首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
志留系沉积期塔里木为一地势相对平坦、水体较浅的陆表海盆地,总体充填一套碎屑海岸和三角洲体系,从下至上可划分出5个三级层序。塔中和塔北志留系沉积层序表现出明显的不对称结构,塔北地区柯坪塔格组三级层序SQ-Skp1、SQ-Skp2和SQ-Skp3沉积较完整,发育潮坪、浅海陆棚、滨岸-三角洲体系;而塔中地区缺失SQ-Skp1和SQ-Skp2层序,SQ-Skp3以潮坪体系为主,局部发育小型三角洲。与此相对,塔中地区塔塔埃尔塔格组层序SQ-Stt沉积完整,而塔北地区缺失SQ-Stt水进体系域红泥岩段。塔中和塔北志留系沉积层序的不对称结构反映了塔中和塔北构造隆升的差异和演化,奥陶末构造运动对塔中影响较大,造成塔中隆起的隆升并一直处于水上隆起,直到柯坪塔格组上段SQ-Skp3层序沉积期才淹没充填,随后持续沉降,形成了完整的塔塔埃尔塔格组层序SQ-Stt;奥陶末构造运动对塔北影响较小,西部英买力地区局部隆升,而东部持续沉降,直到柯坪塔格组沉积之后塔北东部出现较大规模隆升,形成明显的上超不整合,并造成塔塔埃尔塔格组层序SQ-Stt水进体系域红泥岩段缺失。塔中和塔北构造演化控制了盆地的沉积层序和储盖组合发育,塔中缺失下储盖组合,而塔北缺失上储盖组合,对志留系圈闭形成和油气保存具有重要的影响。  相似文献   

2.
The Lower Jurassic Mashabba Formation crops out in the core of the doubly plunging Al-Maghara anticline, North Sinai, Egypt. It represents a marine to terrestrial succession deposited within a rift basin associated with the opening of the Neotethys. Despite being one of the best and the only exposed Lower Jurassic strata in Egypt, its sedimentological and sequence stratigraphic framework has not been addressed yet. The formation is subdivided informally into a lower and upper member with different depositional settings and sequence stratigraphic framework. The sedimentary facies of the lower member include shallow-marine, fluvial, tidal flat and incised valley fill deposits. In contrast, the upper member consists of strata with limited lateral extension including fossiliferous lagoonal limestones alternating with burrowed deltaic sandstones. The lower member contains three incomplete sequences (SQ1-SQ3). The depositional framework shows transgressive middle shoreface to offshore transition deposits sharply overlain by forced regressive upper shoreface sandstones (SQ1), lowstand fluvial to transgressive tidal flat and shallow subtidal sandy limestones (SQ2), and lowstand to transgressive incised valley fills and shallow subtidal sandy limestones (SQ3). In contrast, the upper member consists of eight coarsening-up depositional cycles bounded by marine flooding surfaces. The cycles are classified as carbonate-dominated, siliciclastic-dominated, and mixed siliciclastic-carbonate. The strata record rapid changes in accommodation space. The unpredictable facies stacking pattern, the remarkable rapid facies changes, and chaotic stratigraphic architecture suggest an interplay between allogenic and autogenic processes. Particularly syndepositional tectonic pulses and occasional eustatic sea-level changes controlled the rate and trends of accommodation space, the shoreline morphology, the amount and direction of siliciclastic sediment input and rapid switching and abandonment of delta systems.  相似文献   

3.
塔中地区志留系柯坪塔格组下沥青砂岩段是塔里木盆地古生界碎屑岩层系油气主要富集层段之一。以钻井岩心观察描述为基础,结合测井、地震和分析测试资料进行综合分析,提出了塔中地区志留系下沥青砂岩段发育海侵背景下的滨岸-潮坪-辫状河三角洲沉积体系的观点。其中滨岸相沉积中主要发育上临滨和下临滨沉积微相,岩性以细砂岩、粉砂岩、含砾不等粒砂岩为主;潮坪沉积相中障壁砂坝、潮砂滩、潮汐水道、砂坪沉积微相发育,潮道沉积的岩性以砂岩、粗砂岩和含砾砂岩为主,发育楔形、板状和羽状交错层理,底部见侵蚀冲刷面和较多黄铁矿团块;辫状河三角洲中发育辫状河水下分流河道、分流间湾、前缘席状砂等沉积微相。海侵时期,下沥青砂岩段存在4期超覆砂体,从盆地中部向南部的塔中低隆逐期超覆,沉积微相在平面上也由此存在着复合超覆规律的演变,整体表现为滨岸相至潮坪相、辫状河三角洲沉积相沉积的演变。4期超覆沉积微相的平面分布在控制因素、展布范围和海侵方向上具有一定的继承性、相似性和规律性。  相似文献   

4.
Mio-Pliocene deposits of the forebulge–backbulge depozones of the Beni-Mamore foreland Basin indicate tidally to fluvially dominated sedimentation. Seven facies assemblages have been recognized: FAA–FAG. FAA represents a distal bottom lake assemblage, FAB and FAD are interpreted as tidal flat deposits, FAC and FAG are interpreted as fluvial systems, FAE sediments are deposited in a subtidal/shoreface setting, and FAG represents a meandering fluvial system. The identification of stratigraphic surfaces (SU, MFS, and MRS) and the relationship among the facies assemblages permit the characterization of several systems tracts: a falling-stage systems tract (FSST) followed by a lowstand systems tract (LST), a transgressive systems tract (TST), and a highstand systems tract (HST). The FSST and LST may have been controlled by the uplift of the Beni-Mamore forebulge, whereas TST may result from a quiescent stage in the forebulge. Subaerial unconformity two (SU2) records the passage from a tide-influenced depositional system to a fully continental depositional system. The Miocene tidal-influenced deposits in the Beni–Mamore Basin suggest that it experienced a connection, either with the South Atlantic Ocean or the Caribbean Sea or both.  相似文献   

5.
王强 《地质与勘探》2014,50(4):795-804
通过沉积相和层序地层分析,确定土库曼斯坦阿姆河盆地中-上侏罗统卡洛夫-牛津阶主要为一套碳酸盐岩台地沉积体系,可划分出SQ1~SQ3三个三级层序,经历了从缓斜坡台地→镶边缓斜坡台地→缓斜坡台地的沉积演化过程,主力储、产层发育于SQ1和SQ2层序,此三个层序又可进一步划分为TST和HST两个体系域。以体系域为编图单元,编制了SQ1、SQ2和SQ3层序各体系域的岩相古地理图和探讨了有利储集相带展布规律,认为SQ1-HST、SQ2-TST和SQ2-HST三个体系域中叠置发育的台缘礁滩为最有利储层发育的相带,应成为今后的勘探重点。  相似文献   

6.
塔里木盆地塔中地区志留系测井层序地层学研究   总被引:26,自引:4,他引:22  
在岩心刻度测井资料的基础上,综合应用常规测井、能谱测井、倾角测井和成象测井资料,建立塔中地区志留系沉积微相测井解释模型。塔中地区志留系以碎屑潮坪沉积为主,可分为潮下砂坪、潮道、潮间混合坪、潮上泥坪微相。志留系中可识别出4个测井层序边界,划分为3个测井层序,每个层序由海侵体系域和高水位体系域组成。测井层序对比和古水流统计分析表明,志留纪海水自NW向SE侵入,具有双向水流特征。沉积相的叠置和横向分布受海平面相对变化速率和可容空间的控制。  相似文献   

7.
利用钻井和二维地震资料, 对曾母盆地南康台地以及L构造中新统碳酸盐建造的三级层序发育特征进行解剖, 归纳总结研究区碳酸盐岩层序发育模式, 认为曾母盆地在中中新世-晚中新世(5.3~16 Ma)期间发育3期较大规模的碳酸盐岩沉积旋回, 在地层上可将其划分为3个三级层序, 即SQ1、SQ2和SQ3层序.其中SQ1与SQ3应该属于经典Ⅰ型碳酸盐岩层序, 在其岩性上由低位域的致密藻灰岩沉积、水进域的泥质灰岩和高位域的珊瑚灰岩组合构成, 代表了从开阔海沉积环境过渡至礁滩相沉积环境的发育过程;而SQ2应属于淹没不整合型碳酸盐岩层序, 以泥质灰岩凝缩层+高位域的珊瑚灰岩或碎屑灰岩序列组合为特征, 其发育基本处于水体环境持续变浅的沉积环境中.   相似文献   

8.
The spatial and temporal distribution of diagenetic alterations has been constrained in relationship to depositional facies and sequence stratigraphy of the Upper Ordovician glaciogenic quartzarenite sandstones in the Murzuq Basin, SW Libya, which were deposited during the Haritanian glaciation when the basin was laying along the continental margin of Gondwana. Eogenetic alterations encountered include: (i) replacement of detrital silicates, mud matrix and pseudomatrix by kaolinite in paraglacial, tide-dominated deltaic, in foreshore to shoreface (highstand systems tract; HST) and in post-glacial, Gilbert-type deltaic (lowstand systems tract; LST) sandstones, particularly below the sequence boundaries (SB). Kaolinite formation is attributed to the influx of meteoric water during relative sea level fall and basinward shift of the shoreline. (ii) Cementation by calcite (δ18OVPDB = − 3.1‰ to + 1.1‰ and δ13CVPDB = + 1.7‰ to + 3.5‰) and Mg-rich siderite in the paraglacial, tide-dominated deltaic and foreshore to shoreface HST sandstones, in the glacial, tide-dominated estuarine (transgressive systems tract; TST) sandstones and in the post-glacial, shoreface TST sandstones is interpreted to have occurred from marine pore-waters. (iii) Cementation by Mg-poor siderite, which occurs in the post-glacial, Gilbert-type deltaic LST sandstones and in the paraglacial, tide-dominated deltaic and foreshore to shoreface HST sandstones, is interpreted to have occurred from meteoric waters during relative sea level fall and basinward shift of the shoreline. (iv) Pervasive cementation by iron oxides has occurred in the glacial, shoreface–offshore TST sandstones and post-glacial, shoreface TST sandstones immediately below the maximum flooding surfaces (MFS), which was presumably enhanced by prolonged residence time of the sediments under oxic diagenetic conditions at the seafloor. (v) Formation of grain-coating infiltrated clays mainly in the glacial, fluvial incised-valley LST sandstones and in the post-glacial, Gilbert-type deltaic LST sandstones as well as, less commonly, in the paraglacial, foreshore to shoreface HST sandstones and in the tide-dominated deltaic HST sandstones below the SBs.

Mesogenetic alterations include mainly the formation of abundant quartz overgrowths in the glacial, fluvial incised-valley LST sandstones, post-glacial, Gilbert-type deltaic LST sandstones and glacial, shoreface TST sandstones, in which early carbonate cements are lacking. Illite, chlorite and albitized feldspars, which occur in small amounts, are most common in the glacial, tide-dominated estuarine TST sandstones and paraglacial, shoreface HST sandstones. This study demonstrates that the spatial and temporal distribution of diagenetic alterations and their impact on reservoir-quality evolution in glacial, paraglacial and post-glacial sandstones can be better elucidated when linked to the depositional facies and sequence stratigraphic framework.  相似文献   


9.
为明确鄂尔多斯盆地中南部上古生界层序特点与岩相古地理演化规律,利用周缘野外露头和盆地钻井测井相特征,分析层序界面、体系域界面的岩性、古构造及海侵方向变化特征,总结层序发育特点与岩相古地理演化规律。结果表明: 不同风化序列的区域性不整合面及海侵方向转换面为二级层序界面,区域性海退面、下切冲刷面及陆上暴露面为三级层序界面; 潮间带砂坪及近岸相海侵含砾砂岩顶为海侵面,最大海侵面发育灰岩、泥页岩及煤层,是海侵体系域与高位体系域分界面; 上古生界包括二级层序2个: MSQ1、MSQ2,三级层序6个: SQ1、SQ2、SQ3、SQ4、SQ5、SQ6,其中SQ1—SQ2发育水进体系域与高位体系域,不发育低位体系域,SQ1为潟湖—障壁海岸沉积体系,SQ2为泥炭坪—泥坪相潮坪沉积;SQ3—SQ6发育完整的低位—海侵—高位体系域,SQ3发育区域性海退进积海陆过渡相三角洲沉积,SQ4早期为低位体系域下切冲蚀砂体,晚期沉积古环境由温暖湿润还原环境演变为炎热干燥的氧化环境,SQ5—SQ6早中期为氧化环境三角洲沉积,SQ6晚期为高位体系域具海侵夹层的潮坪相沉积。研究为鄂尔多斯盆地及其他盆地层序与岩相古地理演化提供理论依据。  相似文献   

10.
塔里木盆地巴楚及塔中地区二叠系层序地层学分析   总被引:3,自引:2,他引:1  
通过钻井、测井以及野外剖面等资料的综合分析,塔里木盆地巴楚及塔中地区二叠系可识别出6个层序边界.除B4为Ⅱ型层序边界外,其他各层序边界均为Ⅰ型层序边界,并以侵蚀下切为特征.根据6个层序边界可将二叠系划分为5个三级层序,这些层序均符合Vail经典层序地层学模式.SQ4层序可识别出湖侵体系域和高位体系域,SQ1、SQ2、SQ3、SQ5层序可识别出低位体系域、海(湖)侵体系域和高位体系域.低位体系域为河流相性质的侵蚀沟谷充填沉积,海(湖)侵体系域为滨浅湖和半深湖沉积,高位体系域为半深湖-滨浅湖以及三角洲沉积,另外,SQ3层序高位体系域上部还发育火山岩.河流相侵蚀沟谷充填沉积和三角洲沉积主要分布在塔东隆起西部斜坡上.  相似文献   

11.
This work presents the first detailed facies analysis of the upper Nyalau Formation exposed around Bintulu, Sarawak, Malaysia. The Lower Miocene Nyalau Formation exposures in NW Sarawak represent one of the closest sedimentological outcrop analogues to the age equivalent, hydrocarbon-bearing, offshore deposits of the Balingian Province. Nine types of facies associations are recognised in the Nyalau Formation, which form elements of larger-scale facies successions. Wave-dominated shoreface facies successions display coarsening upward trends from Offshore, into Lower Shoreface and Upper Shoreface Facies Associations. Fluvio-tidal channel facies successions consist of multi-storey stacks of Fluvial-Dominated, Tide-Influenced and Tide-Dominated Channel Facies Associations interbedded with minor Bay and Mangrove Facies Associations. Estuarine bay facies successions are composed of Tidal Bar and Bay Facies Associations with minor Mangrove Facies Associations. Tide-dominated delta facies successions coarsen upward from an Offshore into the Tidal Bar Facies Association. The Nyalau Formation is interpreted as a mixed wave- and tide-influenced coastal depositional system, with an offshore wave-dominated barrier shoreface being incised by laterally migrating tidal channels and offshore migrating tidal bars. Stratigraphic successions in the Nyalau Formation form repetitive high frequency, regressive–transgressive cycles bounded by flooding surfaces, consisting of a basal coarsening upward, wave-dominated shoreface facies succession (representing a prograding barrier shoreface and/or beach-strandplain) which is sharply overlain by fluvio-tidal channel, estuarine bay or tide-dominated delta facies successions (representing more inshore, tide-influenced coastal depositional environments). An erosion surface separates the underlying wave-dominated facies succession from overlying tidal facies successions in each regressive–transgressive cycle. These erosion surfaces are interpreted as unconformities formed when base level fall resulted in deep incision of barrier shorefaces. Inshore, fluvio-tidal successions above the unconformity display upward increase in marine influence and are interpreted as transgressive incised valley fills.  相似文献   

12.
Gas-bearing deposits in the Lower Mingyuefeng Formation of Paleogene, Lishui Sag, East China Sea Shelf Basin consist of shoreface sandstones of the highstand systems tract (HST) and transgressive systems tract (TST), and deltaic sandstones of the lowstand systems tract (LST) and falling stage systems tract (FSST). Detailed petrographic observations suggest that the diagenetic features and related evolution of these deposits cannot be simply characterized and demonstrated in the depth domain. However, the occurrence of diagenetic minerals systematically depends on the studied interval within the HST, TST, LST, and FSST; therefore, diagenesis in this region can be better constrained when studied in the context of the depositional environments and sequence stratigraphic framework. The eogenetic processes in such settings include: (1) microcrystalline siderite precipitated as concretions in almost all environments and systems tracts, which inhibited further mechanical compaction; (2) grain dissolution and kaolinitization occurred in shoreface HST sandstones and deltaic LST and FSST sandstones; (3) glaucony was locally observed, which did not clearly reflect the controls of facies or sequence stratigraphy; and (4) cementation by pyrite aggregates occurred in the shoreface HST sandstones and deltaic LST sandstones. The mesogenetic diagenesis includes: (1) partial conversion of kaolinite into dickite in deltaic LST sandstones, and minor chlorite cementation in deltaic FSST sandstones; (2) transformation of kaolinite into illite and quartz cementation in deltaic LST and FSST sandstones; (3) frequent precipitation of ankerite and ferroan calcite in shoreface TST sandstones and early HST sandstones, forming baffles and barriers for fluid flow, with common calcite in shoreface HST sandstones as a late diagenetic cement; and (4) formation of dawsonite in the deltaic LST and FSST sandstones, which is interpreted to be a product of the invasion of a CO2-rich fluid, and acts as a good indicator of CO2-bearing reservoirs. This study has thus constructed a reliable conceptual model to describe the spatial and temporal distribution of diagenetic alterations. The results may provide an entirely new conceptual framework and methodology for successful gas exploration in the continental margins of offshore China, thus allowing us to predict and unravel the distribution and quality evolution of clastic reservoirs at a more detailed and reliable scale.  相似文献   

13.
The mid-Cenomanian Dunvegan Formation represents a delta complex deposited on a foreland basin ramp over about 2 my. The Dunvegan is divided into 10 transgressive–regressive allomembers, labelled J–A in ascending order, each defined by regional marine transgressive surfaces. Parasequences within allomembers show an aggradational to offlapping stacking pattern that reflects alternate generation and removal of accommodation. The upper surfaces of allomembers H–E are incised by extensive valley systems traceable for up to 320 km and over about 50 000 km2. Valley depths range up to 41 m and can change significantly over short distances. However, the average depth of incision (mean 21 m) shows no systematic variation in longitudinal profiles and no evidence of headward shallowing. Valleys are typically 1–2 km wide, but locally widen to about 8 km. Widening is sometimes associated with confluence zones, but elsewhere it is not. Updip reaches of valleys are dominated by cross-bedded fluvial sandstone forming multistorey point-bar deposits. Sandstones contain widespread but uncommon paired carbonaceous drapes recognizable as tidal bundles. Inclined heterolithic stratification is locally well developed at the top of the valley fill. Downdip reaches of valleys, typically within 50 km of the lowstand shoreline, have a sandstone-dominated lower part and, locally, a mud-rich upper portion consisting of a variety of laminated heterolithic facies with a clear tidal signature. These heterolithic deposits may represent central basin, tidal flat, bayhead delta and point-bar environments. Valley filling took place mainly during the transgressive systems tract (TST) when tidally influenced environments migrated upvalley. Semi-diurnal tidal backwater effects extended at least 30 km landward of the regional maximum transgressive marine shoreline. The aggradational late TST and highstand systems tract (HST) includes deltaic and coastal plain deposits comprising lake and anastomosed river deposits that suggest a very low gradient (≈ 1:3000). Delta parasequences of the falling stage systems tract (FSST) offlap seaward and have no equivalent coastal plain deposits. The FSST has an average width of 60 km and an inferred gradient of 1:2500. The upper surfaces of the HST and FSST are extensively incised by valleys. The lowstand systems tract (LST) is subtly aggradational, lacks valleys and is characterized by large delta lobes fed by major distributaries. The width and inferred slope of the FSST, coupled with the thickness of aggradational TST and HST deposits on the coastal plain, suggest a vertical accommodation of about 35 m per transgressive event. About 11 m of this is attributed to isostatic subsidence resulting from water and sediment loads; the residual 24 m is attributed to eustatic rise. This sea-level change is of the same order of magnitude as the valley depths. The length of valleys, however, does not seem to be explicable solely in terms of downstream forcing by sea-level change, and an additional, upstream-forcing mechanism, possibly related to precipitation cycles in the Milankovitch band, might be inferred.  相似文献   

14.
以层序地层学及沉积学理论为指导,综合运用测井、录井以及地震资料,将尼日尔Termit盆地上白垩统Madama组划分为一个三级层序(MS),并进一步识别出低位体系域、海侵体系域以及高位体系域。在等时层序地层格架内,识别出前积反射地震相、河道充填反射地震相、平行-亚平行反射地震相以及杂乱反射地震相等四种类型,并识别出辫状河三角洲的沉积相类型。认为层序MS的低位体系域主要发育辫状河三角洲前缘亚相,高位体系域则主要发育辫状河三角洲平原亚相。Madama组整体表现为一个海退的沉积演化过程。  相似文献   

15.
渤海湾盆地辽中凹陷旅大16油田东营组东三段是目前勘探开发的主力含油层系。综合三维地震资料、录井、测井及岩心资料,在井—震结合、层序地层学研究基础上,利用古地貌研究、岩心相、测井相、地震相和振幅属性切片分析,明确了东营组层序格架内沉积相类型、沉积展布特征及沉积演化规律。应用Vail的经典层序地层学理论,将东三段划分为一个三级层序,其中可识别出低位体系域、湖侵体系域和高位体系域。低位体系域沉积期,辽西低凸起大面积暴露遭受剥蚀,为研究区提供碎屑沉积物,发育近源的扇三角洲及重力流沉积体系。扇三角洲砂体以灰色中砂岩和细砂岩为主,河床滞留沉积、波状层理和生物扰动构造十分发育;高位体系域时期,辽西低凸起被淹没,供源能力减弱,研究区发育较远源的辫状河三角洲前缘沉积,且伴生重力流沉积。其中辫状河三角洲前缘水下分流河道砂体以细—中砂岩为主,见块状构造和楔状交错层理。重力流沉积体系主要为滑塌湖底扇及砂质碎屑流沉积,岩心观察可见细砂岩中发育滑塌变形构造,及漂浮状的砾石和泥岩撕裂屑。研究区沉积演化过程与地貌演化密切相关,且断裂体系对砂体展布具有控制作用,重力流沉积发育于断裂坡折前方。显然,明确沉积相类型、沉积展布特征及沉积演化规律,可为进一步油气勘探开发提供地质依据。  相似文献   

16.
The 600 m thick prograding sedimentary succession of Wagad ranging in age from Callovian to Early Kimmeridgian has been divided into three formations namely, Washtawa, Kanthkot and Gamdau. Present study is confined to younger part of the Washtawa Formation and early part of the Kanthkot Formation exposed around Kanthkot, Washtawa, Chitrod and Rapar. The depositional architecture and sedimentation processes of these deposits have been studied applying sequence stratigraphic context. Facies studies have led to identification of five upward stacking facies associations (A, B, C, D, and E) which reflect that deposition was controlled by one single transgressive — regressive cycle. The transgressive deposit is characterized by fining and thinning upward succession of facies consisting of two facies associations: (1) Association A: medium — to coarse-grained calcareous sandstone — mudrocks alternations (2) Association B: fine-grained calcareous sandstone — mudrocks alternations. The top of this association marks maximum flooding surface as identified by bioturbational fabrics and abundance of deep marine fauna (ammonites). Association A is interpreted as high energy transgressive deposit deposited during relative sea level rise. Whereas, facies association B indicates its deposition in low energy marine environment deposited during stand-still period with low supply of sediments. Regressive sedimentary package has been divided into three facies associations consisting of: (1) Association C: gypsiferous mudstone-siltstone/fine sandstone (2) Association D: laminated, medium-grained sandstone — siltstone (3) Association E: well laminated (coarse and fine mode) sandstone interbedded with coarse grained sandstone with trough cross stratification. Regressive succession of facies association C, D and E is interpreted as wave dominated shoreface, foreshore to backshore and dune environment respectively. Sequence stratigraphic concepts have been applied to subdivide these deposits into two genetic sequences: (i) the lower carbonate dominated (25 m) transgressive deposits (TST) include facies association A and B and the upper thick (75m) regressive deposits (HST) include facies association C, D and E. The two sequences are separated by maximum flooding surface (MFS) identified by sudden shift in facies association from B to C. The transgressive facies association A and B represent the sediments deposited during the syn-rift climax followed by regressive sediments comprising association C, D and E deposited during late syn-rift stage.  相似文献   

17.
塔里木盆地东河砂岩沉积和储层特征及综合分析   总被引:21,自引:0,他引:21  
东河砂岩是一套海侵初期的沉积产物,东河砂岩不是一个等时沉积体,相当于晚泥盆世晚期至早石炭世早期沉积,具体沉积时间各地有差异。由于东河砂岩是覆盖广泛的海侵初期沉积,因此具有海侵初期填平补齐的特征,其沉积相决定于海侵的速度、沉积物的供给和海侵前的古地貌。塔北地区受塔北古隆起的阻挡,海水在古隆起周围滞留时间较长,又有较粗粒的物源供给,其沉积产物主要是滨岸海滩沉积;塔中地区由于地形复杂,沉积类型也比较复杂,底部砾岩段有河流相沉积,而块状砂岩段和砂砾岩段有河口湾和滨岸海滩沉积,不同段在成分、分选性和粒级上有较大的差异;而其它低平地区主要是海侵期快速的滨岸和陆架沉积。受沉积因素影响,东河砂岩有效储层的分布具有地域性;除沉积因素外,低的地温梯度和短期的深埋藏是优质储层发育的重要控制因素。  相似文献   

18.
INTRODUCTIONThe Zhu m subbasin, about 11 000 kmZ in area, the western part of the Pearl River Mouth (PRM) basin, South ChinaSea (SCS), consists of nine sub-tectonic units: half-grabenWenchang A (HGWC-A), half-graben Wenchang B (HGWCB), half-graben Wenchang C (HGWC-C), half-graben Qionghai (HGQH), horst Qionghai (HQH), half-graben YangjiangA (HGYJ-A), half-graben Yangjiang B (HGYJ-B), low horstYangjiang (LHYJ) and horst Yangjiang (HYJ) (Fig. 1). According to the p…  相似文献   

19.
准噶尔盆地东北缘中-下侏罗统层序地层与油气   总被引:3,自引:3,他引:0       下载免费PDF全文
通过对边缘露头、钻井和地震等资料的综合层序地层分析,划分出下八道湾、上八道湾、三工河和西山窑等4个层序以及湖退体系域(RST)、湖进体系域(TST)、高位体系域(HST)和冲积体系域(AST)等四种类型的9个体系域.层序形成主要受控于构造作用和湖水进退.RST中形成区域上广布的工业煤层;TST中的粗粒退积型辫状三角洲沉积体系中发育很好的储层.快速湖进形成的TST与构造长期稳定形成的HST反复叠置构成良好的生储盖组合.  相似文献   

20.
东海陆架盆地西湖凹陷平湖组-花港组沉积层序   总被引:6,自引:0,他引:6  
东海陆架盆地地处欧亚板块东部边缘,勘探开发实践表明,盆地内西湖凹陷天然气圈闭资源雄厚,具有很好的勘探前景。利用Vail层序地层学理论,依托钻录井、地震资料等,将新生代7次全球海平面显著下降所形成的不整合界面判别为7个二级层序界面。平湖组和花港组组成2个二级层序(SSQ3-SSQ4)和6个三级层序(SQ1-SQ6),坡折带之下可识别出低位体系域、海侵体系域和高位体系域,坡折带之上仅识别出海侵体系域和高位体系域。西湖凹陷西缓坡带发育物源来自海礁隆起-渔山隆起的三角洲-陆棚(平湖组)或湖泊(花港组)沉积体系,东陡坡带发育物源来自钓鱼岛隆褶带的扇三角洲或近岸水下扇-陆棚(平湖组)或湖泊(花港组)沉积体系,沉积中心在东次凹。构造运动和物源供给决定西湖凹陷构造沉积格局,古气候和海平面升降对三级层序及其内部体系域发育的影响更大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号