除热液锆石和碎屑锆石,获得岩浆锆石的平均U-Pb年龄481.1±4.4Ma(MSWD=0.88),代表花岗岩的结晶年龄。早奥陶世早期,岩浆侵入新元古代片麻状白云母花岗岩中。在晚志留世或者更晚时期,两类花岗岩共同经受了变质热液改造,变质流体交代岩浆锆石,导致锆石溶蚀再生长。  相似文献   

2.
Airborne radiometric survey and field studies outlined a large, elongate, high‐level plutonic suite within the Richardson pluton south of the Contact Lake Belt in the Great Bear Magmatic Zone, Northwest Territories, Canada. In terms of content of radioactive elements, the Richardson pluton is composed of two distinct granite types, low heat production (LHP) and high heat production (HHP). Uranium content in the LHP and HHP granites ranges from 3.0 to 4.9 ppm and 6.5 to 24.6 ppm, respectively, showing similarity of the LHP granite to average granites. Geochemical studies indicate that there is a genetic relationship between these two types of granite; the LHP granite was the early product of magma crystallization, whereas the HHP granite is the result of extensive crystal fractionation of biotite, plagioclase and apatite. The presence of magmatic fluorite in granite suggests that high fluorine content lowered the liquidus temperature of magma causing lower temperature fractionation during ascent to high crustal levels, which increased U and Th concentrations in the resultant HHP granite. Weak U mineralization occurs locally as discontinuous quartz ± hematite ± pitchblende veins and veinlets within the HHP granite. Stronger U mineralization (U ± Ag ± Ni ± Co ± Cu) occurred in the past‐producing Contact Lake and Port Radium deposits. It appears that such mineralization may have had a spatial and temporal genetic‐paragenetic relationship with the HHP granite.  相似文献   

3.
湖南锡田花岗岩锆石U-Pb年代学及钨锡成矿时代的探讨   总被引:3,自引:3,他引:0  
华南是世界上最大的花岗岩省之一,其中中生代花岗岩最为发育,与之相伴生的是大量钨锡多金属矿床,花岗岩的成因演化因与这些矿床的成矿作用密切相关而备受关注。湖南锡田花岗岩体是该区的一个典型岩体,主要由黑云母花岗岩、黑云母二长花岗岩和细粒花岗岩组成,并伴生有钨锡矿床。本文以湖南锡田花岗岩体为研究对象,对其中不同类型的岩石进行了详细的岩石学和锆石SIMS与LA-ICP-MS U-Pb定年工作。分析结果表明,锡田花岗岩体存在晚三叠世(227~233Ma)和晚侏罗世(150~154Ma)两期岩浆活动,早期的岩浆活动主要分布在岩体北部和中部,晚期岩浆活动仅在岩体中部及东部矿体附近可见,两期岩浆活动具有相同的岩性组合。另外,对含矿花岗岩的锆石U-Pb定年结果表明该地区可能存在晚三叠世的成矿作用,结合前人的工作推断锡田地区钨锡矿的形成受晚三叠世和晚侏罗世两期岩浆事件的影响。  相似文献   

4.
Seawater intrusion is a major problem to freshwater resources especially in coastal areas where fresh groundwater is surrounded and could be easily influenced by seawater. This study presents the development of a conceptual and numerical model for the coastal aquifer of Karareis region (Karaburun Peninsula) in the western part of Turkey. The study also presents the interpretation and the analysis of the time series data of groundwater levels recorded by data loggers. The SEAWAT model is used in this study to solve the density-dependent flow field and seawater intrusion in the coastal aquifer that is under excessive pumping particularly during summer months. The model was calibrated using the average values of a 1-year dataset and further verified by the average values of another year. Five potential scenarios were analyzed to understand the effects of pumping and climate change on groundwater levels and the extent of seawater intrusion in the next 10 years. The result of the analysis demonstrated high levels of electrical conductivity and chloride along the coastal part of the study area. As a result of the numerical model, seawater intrusion is simulated to move about 420 m toward the land in the next 10 years under “increased pumping” scenario, while a slight change in water level and TDS concentrations was observed in “climate change” scenario. Results also revealed that a reduction in the pumping rate from Karareis wells will be necessary to protect fresh groundwater from contamination by seawater.  相似文献   

5.
《International Geology Review》2012,54(11):1357-1376
The Jiazishan porphyry-type molybdenum deposit is located in the eastern Inner Mongolia Autonomous Region in China. Mineralization occurs mainly as veins, lenses, and layers within the host porphyry. To better understand the link between mineralization and host igneous rocks, we studied samples from underground workings and report new SHRIMP II zircon U–Pb and Re–Os molybdenite ages, and geochemical data from both the molybdenites and the porphyry granites. Seven molybdenite samples yield a Re–Os isochron weighted mean age of 135.4 ± 2.1 Ma, whereas the porphyry granite samples yield crystallization ages of 139 ± 1.5 Ma (Jiazishan deposit) and 133 ± 1 Ma (Taolaituo deposit). The U–Pb and Re–Os ages are similar, suggesting that the mineralization is genetically related to Early Cretaceous porphyry emplacement. Re contents of the molybdenite range from 21.74 ppm to 52.08 ppm, with an average of 35.92 ppm, whereas δ34 S values of the sulphide vary from 1.3‰ to 4.2‰. The ores have 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of 18.178–18.385, 15.503–15.613, and 37.979–38.382, respectively. We also obtained a weighted mean U–Pb zircon age of 294.2 ± 2.1 Ma for the oldest granite in Jiazishan area. All granites are A-type granites. These observations indicate that the molybdenites and the porphyry granites were derived from a mixed source involving young accretionary materials and enriched subcontinental lithospheric mantle. A synthesis of geochronological and geological data reveals that porphyry emplacement and Mo mineralization in the Jiazishan deposit occurred contemporaneously with Early Cretaceous tectonothermal events associated with lithospheric thinning, which was caused by delamination and subsequent upwelling of the asthenosphere associated with intra-continental extension in Northeast China.  相似文献   

6.
Summary The Palim granite, hosted by the metasedimentary country rocks in the Bastar tin province, is a heterogeneous pluton that comprises hornblende granite, biotite granite and two-mica granite. Spherical inhomogeneous surmicaceous enclaves occur within the granites with coarse grained cores of muscovite mantled by finer muscovite-quartz-biotite (± sillimanite) rims. Geochemical features imply that the granites are highly evolved and geochemically distinct. Petrographic and geochemical considerations point towards a transition from metaluminous I-type hornblende-bearing granite in the south to peraluminous volatile-enriched S-type like lithologies (biotite and two-mica granites) towards north. Modeling of highly incompatible elements such as Nb and Cs, implies 31 to 33% assimilated fractional crystallization of a melt with an initial composition close to that of the hornblende granite to form the two-mica granite. Hornblende geobarometry, plagioclase-hornblende thermometry (in hornblende granite) and phengite barometry (in two-mica granite), yield P-T estimates of 5–7 kb/725°–760 °C, and 6 kb/700 °C, respectively. The study further implies that a genetic link exists between granite magmatism and the formation of tin pegmatites in the region. The preponderance of peripheral pegmatites to the north-east of the Palim granite is regarded a result of outward crystal-melt fractionation and tectonic tilting of the pluton. Received October 21, 1999; revised version accepted December 12, 2000  相似文献   

7.
The central-eastern part of the Sierra de Velasco (Sierras Pampeanas, NW Argentina) is formed by the large Huaco (40 × 30 km) and Sanagasta (25 × 15 km) granite massifs and the small La Chinchilla stock (2 × 2 km). The larger granites intrude into Ordovician metagranitoids and crosscut Devonian (?) mylonitic shear zones, whereas the small stock sharply intrudes into the Huaco granite. The two voluminous granites are biotitic-muscovitic and biotitic porphyritic syeno- to monzogranites. They contain small and rounded tonalitic and quartz-dioritic mafic microgranular enclaves. The small stock is an equigranular, zinnwaldite- and fluorite-bearing monzogranite. The studied granites are silica-rich (SiO2 >70%), potassium-rich (K2O >4%), ferroan, alkali-calcic to slightly calk-alkalic, and moderately to weakly peraluminous (A/CNK: 1.06–1.18 Huaco granite, 1.01–1.09 Sanagasta granite, 1.05–1.06 La Chinchilla stock). They have moderate to strong enrichments in several LIL (Li, Rb, Cs) and HFS (Nb, Ta, Y, Th, U) elements, and low Sr, Ba and Eu contents. U–Pb monazite age determinations indicate Lower Carboniferous crystallization ages: 350–358 Ma for the Huaco granite, 352.7 ± 1.4 Ma for the Sanagasta granite and 344.5 ± 1.4 Ma for the La Chinchilla stock. The larger granites have similar ?Nd values between ?2.1 and ?4.3, whereas the younger stock has higher ?Nd of ?0.6 to ?1.4, roughly comparable to the values obtained for the Carboniferous San Blas granite (?1.4 to ?1.7), located in the north of the sierra. The Huaco and Sanagasta granites have a mainly crustal source, but with some participation of a more primitive, possibly mantle-derived, component. The main crustal component can be attributed to Ordovician peraluminous metagranitoids. The La Chinchilla stock derives from a more primitive source, suggesting an increase with time in the participation of the primitive component during magma genesis. The studied granites were generated during a post-orogenic period in a within-plate setting, possibly as a response to the collapse of the previous Famatinian orogen, extension of the crust and mantle upwelling. They are part of the group of Middle Devonian–Lower Carboniferous granites of the Sierras Pampeanas. The distribution and U–Pb ages of these granites suggests a northward arc-parallel migration of this mainly post-orogenic magmatism with time.  相似文献   

8.
Abstract

Palaeozoic granitoids in the Chinese Altai are important for understanding the evolution of the Central Asian Orogenic Belt (CAOB). The Xiaodonggou granitic intrusion, situated in the Chinese Altai (southern CAOB), is composed of two intrusive phases, medium-grained granite intruded by porphyritic granite. Zircon LA-ICP-MS U–Pb analyses of medium-grained granite and porphyritic granite yield ages of 409 ± 2 Ma and 400 ± 1 Ma, respectively, indicating that these formed in Early Devonian time. Medium-grained granite and porphyritic granite have similar geochemical features and Nd–Hf isotopic compositions. Arc-like geochemical characteristics (e.g. enrichment of LILEs and negative anomalies of Nb, Ta, Ti, and P) show that both phases are volcanic arc granites (VAGs). Geochemical and isotopic characteristics suggest that these magmas originated from melting older crust. Based on their near-zero or negative εNd(t) values (?1.4to 0) and positive εHf(t) values (+1.4 to +7.8), together with Nd model ages of 1.15–1.26 Ga and zircon Hf model ages of 0.90–1.30 Ga, we suggest that the Xiaodonggou granites were derived from a mixture of juvenile and old crustal components. Some other Devonian granitic intrusions were recently identi?ed in the Chinese Altai with ages between 416 and 375 Ma. These Devonian granites have similar geochemical characteristics and petrogenesis as Xiaodonggou granites. The formation of these Devonian granites was in response to subduction processes, suggesting that Chinese Altai was an active continental margin in Early Devonian time.  相似文献   

9.
The Triassic (Indosinian) granites in the South China Block (SCB) have important tectonic significance for understanding the evolution of Eastern Asia. The Dengfuxian biotite granite in eastern Hunan Province, China, reported in this article, was recognized as Late Triassic (late Indosinian) weakly peraluminous A-type granite with a zircon laser ablation inductively coupled plasma mass spectrometry U–Pb age of 225.7 ± 1.6 Ma. It is enriched in F, Cs, Rb, Th, high field strength elements, and rare earth elements (REEs) and depleted in Ba, Sr, P, Ti, Nb, and Ta, with high Ga/Al ratios and zircon saturation temperatures. The Dengfuxian biotite granite shows high initial Sr isotope values (0.715932 to 0.716499) and negative ?Nd(t) (?10.46 to ?9.67) and ?Hf(t) (?9.92 to ?6.29) values, corresponding to the Nd model ages of 1.79 to 1.85 Ga and the Hf model ages of 1.65 to 1.88 Ga. It is proposed that the Dengfuxian biotite granite was derived from high-temperature partial melting of the Palaeoproterozoic lower crust undergoing granulitization. Some Late Triassic A-type granites were recently identified in the SCB with the ages between 202 and 232 Ma. These A-type granites have the same geochemical characteristics and petrogenesis as Dengfuxian A-type granite, and show A2-subtype granite affinity. The Late Triassic A-type granite formed a NE-trending granite belt, which is consistent with the main NE-trending faults in the SCB. The formation of these A-type granites was in response to the subduction of the palaeo-Pacific plate underneath the SCB, and indicates an extensional tectonic environment in the SCB. Combined with previous studies on tectonic evolution, we suggest that there may be a tectonic transition inside the SCB from compression to extension at least from 225 to 230 Ma.  相似文献   

10.
Despite extensive geochemical study and their importance to granite studies, the geochronology of Silurian to early-Devonian granitic rocks of southeastern Australia is poorly understood. In order to provide an improved temporal framework, new ion microprobe U–Pb zircon ages are presented from these rocks, and previous work is critically reviewed. Geochronological control is best in the Berridale Batholith, where S- and I-type granites have a close spatial relationship. In this region, there is a small volume of I-type granite that crystallised at 436 Ma, followed closely by a large volume of S-type granite at 432 Ma. I-type granite is abundant in a second peak at ca 417 Ma, although the Jindabyne pluton from the Kosciuszko Batholith is slightly older, at 424 Ma. A broader survey of S-type granite throughout the eastern Lachlan Orogen shows that the 432 Ma event is ubiquitous. There is no temporal overlap between S- and I-type granites in the Kosciuszko and Berridale Batholiths, which suggests that factors other than variations in degree of crustal contamination (which may include variation in tectonic setting, heat-flow, mass transfer across the crust–mantle boundary and/or availability in source materials) contribute to the diversity in granite types. The S-type granitic rocks occupy an aerial extent of greater than 28 000 km2, and geochronological constraints suggest that the crystallisation of these granites took place over a relatively small interval, probably less than 10 m.y. This implies a magmatic flux of over 64 km3/Ma per km strike length, comparable to other high-flux granitic belts. Previous work has linked the Benambran Orogeny to the generation of the S-type granites, and so the age of these granites constrains the age of Benambran Orogenesis  相似文献   

11.
The late Palaeoproterozoic (1.72–1.70 Ga) ferroan granites of the Khetri complex, northern Aravalli orogen, NW India, were extensively metasomatised ~900 Ma after their emplacement, at around 850–830 Ma by low-temperature (ca. 400 °C) meteoric fluids that attained metamorphic character after exchanging oxygen with the surrounding metamorphic rocks. Albitisation is the dominant metasomatic process that was accompanied by Mg and Ca metasomatism. A two-stage metasomatic model is applicable to all the altered ferroan intrusives. The stage I is represented by a metasomatic reaction interface that developed as a result of transformation of the original microcline–oligoclase (An12–14) granite to microcline–albite (An1–3) granite, and this stage is rarely preserved. In contrast, the stage II metasomatic reaction front, where the microcline-bearing albite granite has been transformed to microcline-free albite granite, is readily recognisable in the field and present in most of the intrusives. Some of them lack an obvious reaction interface due to the presence of stage II albite granites only. When studied in isolation, these intrusives were incorrectly classified and their tectonic setting was misinterpreted. Furthermore, our results show that the mafic mineralogy of metasomatised granites has a significant impact on the characterisation of such rocks in the magmatic classification and discrimination diagrams. Nevertheless, the stage I metasomatised granites can be appropriately characterised in these diagrams, whereas the characterisation of the stage II granites will lead to erroneous interpretations. The close spatial association of these high heat producing ferroan granites with iron oxide–copper–gold (IOCG), U and REE mineralisation in the region indicates a genetic link between the metasomatism and the mineralisation. World-class IOCG, U and REE deposits are associated with metasomatised ferroan granites, suggesting that such a relationship may act as a critical first-order exploration target for undiscovered mineral deposits.  相似文献   

12.
High arsenic levels in groundwater of the aquifers, belonging to the Pliocene terrestrial layers and Quaternary alluvial sediments, have become a significant problem for the inhabitants living in Sarkisla (Turkey). The main objective of this study was to determine the origin and arsenic contamination mechanisms of the Sarkisla drinking water aquifer systems. The highest arsenic concentrations were found in Pliocene layers and alluvial sediments with concentrations ranging from 2.1 to 155 mg/kg. These rocks are the main aquifers in the study area, and most of the drinking groundwater demand is met by these aquifers. Groundwater from the Pliocene aquifer is mainly Ca-HCO3 and Ca-SO4 water type with high EC values reaching up to 3,270 μS/cm, which is due to the sulfate dissolution in some parts of the alluvial aquifer. Stable isotope values showed that the groundwater was of meteoric origin. Tritium values for the groundwater were between 8.31 and 14.06 TU, representing a fast circulation in the aquifer. Arsenic concentrations in the aquifers were between 0.5 and 345 μg/L. The highest arsenic concentrations detected in the Pliocene aquifer system reached up to 345 μg/L with an average value of 60.38 μg/L. The arsenic concentrations of the wells were high, while the springs had lower arsenic concentrations. These springs are located in the upper parts of the study area where the rocks are less weathered. The hydrogeochemical properties demonstrated that the water–rock interaction processes in sulfide-bearing rocks were responsible for the remarkably high groundwater arsenic contamination in the study area. In the study area, the arsenic levels determined in groundwater exceeded the levels recommended by the WHO. Therefore, it is suggested that this water should not be used for drinking purposes and new water sources should be investigated.  相似文献   

13.
Here we report on the different sampling strategies for almost seven years of sampling rocks/sediments for the determination of As within the Intermediate Aquifer System (IAS) and upper Floridan Aquifer System (FAS), a very large and productive limestone aquifer spanning from Georgia into Florida. In the FAS, As contamination has become a recurring problem during aquifer storage and recovery (ASR), particularly in central and south Florida.To investigate these phenomena, samples from solid drill cores and rock cuttings were collected from the Hawthorn Group, Suwannee Limestone, Ocala Limestone and Avon Park Formation. Samples were taken along drill cores and rock cuttings (referred to as ‘interval’ samples) or from particular drill core sections and rock cuttings (referred to as ‘targeted’ samples) likely to contain elevated concentrations of As as indicated by the presence of pyrite, hydrous ferric oxide, organic matter, clay minerals, fracture surfaces, and high permeable (moldic) zones.Arsenic was present in all of the stratigraphic units at low concentrations, close to the global average for As in limestone of 2.6 mg/kg. The highest As concentration was 69 mg/kg. In all units, however, the average bulk As concentration in the targeted samples was substantially higher than that in the interval samples. Based on direct spot measurements by electron microprobe and indirect calculations, pyrite was identified as the main source of As in the FAS. Concentrations in pyrite ranged from less than 100 mg/kg to more than 11,000 mg/kg. Because pyrite is heterogeneously distributed, both vertically and horizontally in the sampled stratigraphic units, the same was observed for the distribution of As. However, As concentrations generally decreased with depth, i.e., highest As values in the Hawthorn Group and lowest As values in the Ocala Limestone and Avon Park Formation. Compared to pyrite, other trace minerals contained much less As.The average As concentrations of the two types of sample media (solid cores and rock cuttings) were quite similar. These results indicate that if simply the average bulk rock As concentration of a geologic unit is the desired outcome of an investigation, either interval or targeted sampling of rock cuttings, seems to be sufficient. This is particularly important when time and money are a factor. This approach could work equally well for any other trace element. Structural sedimentary information, such as fractures, etc., is likely lost, however, when sampling rock cuttings. Thus, if this information is required, solid core samples need to be collected by hollow core diamond drilling.  相似文献   

14.
This work establishes the relative timing of pluton emplacement and regional deformation from new dating and structural data. (1) Monazite and (2) zircon dating show Tournaisian ages for the Guéret granites [Aulon granite 352 ± 5 Ma (1), 351 ± 5 Ma (2) and Villatange tonalite 353 ± 6 Ma (1)] and Viseo-Namurian ages for the north Millevaches granites [Chavanat granite 336 ± 4 Ma (1), Goutelle granite 336 ± 3 Ma (1), Royère granite 323 ± 2 Ma (1) and 328 ± 6 Ma (2), Courcelles granite 318 ± 3 Ma (1)]. The Guéret and Millevaches granites are separated by the N110 Arrènes–la Courtine Shear Zone (ACSZ), composed from West to East by the Arrènes Fault (AF), the North Millevaches Shear Zone (NMSZ) and the la Courtine Shear Zone (CSZ), respectively. Tournaisian Guéret granites experienced a non-coaxial dextral shearing (NMSZ) recorded by the Villatange granite while the Aulon granite (Guéret granite) cuts across this dextral shear zone which thus stopped shearing during Tournaisian time. Visean to Namurian Millevaches granites experienced a coaxial deformation. Therefore, low displacements along the NMSZ and the CSZ occurred at the emplacement time of Chavanat and Pontarion-Royère granites (336–323 Ma). The structural analyses of Goutelle granite emphasizes a deformation related to the dextral Creuse Fault System (CFS) oriented N150–N160. From 360 to 300 Ma, the Z strain axis is always horizontal inferring a wrench setting for these granite emplacements. During this tectonic evolution, the Argentat zone acted as a minor normal fault and is related with a local Middle Visean (340–335 Ma) syn-orogenic extension on the western border of the Millevaches massif.  相似文献   

15.
The Singrauli region is known for fluoride contamination and its effect on human population. In this work the possible sources of fluoride contamination in Rihand reservoir water is constrained. They include slurry water, fly ash and coal samples of various thermal power plants, coal seams and granites of the region. Petrographic study depicted the presence of fluoride bearing minerals - flour apatite in pink granite. Preliminary scanning electron microscope studies revealed presence of fluorine peak in coal samples. The chemical analysis confirmed the presence of fluoride in fly ash (12.6 mg/kg), drain water (5.34 mg/l), soil (6.1 mg/kg), coal (3.1 mg/kg). They confirmed the source of fluoride from coal of thermal power plant which utilized coal from Singrauli coal seam (1.6 mg/kg). Further the Rihand reservoir water is also enriched by fluoride contaminant (upto 4.7 mg/l). This contaminates groundwater of the area as well. The contaminated water used for drinking and agriculture affects health of inhabitants in the area. It is concluded that the main source of fluoride contamination in the study area is due to coal burnt in thermal power plant and pink granite formation of the area, both anthropogenic and geogenic sources are implied.  相似文献   

16.
Zircon and xenotime, from two mineralogically and chemically contrasting granite suites occurring in the Kru?né Hory/Erzgebirge Mts., display extended compositional variability with respect to abundances of Zr, Hf, REE, Y, P, Th, Ca, Al, Fe and As. According to their geochemical signatures, P-rich (S-type) and P-poor (A-type) granites could be distinguished here. Both granite suites display high Ga/Al ratios (>2.6) and according to FeOtot./(FeOtot. + MgO) ratio can be classified as ferrous granites. Consequently, the both ratios cannot be used for discrimination S- and A-type granites. Both minerals are characterized by a variety of complex zircon-xenotime textures. They are usually strong hydrated and enriched in F. Zircon from P-rich granites displays a significant enrichment in P (up 0.24 apfu P), whereas zircon from P-poor granites has lower P and higher Y (up to 0.15 apfu Y). The xenotime-type substitution is the most important mechanism of isomorphic substitution in zircon in both granite suites. Zircon from both granite suites is typically enriched in Hf, especially unaltered zircon from P-rich granites (up to 8.2 wt. % HfO2). However in altered zircons the Hf/Zr ratio is higher in the P-poor granites. The Hf-rich zircon from unaltered P-rich granite crystallised from low temperature granite melt, whereas altered zircons crystallised during post-magmatic hydrothermal alteration (greisenization). Xenotime from P-poor granites displays a considerable enrichment in HREE (up to 40 mol. % HREEPO4) compared to xenotime from P-rich granites (up to 20 mol. % HREEPO4). Xenotime compositions from P-rich granites are influenced by brabantite-type substitution, whereas for xenotime from P-poor granites the huttonite-type substitution is dominant. Unusual enrichments in HREE is significant for xenotime from P-poor granites, especially in Yb (up to 0.17 apfu Yb) and Dy (up to 0.11 apfu).  相似文献   

17.
《International Geology Review》2012,54(11):1370-1390
ABSTRACT

To better understand the Neoproterozoic tectonic evolution along the northern margin of Yangtze Block, we have determined the geochronological and geochemical compositions of newly recognized bimodal volcanic suite and coeval granites from the western Dabie terrain. LA-ICP-MS zircon U-Pb dating reveals that the felsic and mafic volcanics from the Hong’an unit have crystallization ages of 730 ± 4Ma and 735 ± 5Ma, respectively, indicating that the bimodal suite was erupted during the Neoproterozoic. The Xuantan, Xiaoluoshan, and Wuchenhe granites yield U-Pb ages of 742 ± 4 Ma, 738 ± 4 Ma, and 736 ± 4 Ma, respectively. The felsic volcanic rocks show peraluminous characteristics, and have a close affinity to S-type granite. The mafic volcanic rocks are basalt in compositions, and are likely generated from a depleted mantle source. The granites belong to high-K calc-alkaline and calc-alkaline series, display metaluminous to peraluminous, and are mainly highly fractionated I-type and A-type granite. The granites and felsic volcanics have zircon εHf(t) values of ?16.4 to + 5.6 and two-stage Hf model ages (TDM2) of 1.28 to 2.40 Ga, suggesting that they were partial melting of varying Mesoproterozoic–early-Neoproterozoic crust. The granites have εNd(t) of -14.7 to -1.5, and the two-stage Nd model ages (TDM2) values of 1.54 to 2.61 Ga, also implying the Yangtze crustal contribution. These Neoproterozoic bimodal suite and coeval granites were most likely generated in a rifting extensional setting, triggered by the mantle upwelling, associated with crust–mantle interaction. Intensive magmatic rocks are widespread throughout the South Qingling, Suizhao, western Dabie and eastern Dabie areas during 810–720 Ma, and show peak ages at ~ 740 Ma. Combining regional geology, we support a continental rifting extensional setting for the north margin of the Yangtze Block during the break-up of the supercontinent Rodinia.  相似文献   

18.
In the coastal region of Bangladesh, groundwater is mainly used for domestic and agricultural purposes, but salinization of many groundwater resources limits its suitability for human consumption and practical application. This paper reports the results of a study that has mapped the salinity distribution in different aquifer layers up to a depth of 300 m in a region bordering the Bay of Bengal based on the main hydrochemistry and has investigated the origin of the salinity using Cl/Br ratios of the samples. The subsurface consists of a sequence of deltaic sediments with an alternation of more sandy and clayey sections in which several aquifer layers can be recognized. The main hydrochemistry shows different main water types in the different aquifers, indicating varying stages of freshening or salinization processes. The most freshwater, soft NaHCO3-type water with Cl concentrations mostly below 100 mg/l, is found in the deepest aquifer at 200–300 m below ground level (b.g.l.), in which the fresh/saltwater interface is pushed far to the south. Salinity is a main problem in the shallow aquifer systems, where Cl concentrations rise to nearly 8000 mg/l and the groundwater is mostly brackish NaCl water. Investigation of the Cl/Br ratios has shown that the source of the salinity in the deep aquifer is mixing with old connate seawater and that the saline waters in the more shallow aquifers do not originate from old connate water or direct seawater intrusion, but are derived from the dissolution of evaporite salts. These must have been formed in a tidal flat under influence of a strong seasonal precipitation pattern. Long dry seasons with high evaporation rates have evaporated seawater from inundated gullies and depressions, leading to salt precipitation, while subsequent heavy monsoon rains have dissolved the formed salts, and the solution has infiltrated in the subsoil, recharging groundwater.  相似文献   

19.
This study shows that the intrusive rocks distributed in the Aoyiqieke-Tamuqi area on the southern margin of the Tarim Block are composed of gabbro, diorite, granodiorite and granite, which constitute regionally a nearly EW-trending tectono-magmatic belt. Petrochemically the diorite, granodiorite and granite belong to the calc-alkaline, high-K series, with Na2O/K2O ratios varying between 0.83 and 2.63. M/F ratios in the diorite are within the range of 0.44–0.70 and those of the granodiorite ( granite) are 0.45–0.87. Petrochemistry data show that the intrusive complexes are of the I type and their ΣREE is slightly variable, within the range of 178.31–229.01 × 10−6. The LREE/HREE ratios of the diorite and granite are 3.78–5.13 and 6.69–7.66, respectively. The plutons usually show moderate negative Eu anomalies with δEu values ranging from 0.53 to 0.82, showing almost no difference among different rocks. The (La/Yb)N values of diorite and granite are 12.39−14.86 and 22.07−26.03, respectively. The diorite and granite possess very similar REE distribution patterns, indicating that they were both derived from the same source. As for their trace element ratios, the diorite has higher Nb/Ta ratios than the granite, which are 15.73−17.16 and 12.03−15.01, respectively. It can be seen that the Nb/Ta ratios of the diorite are much closer to the average mantle (17.5). Their Zr/Hf ratios are very close to each other, within the range of 29−34. Th/Y ratios in the diorite are 0.42−0.80 (all less than unity) while those of the granite are 1.02−2.04. Some difference is also noticed in Ti/V between the diorite and the granite (52.6−54.2 for the former and 52.6−54.2 for the latter). As compared with ocean ridge granites, both diorite and granite are characterized by remarkable LILE enrichment, as well as by moderate negative Ba and postive Ce anomalies. The contents of Nb and Ta in the diorite and granite are equivalent to those of the ocean ridge granites, but the contents of Zr, Hf, Sm, Y, and Yb are all lower than those of the ocean ridge granites, indicating that these granites are similar to the island-arc granites of Chile. From their geochemical characteristics, it is considered that the intrusive rocks in the area studied were formed in an island-arc environment at the continental margin.  相似文献   

20.
Based on the new data of isotopic ages and geochemical analyses, three types of Mesozoic granites have been identified for the Xiong'ershan-Waifangshan region in western Henan Province: high-Ba-Sr I-type granite emplaced in the early stage (~160 Ma), I-type granite in the middle stage (~130 Ma) and anorogenic A-type granite in the late stage (~115 Ma).Geochemical characteristics of the high-Ba-Sr I-type granite suggest that it may have been generated from the thickened lower crust by partial melting with primary residues of amphibole and garnet. Gradual increase of negative Eu anomaly and Sr content variations reflect progressive shallowing of the source regions of these granites from the early to late stage. New 40Ar/39Ar plateau ages of the early-stage Wuzhangshan granite (156.0±1.1 Ma, amphibole) and middle-stage Heyu granite (131.8±0.7 Ma, biotite) are indistinguishable from their SHRIMP U-Pb ages previous published, indicating a rapid uplift and erosion in this region. The representative anorogenic A-type granite, Taishanmiao pluton, was emplaced at ~115 Ma. The evolution of the granites in this region reveals a tectonic regime change from post-collisional to anorogenic between ~160 Ma and ~115 Ma. The genesis of the early- and middle-stage I-type granites could be linked to delamination of subducted lithosphere of the Qinling orogenic belt, while the late-stage A-type granites represent the onset of extension and the end of orogenic process. In fact, along the Qinling -Dabie-Sulu belt, the Mesozoic granitoids in western Henan, Dabieshan and Jiaodong regions are comparable on the basis of these temporal evolutionary stages and their initial 87Sr/86Sr ratios,which may suggest a similar geodynamic process related to the collision between the North China and Yangtze cratons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号