首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analytical investigation of a half‐space containing transversely isotropic material under forced vertical and horizontal displacements applied on a rectangular rigid foundation is presented in this paper. With the goal of a rigorous solution to the shape‐ and rigidity‐ induced singular mixed boundary value problem, the formulation employs scalar potential representation, the Fourier expansion and the Hankel integral transforms method to obtain the surface arbitrary point‐load solution in cylindrical coordinate system. The obtained Green's functions are rewritten in rectangular coordinate system, allowing the response of the half‐space because of an arbitrary distributed load on a rectangular surface area be given in terms of a double integral. The numerical evaluations of stresses are done with the use of an element, which is singular at the edge and the corner of the rectangle. Upon the imposition of the rigidity displacement boundary condition for a rigid foundation and the use of a set of two‐dimensional adaptive‐gradient elements, which can capture the singular behavior in the contact stress effectively, a set of new numerical results are presented to illustrate the effect of transverse isotropy on the foundation response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Analytical elasticity solutions provide an efficient means of performing a first approximate analysis in foundation engineering. One of the well-known solutions is Mindlin’s solution to the stress and displacement induced by a point load at an embedment depth in a half-space. This solution is more superior but less widely used than Boussinesq’s solution. To promote this situation, Mindlin’s displacement equations are integrated to obtain a complete set of explicit formulae for calculating the displacements at an arbitrary point. The displacements are induced by uniformly and triangularly distributed horizontal or vertical pressures, which are exerted over a horizontal or vertical rectangular area in the interior of a homogeneous, isotropic, elastic half-space. These formulae facilitate the future development of computer programs for the analysis of related practical problems in foundation engineering.  相似文献   

3.
This paper focuses on the effective utilization of pond ash, as foundation medium. A series of laboratory model tests have been carried out using square, rectangular and strip footings on pond ash. The effects of dry density, degree of saturation of pond ash, size and shape of footing on ultimate bearing capacity of shallow foundations are presented in this paper. Local shear failure of a square footing on pond ash at 37% moisture content (optimum moisture content) is observed up to the values of dry density 11.20 kN/m3 and general shear failure takes place at the values of dry density 11.48 kN/m3 and 11.70 kN/m3. Effects of degree of saturation on ultimate bearing capacity were studied. Experimental results show that degree of saturation significantly affects the ultimate bearing capacity of strip footing. The effect of footing length to width ratio (L/B), on increase in ultimate bearing capacity of pond ash, is insignificant for L/B ≥ 10 in case of rectangular footings. The effects of size of footing on ultimate bearing capacity for all shapes of footings viz., square, rectangular and strip footings are highlighted.  相似文献   

4.
In practical engineering, an applied rectangular area load is not often horizontally or vertically distributed but is frequently inclined at a certain angle with respect to the horizontal and vertical axes. Thus, the solutions of displacements and stresses due to such a load are essential to the design of foundations. This article yields the analytical solutions of displacements and stresses subjected to a uniform rectangular load that inclines with respect to the horizontal and vertical axes, resting on the surface of a cross‐anisotropic geomaterial. The planes of cross‐anisotropy are assumed to be parallel to the horizontal ground surface. The procedures to derive the solutions can be integrated the modified point load solutions, which are represented by several displacement and stresses elementary functions. Then, upon integrations, the displacement and stress integral functions resulting from a uniform inclined rectangular load for (1) the displacements at any depth, (2) the surface displacements, (3) the average displacements in a given layer, (4) the stresses at any depth, and (5) the average stresses in a given layer are yielded. The proposed solutions are clear and concise, and they can be employed to construct a series of calculation charts. In addition, the present solutions clarify the load inclinations, the dimensions of a loaded rectangle, and the analyzed depths, and the type and degree of geomaterial anisotropy profoundly affect the displacements and stresses in a cross‐anisotropic medium. Parametric results show that the load inclination factor should be considered when an inclined rectangular load uniformly distributed on the cross‐anisotropic material. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
In the present paper, a method of analysis for calculating the pressure intensity corresponding to a given settlement for eccentrically and obliquely loaded square and rectangular footings resting on reinforced soil foundation has been presented. The process has been simplified by presenting non-dimensional charts for the various terms used in the analysis, which can be directly used by practicing engineers. An approximate method has been suggested to find out the ultimate bearing capacity of such footings on reinforced soil. The results have been validated with the model test results. The procedure has been made clear by giving an illustrative example.  相似文献   

6.
This paper presents the closed‐form solutions for the elastic fields in two bonded rocks induced by rectangular loadings. Each of the two bonded rocks behaves as a transversely isotropic linear elastic solid of semi‐infinite extent. They are completely bonded together at a horizontal surface. The rectangular loadings are body forces along either vertical or horizontal directions and are uniformly applied on a rectangular area. The rectangular area is embedded in the two bonded rocks and is parallel to the horizontal interface. The classical integral transforms are used in the solution formulation, and the elastic solutions are expressed in the forms of elementary harmonic functions for the rectangular loadings. The stresses and displacements in the rocks induced by both the horizontal and vertical body forces are also presented. The numerical results illustrate the important effect of the anisotropic bimaterial properties on the stress and displacement fields. The solutions can be easily implemented for numerical calculations and applied to problems encountered in rock mechanics and engineering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
弹性地基板的分析简化模型   总被引:1,自引:0,他引:1  
王春玲  黄义 《岩土力学》2008,29(1):52-57
将弹性半空间地基受任意竖向荷载作用下的静力位移积分变换解与弹性半空间地基上四边自由矩形板受任意竖向荷载作用的弯曲解析解相结合,建立了求解板下地基位移的方法。对一些算例进行大量数值计算分析,得出弹性半空间地基上四边自由矩形板板下地基水平位移和竖向位移的分布规律;并基于该位移分布规律,提出地基位移沿深度按一定的函数关系变化的假设,考虑板下地基水平位移,利用板地基系统的总势能最小原理,通过复杂的变分运算,得出弹性地基板的简化模型。在不考虑板下地基水平位移时,该模型退化成双参数地基模型,并给出了求解其上四边自由矩形板的近似边界条件。  相似文献   

8.
In this paper, an analysis has been presented for calculating the pressure of an adjacent rectangular footing resting on reinforced sand for a given settlement. An approximate method has been suggested to compute the ultimate bearing capacity of adjacent footings resting on reinforced earth slab. The computation of normal force on the reinforcement area and estimation of interfacial friction coefficient at different layer levels are two essential steps in computation of pressure ratio. The process has been simplified by presenting suitable charts in non-dimensional form that can be directly used by practicing engineers.  相似文献   

9.
A reliability based method was used to design and analyse shallow foundations using first-order Taylor series approximation. The computer program Mathcad was used to facilitate all mathematical and computional efforts. This method is an effective tool to assist the foundation designers and analyists to investigate how reliable their designs or analyses are in relation to the ultimate bearing capacity of the foundations. The approach presented in this paper provides a reliable alternative for design and analysis of shallow foundations, rather than the conventional design methods, which employs the assumptions of a specified saftey factor. Several examples were presented for design and analysis of strip footings embedded in sandy soil, and rectangular and square footings analysis embedded in clayey soils. The program input and output of each example are also presented and discussed.  相似文献   

10.
A numerical procedure is described for the analysis of the vertical deformation and the stress distribution of the strip footings on layered soil media. Three layers of soil with different stiffness are considered with the middle soil layer the thinnest and most stiff layer. The soil media is discretized and using the theory of elasticity, the governing differential equations are obtained in terms of vertical and horizontal displacements. These equations along with appropriate boundary and continuity conditions are solved by using the finite difference method. The vertical and horizontal displacements, strains and stresses are found at various nodes in the soil media. Parametric studies are carried out to study the effect of the placement depth of the middle soil layer, the relative ratios of the moduli of deformation of the soil layers on the vertical displacement of the footing and the vertical stress distribution. These studies reveal that the middle thin but very stiff layer acts like a plate and redistributes the stresses on the lower soft soil layer uniformly. The displacement on the top and bottom of the middle soil layer is almost the same showing that the compression of the middle layer is negligible as it is very stiff.  相似文献   

11.
The effectiveness and accuracy of the superposition method in assessing the dynamic stiffness and damping coefficients (impedance functions) of embedded footings supported by vertical piles in homogeneous viscoelastic soil is addressed. To this end, the impedances of piled embedded footings are compared to those obtained by superposing the impedance functions of the corresponding pile groups and embedded footings treated separately, with the magnitude of the relative average differences being around 10–30%. The results are presented in a set of dimensionless graphs and simple expressions that can be used to estimate the dynamic stiffness and damping of piled embedded footings, provided that the impedance functions of the two individual components are known. This is precisely the reason why the superposition approach studied here is appealing, because such impedance functions for both embedded footings and pile groups are available for a wide range of cases. How to estimate the kinematic response functions of the system when those of the individual components are known is also discussed. To address the problem, parametric analyses performed using a 3D frequency‐domain elastodynamic BEM‐FEM formulation are presented for different pile–soil stiffness contrasts, embedment depths, pile‐to‐pile separations and excitation frequencies. Vertical, horizontal, rocking, and cross‐coupled horizontal‐rocking impedance functions, together with translational and rotational kinematic response functions, are discussed. The results suggest that the superposition concept, in conjunction with a correction strategy as that presented herein, can be employed in geotechnical design. For kinematic effects, the response functions of the embedded footing are found to provide reasonable estimates of the system's behaviour. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A numerical procedure is described for the analysis of vertical deformation of smooth, rigid foundations of arbitrary shape on homogeneous and layered soil media. The contact area at the interface of the foundation and soil medium is approximated by square subdivisions. The response of the system is then obtained from the superposition of the influence of the individual subdivisions. The flexibility influence coefficients are based on equivalent smooth, rigid circular areas with the same contact area as the square subdivisions. For foundations on a homogeneous, isotropic elastic half-space, the flexibility coefficients are given analytically by the integrated forms of the Boussinesq's solution. For a layered soil medium, the flexibility coefficients are determined from an axisymmetric finite element analysis which is essentially two dimensional. Thus, there is no necessity for a full three-dimensional finite element analysis. Comparison with solutions obtained using the integral transform technique for smooth, rigid rectangular foundations on a homogeneous, isotropic elastic half-space shows good agreement. Parametric solutions are presented for the response of rectangular foundations on some ‘typical’ soil profiles. The use of a simplified method to estimate the settlement of rectangular foundations on a layered soil medium by superposing solutions for homogeneous, elastic strata is discussed.  相似文献   

13.
The aim of this paper was to determine the ultimate vertical bearing capacity of rectangular rigid footings resting on homogeneous peat stabilized by a group of cement deep mixing (CDM) columns. For this purpose, a series of physical modeling tests involving end-bearing and floating CDM columns were performed. Three length/depth ratios of 0.25, 0.5, and 0.75 and three area improvement ratios of 13.1, 19.6, and 26.2 % were considered. Bearing capacity of the footings was studied using different analytical procedures. The results indicated that compared to unimproved peat, the average ultimate bearing capacity (UBC) improvement of floating and end-bearing CDM columns were 60 and 223 %, respectively. The current study found that simple Brom’s method predicted the UBC of the peat stabilized with floating CDM columns with reasonable accuracy, but underestimated the UBC by up to 25 % in the case of end-bearing CDM columns. Published laboratory experiences of stabilizing soft soils using soil–cement columns were also collated in this paper.  相似文献   

14.
秦会来  周同和  郭院成  杜超 《岩土力学》2014,35(Z2):393-397
土钉墙墙底地基土的承载力验算是土钉墙支护设计的一项重要内容。国内的工程实践中,通常将土钉墙地基承载力与坑底土抗隆起验算合并考虑。针对具体案例,通过Plaxis3D有限元数值模拟,分析研究了土钉墙底部土体发生地基承载力失稳的破坏模式、破坏荷载以及土钉墙墙底应力分布特点等,探讨了依据我国相关规程进行土钉墙坑底隆起或地基承载力计算可能存在的问题。借鉴国外加筋土挡墙地基承载力计算的一般方法,将土钉墙作为荷载倾斜、偏心的刚性基础对待,利用荷载倾斜、偏心条件下传统刚性浅基础的地基承载力的Meyerhof解和Vesic解,对土钉墙地基承载力进行了计算和对比,通过对比发现,Meyerhof解更接近实际,据此,提出了土钉墙地基承载力计算的合理模式。  相似文献   

15.
Seismic bearing capacity of shallow strip footings   总被引:6,自引:0,他引:6  
Seismic bearing capacity of shallow strip footings in soil has been obtained in the form of pseudo-static seismic bearing capacity factors Ncd, Nqd and Nd, denoting the cohesion, surcharge and unit weight components, respectively, by an extensive numerical iteration technique. Limit equilibrium method of analysis with composite failure surface is assumed. The validity of the principle of superposition is examined. Effects of both the horizontal and vertical seismic acceleration coefficients have been found to always reduce the ultimate bearing capacity significantly. Results obtained by the present method of analysis are compared with the available results and are found to be the least in the seismic case.  相似文献   

16.
The results of centrifuge modeling of surface footings on a sand layer underlain by a rigid base are presented. The primary objective was to investigate the effect of sand layer thickness on the ultimate bearing capacity. The relative density of the sand layer and shapes of the model footings were also varied in the test program. The data indicate that prototype size footings are likely to experience local shear failure rather than general shear type failure. The observed values of the bearing capacity are compared with the predictions based on the Mandel and Salencon (1972) theory. It is concluded that theoretical predictions are conservative in relation to the experimental bearing capacity values, if appropriate values of mobilized angles of friction are used. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Ring footings can be more effective and economical than circular footings. In spite of similarities between circular and ring footings, their behaviors are different in some respects such as bearing pressure distribution under the footing and settlement. But no exclusive theoretical prediction of ultimate bearing capacity has been reported for ring footings. In the present study, stress characteristics method is employed for coding the bearing capacity of ring footing with horizontal ground surface. In the calculations, friction at the contact between the soil and foundation is considered. In this research, the soil obeys the Mohr–Coulomb yield criterion and that is cohesive–frictional-weighted with applied surcharge pressure. The bearing capacity factors Nγ, Nq and Nc for ring footings were calculated by a written code based on the method of characteristics. Bearing capacity was determined for different conditions of soil and different ratio of radii in comparison with the principle of superposition results. The findings show that the principle of superposition is effective for determining the bearing capacity of a ring footing.  相似文献   

18.
An extension of an existing analytical solution for the response of a flexible retaining wall subjected to seismic loading is presented. The solution is based on the assumption that the wall and the soil remain elastic and that there are no shear stresses at the wall–soil interface while the contact remains tied. In addition to the wall displacements due to bending, the wall can experience rigid‐body motions due to rotation and horizontal and vertical movements. The solution is verified by comparing its results with those of a finite element method. Results from the analytical solution together with those of the (FEM) are used to identify and quantify the relative importance of key parameters on the seismic response of a wall. The study shows that wall flexibility and horizontal rigid‐body motions of the wall and frequency content of the seismic input have a significant effect on the wall loads. The pressures behind a rigid wall decrease as the wall rotates about its base, whereas for a flexible wall, the soil pressures decrease as the friction between the backfill and the wall increases. The rigid‐body vertical movements of a wall have little impact on the dynamic pressures induced in the wall, except for a flexible wall where, when prevented, the dynamic loads may be reduced. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A numerical method is proposed for the analysis of rectangular footing resting on an elastic soil layer. The footing is represented by double spline elements and the elastic soil medium by finite layers. The effect of the rigidity of footing and the non-homogeneity of the soil on the behaviour of such foundation system is investigated, and the results are presented in form of design charts such that they may be used for hand calculation for the estimation of the settlement of footings for a wide range of practical cases.  相似文献   

20.
The mechanical interaction between a fluid-filled fracture (e.g., hydraulic fracture joint, or igneous dike) and the earth's surface is analyzed using a two-dimensional elastic solution for a slit of arbitrary inclination buried beneath a horizontal free surface and subjected to an arbitrary pressure distribution. The solution is obtained by iteratively superimposing two fundamental sets of analytical solutions.For uniform internal pressure the slit behaves essentially as if it were in an infinite region if the depth-to-center is three times greater than the half-length. For shallower slits interaction with the free surface is pronounced: stresses and displacements near the slit differ by more than 10% from values for the deeply buried slit. The following changes are noted as the depth-to-center decreases:
1. (1) the mode I stress intensity factor increases for both ends of the slit, but more rapidly at the upper end;
2. (2) the mode II stress-intensity factor is significantly different from zero (except for vertical slits) suggesting propagation out of the original plane of the slit;
3. (3) displacements of the slit wall are asymmetric such that the slit gaps open more widely near the upper end. Similar changes are noted if fluid density creates a linear pressure gradient that is smaller than the lithostatic gradient. Under such conditions natural fractures should propagate preferentially upward toward the earth's surface requiring less pressure as they grow in length.
If deformation near the surface is of interest, the model should account explicitly for the free surface. Stresses and displacements at the free surface are not approximated very well by values calculated along a line in an infinite region, even when the slit is far from the line. As depth-to-center of a shallow pressurized slit decreases, the following changes are noted:
1. (1) displacements of the free surface increase to the same order of magnitude as the displacements of the slit walls,
2. (2) tensile stresses of magnitude greater than the pressure in the slit are concentrated along the free surface. The relative surface displacements over a shallow vertical slit are downward over the slit and upward to both sides of this area. The tensile stress acting parallel to the free surface over a shallow vertical slit is concentrated in two maxima adjacent to a point of very low stress immediately over the slit.
The solution is used to estimate the length-to-depth ratio at which igneous sills have gained sufficient leverage on overlying strata to bend these strata upward and form a laccolith. The pronounced mode II stress intensity associated with shallow horizontal slits explains the tendency for some sills to climb to higher stratigraphie horizons as they grow in length. The bimodal tensile stress concentration over shallow vertical slits correlates qualitatively with the distribution of cracks and normal faults which flank fissure eruptions on volcanoes. The solution may be used to analyze surface displacements and tilts over massive hydraulic fractures in oil fields and to understand the behavior of hydraulic fractures in granite quarries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号