首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The structural features of the Butakov Guyot are interpreted based on the comparison of telephoto-profiling (approximately 8000 photos of the oceanic floor) and multibeam echo sounding data. The network of linear structures of the guyot is outlined and their regular orientation is visualized in rose charts. Several structural steps complicating the slopes and summit plateau of the guyot are identified, and a scenario of its possible initiation and evolution is suggested. The data imply elevated tectonic activity of the Butakov Guyot relative to other guyots and its subdivision into the northern and southern bocks. It is shown that the main systems of the linear structures in the Butakov Guyot are oriented in consistence with four global fracture networks.  相似文献   

2.
为能科学、快速量化地圈定出大洋海山钴结壳优质矿区,笔者基于国际海底管理局提出的矿区选取模型,利用我国西太平洋海山钴结壳资源调查的公开的拖网采样资料,综合钴结壳的分布规律和证据权法所得海山钴结壳资源预测后验概率图,将西太平洋麦哲伦海山区戈沃罗夫盖特平顶海山圈定为钴结壳资源前景较好的远景区,并采用人机交互式的矿区圈定方法圈定出符合国际海底管理局规章要求的7个群组共100个钴结壳矿块。据此估算出戈沃罗夫盖特平顶海山湿结壳资源量为69 487.6×104 t;圈定的100个矿块主要分布在2 000~3 000 m斜坡上,湿结壳资源量为14 092×104 t,干结壳资源量为9 789.35×104 t;锰金属量为1 961.3×104 t,铜金属量为10.17×104 t,钴金属量为54.06×104 t,镍金属量为34.87×104 t。这些数据表明,戈沃罗夫盖特平顶海山规模较大,钴结壳资源前景潜力大,可作为钴结壳深入调查和矿区申请备选海山。  相似文献   

3.
《Gondwana Research》2010,17(3-4):587-608
Plume-related oceanic magmatism form oceanic islands, seamounts and plateaus (hereafter “seamounts” or “paleoseamounts”), which are important features in geological history. The accretion of oceanic seamounts to active continental margins significantly contributed to the formation of the continental crust. This paper reviews occurrences of Late Neoproterozoic–Mesozoic seamounts of the Paleo-Asian and Paleo-Pacific oceans, which are hosted by accretionary complexes (ACs) of Russian Altai, East Kazakhstan, Mongolia, Russian Far East and Japan. The paleoseamounts commonly consist of Ti–LREE–Nb-enriched plume-related basalts (OIB-type or intraplate basalts) capped with massive limestone and associated with other units of oceanic plate stratigraphy (OPS): oceanic floor basalts (MORB), pelagic chert, epiclastic slope facies, etc. The paper presents available geochemical data on the plume-related basalts including the first geochemical data on the Middle Paleozoic OIB-type basalts of the Paleo-Asian Ocean hosted by the Ulaanbaatar AC of Mongolia. An emphasis is made for the structural setting of OPS units, specific geochemical features of intraplate basalts, problems of their identification, and distinguishing from magmatic units of a different origin such as MORB, island-arc and back-arc basalts. Finally, we propose a continuous, though periodical, evolution of the Pacific superplume-related magmatism, which can be more reliably proved by studying Middle Paleozoic OPS units hosted by ACs of Mongolia and Tien Shan, and discuss prospects of future studies.  相似文献   

4.
We present results from a 484 km wide-angle seismic profile acquired in the northwest part of the South China Sea (SCS) during OBS2006 cruise. The line that runs along a previously acquired multi-channel seismic line (SO49-18) crosses the continental slope of the northern margin, the Northwest Subbasin (NWSB) of the South China Sea, the Zhongsha Massif and partly the oceanic basin of the South China Sea. Seismic sections recorded on 13 ocean-bottom seismometers were used to identify refracted phases from the crustal layer and also reflected phases from the crust-mantle boundary (Moho). Inversion of the traveltimes using a simple start model reveals crustal images in the study area. The velocity model shows that crustal thickness below the continental slope is between 14 and 23 km. The continental part of the line is characterized by gentle landward mantle uplift and an abrupt oceanward one. The velocities in the lower crust do not exceed 6.9 km/s. With the new data we can exclude a high-velocity lower crustal body (velocities above 7.0 km/s) at the location of the line. We conclude that this part of the South China Sea margin developed by a magma-poor rifting. Both, the NWSB and the Southwest Sub-basin (SWSB) reveal velocities typical for oceanic crust with crustal thickness between 5 and 7 km. The Zhongsha Massif in between is extremely stretched with only 6–10 km continental crust left. Crustal velocity is below 6.5 km/s; possibly indicating the absence of the lower crust. Multi-channel seismic profile shows that the Yitongansha Uplift in the slope area and the Zhongsha Massif are only mildly deformed. We considered them as rigid continent blocks which acted as rift shoulders of the main rift subsequently resulting in the formation of the Northwest Sub-basin. The extension was mainly accommodated by a ductile lower crustal flows, which might have been extremely attenuated and flow into the oceanic basin during the spreading stage. We compared the crustal structures along the northern margin and found an east-west thicken trend of the crust below the continent slope. This might be contributed by the east-west sea-floor spreading along the continental margin.  相似文献   

5.
Plume-related oceanic magmatism form oceanic islands, seamounts and plateaus (hereafter “seamounts” or “paleoseamounts”), which are important features in geological history. The accretion of oceanic seamounts to active continental margins significantly contributed to the formation of the continental crust. This paper reviews occurrences of Late Neoproterozoic–Mesozoic seamounts of the Paleo-Asian and Paleo-Pacific oceans, which are hosted by accretionary complexes (ACs) of Russian Altai, East Kazakhstan, Mongolia, Russian Far East and Japan. The paleoseamounts commonly consist of Ti–LREE–Nb-enriched plume-related basalts (OIB-type or intraplate basalts) capped with massive limestone and associated with other units of oceanic plate stratigraphy (OPS): oceanic floor basalts (MORB), pelagic chert, epiclastic slope facies, etc. The paper presents available geochemical data on the plume-related basalts including the first geochemical data on the Middle Paleozoic OIB-type basalts of the Paleo-Asian Ocean hosted by the Ulaanbaatar AC of Mongolia. An emphasis is made for the structural setting of OPS units, specific geochemical features of intraplate basalts, problems of their identification, and distinguishing from magmatic units of a different origin such as MORB, island-arc and back-arc basalts. Finally, we propose a continuous, though periodical, evolution of the Pacific superplume-related magmatism, which can be more reliably proved by studying Middle Paleozoic OPS units hosted by ACs of Mongolia and Tien Shan, and discuss prospects of future studies.  相似文献   

6.
ABSTRACT

We construct a complete density transection based on the velocity structures across the Zhongsha Bank in the South China Sea. Gravity modelling of the lateral density contrasts between tectonic units helps us to determine the structural attributes and boundaries between continental blocks and deep basins. The configuration of the continent–ocean boundary (COB) around the Zhongsha Bank is mapped based on the gravity/magnetic anomaly and crustal structures. A low-density mantle is found beneath the Zhongsha Bank and the oceanic basins, and this mantle is associated with the high heat-flow background. The COB orientation is northeast-east in the north of the bank, with faulted linear structures. In further southeast, where there is a more intact crust, the COB orientation changed to north-northeast. The reconstructed density model and gravity/magnetic map indicate that the Zhongsha Bank is conjugated with the Liyue Bank by a rifted basin, where the crust had experienced localized deformation before the seafloor spreading. Because of the insufficient magmatism in the oceanic basin, the spreading ridge propagates into the weakened continental lithosphere between the two continental blocks, thus completely separating the Zhongsha Bank from the Liyue Bank. Seafloor spreading ridge jumps within the South China Sea may also be affected by the heterogeneous lithosphere beneath the continental blocks and oceanic basins.  相似文献   

7.
王秉璋  张智勇 《地球科学》2000,25(6):592-598
苦海—赛什塘一带断续分布着众多镁铁-超镁铁质岩岩块, 各种地质特征显示它们在成因上密切相关, 共同构成了曾经存在过的被肢解破碎的洋壳残迹.岩石地球化学特征反映它们源于类似于OIB或E -MORB的富集型地幔源区, 并可能形成于初始扩张的小洋盆或消减带之上区域, 同位素测年资料显示洋盆初始扩张可能在D3, 俯冲消减时间在P1-P2.   相似文献   

8.
袁四化  潘桂棠  任飞 《地球科学》2020,45(8):2826-2845
在中国区域大地构造研究中,对洋岛-海山/洋底高原的识别尚未引起足够重视.为深入研究中国大陆洋板块构造,系统回顾了洋岛-海山/洋底高原的基本概念、基本特征和增生造山过程.洋岛-海山/洋底高原是在海底扩张、大洋壳演化过程中由于地幔热点/柱作用形成的有异常厚度洋壳的区域,是大洋岩石圈的重要组成部分.洋岛-海山/洋底高原在垂向上具有典型的二元结构,下部以镁铁质、超镁铁质岩石为主,上部以碳酸盐岩建造为主.现今大洋盆地中大面积分布着正在演化中和正在俯冲的洋岛-海山,根据比较大地构造学原理,古洋岛-海山的存在指示古大洋盆地的存在,是研究造山带的重要载体.认为地史时期大洋盆地中有相当数量的洋岛、海山,在俯冲增生碰撞造山过程中保留下来的古洋岛-海山残块以构造岩片(块)形式夹持在俯冲增生杂岩中,随大洋盆地关闭;其作为缝合带的重要组成部分,是识别对接带的重要判别依据之一.   相似文献   

9.
Abstract

The study of the exotic blocks of the Hawasina Nappes (Sultanate of Oman) leads to give apposit data that allow us to propose a new paleogeographic evolution of the Oman margin in time and space. A revised classification of exotic blocks into different paleogeographical units is presented. Two newly introduced stratigraphic groups, the Ramaq Group (Ordovician to Triassic) and the Al Buda’ah Group (upper Permian to Jurassic) are interpreted as tilted blocks related to the Oman continental margin. The Kawr Group (middle Triassic to Cretaceous) is redefined and interpreted as an atoll-type seamount. The paleogeography and paleoenvironments of these units are integrated into a new scheme of the Neotethyan rifting history. Brecciae and olistoliths of the Hawasina series are interpreted to have originated from tectonic movements affecting the Oman margin and the Neotethyan ocean floor. The breccias of late Permian age were generated by the extension processes affecting the margin, and by the creation of the Neotethyan oceanic floor. The breccias of mid-late Triassic age coincide in time with the collision of the Cimmerian continents with Eurasia. In constrast, the breccias of late Jurassic and Cretaceous age are interpreted as resulting to the creation of a new oceanic crust (Semail) off the Oman margin.  相似文献   

10.
A. G. PLINT 《Sedimentology》1986,33(3):387-399
Pennsylvanian fluvial channel sandstones in New Brunswick and Nova Scotia contain numerous examples of eroded mudstone surfaces, including in situ mudstone beds, boulders and slumped blocks. The eroded surfaces bear a variety of structures including linear scours, flutes, longitudinal furrows and rill marks. A block of interchannel mudstone up to 40 m in extent, displays a basal slip-plane, slump-related deformation and evidence of intense corrasion on a channel floor. Mudstone clasts from small pebbles to boulders over 4 m long are common immediately above channel-base erosion surfaces and represent a lag. Clasts over 20 cm diameter are commonly fluted, occasionally on all sides, suggesting clast rotation. Rill marks occur on large mudclasts and in situ mudstone surfaces and indicate emergence and erosion by surging water or surface runoff. Preservation of the delicate erosional structures depended on a highly cohesive mud substrate and subsequent rapid burial. A previous interpretation of the mud blocks and their surficial features as the result of mud intrusion is inconsistent with the field evidence.  相似文献   

11.
This study analyses the three‐dimensional geometry of sedimentary features recorded on the modern sea floor and in the shallow subsurface of a shelf to upper slope region offshore Australia that is characterized by a pronounced internal wave regime. The data interpreted comprise an extensive, >12 500 km2 industrial three‐dimensional seismic‐reflection survey that images the northern part of the Browse Basin, Australian North West Shelf. The most prominent seismic–morphological features on the modern sea floor are submarine terrace escarpments, fault‐scarps and incised channels, as well as restricted areas of seismic distortion interpreted as mass wasting deposits. Besides these kilometre‐scale sea floor irregularities, smaller bedforms were discovered also, including a multitude of sediment waves with a lateral extent of several kilometres and heights up to 10 m. These sedimentological features generally occur in extensive fields in water depths below 250 m mostly at the foot of submerged terraces, along the scarps of modern faults and along the shelf break between the outer shelf and the upper continental rise. Additional bedforms that characterize the more planar regions of the outer shelf are elongate, north‐west/south‐east oriented furrows and ridges. The formation of both sediment waves and furrow‐ridge systems requires flow velocities between 0·3 m sec?1 and 1·5 m sec?1, which could be generated by oceanic currents, gravity currents or internal waves. In the studied setting, these velocities can be best explained as being generated by bottom currents induced by internal waves, an interpretation that is discussed against oceanographic background data and modelling results. In addition to the documentation of three‐dimensional seismic–geomorphological features of the modern sea floor, it was also possible to map kilometre‐scale buried sediment wave fields in the seismic volume down to ca 500 ms two‐way‐time below the present sea floor, indicating the general potential for the preservation of such bedforms in the sedimentary record.  相似文献   

12.
Petrogeochemical and isotopic-geochronological signatures in granitoids developed in structures with complex geological history represent an important feature for reconstructing paleogeodynamic settings. Granitoids are widespread in the western slope of the Urals, where the Uralian Orogen contacts via a collage of different-age blocks of the east European Platform. The Ufalei block located in the Central Urals megazone at the junction between the South and Middle Urals’ segments represents one such boundary structure with multistage geological evolution. The isotopic ages obtained by different methods for acid igneous rocks range from 1290 to 245 Ma. We determined close Rb-Sr and Sm-Nd ages (317 Ma) for granites of the Nizhnii Ufalei Massif. By their petrochemical parameters, granitoids and host granite-gneisses differ principally from each other: the former are close to subduction-related, while the latter, to continental-riftogenic varieties. The primary ratio (87Sr/86Sr)0 = 0.70428 and ?Nd ≈ +4 values indicate significant contribution of oceanic (island-arc?) material to the substrate, which served as a source for granites of the Nizhnii Ufalei Massif. Model Nd ages of granites vary from 641 to 550 Ma. Distinct oceanic rocks and varieties with such ages are missing from the surrounding structures. New isotopic dates obtained for ultramafic and mafic rocks from different zones of the Urals related to the Cadomian cycle imply development of unexposed Upper Riphean-Vendian “oceanic” rocks in the central part of the Ufalei block, which played a substantial role in the formation of the Nizhnii Ufalei granitoids. Such rocks could be represented, for example, by fragments of the Precambrian Timanide-type ophiolite association. The analysis of original materials combined with published data point to the heterogeneous composition and structure of the Ufalei block and a significant part of the western segment of the Central Uralian Uplift and extremely complex geological history of the region coupling the Uralian Orogen with the East European Platform in the present-day structure.  相似文献   

13.
The continental margin reviewed in this paper corresponds in almost all its parts to a Hercynian platform which was more or less structured during the Mesozoic and Cenozoic in association with the formation of the Atlantic Ocean.

In the areas above water and the continental shelves, this Hercynian platform either has a thin sedimentary covering (Galicia, Armorica, West Ireland, Porcupine Bank) or, on the contrary, has been extensively depressed by distension movements accompanied with the formation of thick Mesozoic and Cenozoic basins connected with the oceanic domain (West Portugal, Basco-Cantabrian zone, Adour Basin, Parentis Basin, Western Approaches Basin, North Celtic Sea Basin, Porcupine Seabight Basin). In addition, the Early Cenozoic Pyrenean-Alpine compression movements had repercussions on the structure of the north Spanish margin.

From the structural standpoint, the main features of the margin are linked both to the deep indentation of the Bay of Biscay and to the existence of more or less collapsed blocks prolonging the continental domain. These blocks are visible either in the topography (Porto and Vigo seamounts, Galicia Banks, Asturian marginal shelf, Porcupine Bank) or solely by seismic reflection (Trevelyan Escarpment). Thick marginal sedimentary basins exist at the foot of the slope.  相似文献   


14.
三角洲沉积为滑塌型重力流的形成提供了物质来源,它对前端滑塌型重力流的沉积分布特征具有重要影响.以东营凹陷洼陷带沙三中亚段三角洲-前端滑塌型重力流沉积为研究对象,综合利用钻井岩心、三维地震、测录井及分析测试等资料,总结不同类型滑塌型重力流沉积特征、识别标志和分布特征,分析三角洲作为物源对滑塌型重力流的形成、沉积类型、沉积特征和分布特征的影响.研究表明,研究区滑塌型重力流沉积主要发育滑动岩、滑塌岩、碎屑流沉积和浊积岩4种类型,不同类型其沉积构造、粒度特征、地球物理特征差异显著.研究区砂质碎屑流沉积最为发育,滑动滑塌沉积次之,浊流沉积和泥质碎屑流沉积少量发育.不同地区重力流沉积发育程度及常见垂向序列存在差异,博兴南坡与辛133区块重力流类型以砂质碎屑流沉积为主,常见多期次砂质碎屑流沉积相邻或相间垂向组合;牛庄南坡与中央隆起带地区类似,由近及远,重力流类型及垂向序列存在较大差异;营11区块以砂质碎屑流沉积和浊流沉积为主,浊流比例相对其他区块较高;丰14区块单井重力流类型整体较单一,为砂质碎屑流沉积或滑塌沉积.三角洲砂泥百分含量控制了滑塌型重力流的沉积类型和沉积特征;三角洲沉积物粒径控制原始前积角大小,前积角越大,滑塌型重力流越发育,但滑移距离相对越近;三角洲的坡折点控制下,滑动滑塌沉积主要分布在斜坡坡脚和同沉积断层附近,浊流沉积主要分布在深水平原,碎屑流沉积在斜坡坡脚-深水平原均有分布;三角洲高的堆积速率通过减小内摩擦力促使滑塌型重力流的形成,其堆积速率与构造沉降速率的差异对滑塌型重力流沉积的垂向叠置和侧向连续性也具有重要影响.   相似文献   

15.
The structural and compositional volcanosedimentary complexes and igneous rocks of the Sakhalin marginal paleobasin as well as the geodynamic setting were described. The Sakhalin marginal paleobasin was formed in Sakhalin Island and the adjacent water areas at the end of the Early Cretaceous-start of the Late Cretaceous. The paleobasin was a part of the Kula Plate separated from the ocean along with spreading zones and oceanic volcanic islands by the Sea of Okhotsk microcontinent and the Jurassic-Early Cretaceous Sheltinga volcanic island arc. The petrochemical features and geodynamic setting of the igneous rock formation testify to the fact that magma-generating tectonomagmatic structures of the epioceanic Sakhalin marginal paleobasin continued functioning after its isolation under intensive terrigenous sedimentation. The Sakhalin marginal paleobasin had a heterogeneous basement composed of oceanic and continental crust blocks of the Earth. The paleobasin completed its development in the Paleogene.  相似文献   

16.
本文解释了横穿南海西南次海盆的两条多道地震测线,对南海西南次海盆的基底形态特征进行了描述和分类,并讨论了基底形态与扩张速率之间的对应关系。研究结果表明,西南次海盆基底可以分为两种类型:类型1为岩浆作用主导的平坦基底,局部有岩浆侵入;类型2为构造作用主导的掀斜断块。扩张速率的计算表明:N3测线所代表的西南次海盆北东段的半扩张速率在13~36 mm/a之间周期性变化,而在NH973-1所代表的中段半扩张速率基本稳定在19 mm/a左右,未有明显变化。海盆基底的类型变化与扩张速率的对应关系明显,在扩张速率较快的区域以类型1为主,而在扩张速率慢的区域以类型2为主。西南次海盆北东段扩张速率呈现周期性变化,相应海盆基底也表现为相间排列;而西南次海盆中段的基底比较单一,以类型2为主。南海西南次海盆北东段扩张时间更久,并可能存在周期性活动的岩浆房;而海盆中段海底扩张发生较晚,岩浆作用较弱,从而造成西南次海盆从北东到南西不同的基底形态特征。  相似文献   

17.
Western, central, and eastern provinces are recognized in the Scotia Sea. They are distinguished by their bottom topography, geophysical characteristics, and crustal structure, which record their different origin and evolution. The western province is characterized by the oceanic crust that formed on the West Scotia Ridge, where active spreading may have ceased as a result of a collision between propagating rift and the structural barrier of the thick continental lithosphere of the Falkland Plateau. The central province is a series of blocks mainly composed of continental crust that subsided to various depths depending on the degree of extension in the course of rifting. These blocks are separated by local areas with oceanic crust formed due to the breakup of the continental crust and diffusive spreading. These areas are characterized by deep bottom and high values of Bouguer anomalies. The southern framework of the central province consists of subsided continental blocks and microcontinents divided by small spreading-type basins formed by lithospheric extension complicated by strike-slip faulting. The eastern province is composed of oceanic crust formed on the backarc spreading East Scotia Ridge. The results of density analysis, analog, and numerical simulations allowed us to explain some features of the structure and evolution of these provinces. The insight into tectonic structure of the provinces and their evolution allowed us to recognize several types of riftogenic basins differing in geodynamics, age, and geological and geophysical characteristics.  相似文献   

18.
Giant groove casts have been found in the upper Proterozoic to Lower Cambrian Phe Formation (Haimanta Group), a siliciclastic sandstone/shale succession in the Tethyan Zone of the Higher Himalaya tectonic unit. The grooves are among the largest linear erosion structures related to submarine mass-movements observed in the geologic record. They are up to 4 m wide, about 0.2 m deep and can be traced for more than 35 m without changing their character. The grooves are straight, subparallel to cross-cutting striations with shallow semi-circular cross-sections and well-defined superimposed minor ridges and grooves. Groove casts exist on the soles of several sandstone beds within a 73 m thick logged section, commonly associated with flute casts. Their characteristics were compared with several other types of ancient and modern submarine linear erosion structures. A sand-rich, non-channelized basin floor depositional environment is inferred from the lithofacies, the combination of sedimentary structures, the lack of coarse-grained pebbly facies, the lateral continuity of beds, and the lack of channel structures. The grooves probably formed by laminar debris flows/concentrated density flows dragging blocks of already lithified sediment across the basin floor. When the bedding is structurally rotated back to horizontal, the groove casts show consistent North–South oriented palaeocurrent trends, with South-directed palaeocurrent directions indicated by flute casts. These palaeocurrent orientations contrast with previous palaeogeographic reconstructions of this area, which propose sediment delivery from the South. We therefore suggest a new “double provenance” model for the spatial relationship of late Proterozoic to Early Cambrian strata of the Himalaya, in which Lesser and Tethyan Himalayan age-equivalent sediment was deposited in a connected basin, where the former received detritus from the South, and the latter from a hitherto unknown source in the North. One possible candidate for this northern source is the South China Block and an associated Neoproterozoic volcanic arc.  相似文献   

19.
宝岛-长昌凹陷陵水组砂岩储集体目前是琼东南盆地油气勘探的重点目标.本文综合铸体薄片、激光粒度、元素地球化学、X衍射、扫描电镜、流体包裹体以及电子探针分析,探究宝岛凹陷北坡与长昌凹陷陵水组砂岩储层的成岩演化差异性.宝岛凹陷北坡的砂岩储层具有“粒度粗、稳定组分高”的强水动力特征,是海南岛物源体系下的三角洲沉积;而长昌凹陷砂岩储层具有“粒级偏细、泥质杂基重”的弱水动力特点,是神狐隆起、西沙隆起物源体系下的海底扇沉积.机械压实导致宝岛凹陷北坡的陵水组砂岩储层颗粒普遍呈现线状或凹凸接触.高热流背景导致长昌凹陷陵水组砂岩在海底以下浅埋条件(海底以下约1 400 m)下即可进入化学压实阶段,颗粒呈点-线接触,并伴生重晶石、片钠铝石等热液矿物.宝岛凹陷北坡存在早、晚两期烃类充注(14.5~10.0 Ma、2~0 Ma),期间被一期CO2充注分隔(7~3 Ma).长昌凹陷仅发育早期烃类充注(14.5~6.0 Ma),以及随后的一期CO2充注(5~0 Ma).陵水组砂岩储层演化在宝岛凹陷北坡总体以“海底以下缓慢深埋、缓慢升温”,天然气充注促进溶蚀和抑制胶结为特点,而长昌凹陷则以“海底以下浅埋、快速升温”,CO2持续充注促使碳酸盐或粘土或热液矿物胶结为特点.   相似文献   

20.
巨型洋底高原或海山系统到达俯冲带发生俯冲以后会在俯冲过程中发生肢解,在增生杂岩带中形成面目全非的小型洋底高原-海山系统的断块或碎片,使得在增生杂岩带中识别古老洋底高原-海山系统变得十分困难。为此,本文提出了基于洋板块地层、岩石学和地球化学联合研究的新方法及其识别标志,重新审定增生杂岩中洋底高原或海山的成因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号