首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Several samples of groundwater and soils and plants have been collected from Sohar (Batina region, NE Oman), which is affected by various activities such as mining, agriculture, and sewage. To characterize quality of groundwater, As and Cu concentrations have been investigated in waters collected from different wells. Comparison of data with local and international standard values revealed that groundwater in Sohar region is characterized by lower concentrations in Cu and As compared with standards. In soils collected from the same area, concentrations of heavy metals have been measured in different fractions in order to investigate the mobility of such elements and risk of vulnerability in this area. A sequential extraction procedure has been applied to surface sediments to determine the partitioning of Zn, Cu, Co, Mn, Fe, Pb, Cr, Cd and Ni among (1) exchangeable and acid-soluble phases, (2) Fe–Mn oxides, (3) organic matter and sulphides and (4) resistant phases. The results showed that the mobile fraction in the sewage area accounts only for 10 % of the total concentration in sediments while in the Cu mining area, the contribution of the mobile fraction may exceed 10 %, especially for Pb, Mn, Cd, Cu and Co. Investigation of concentrations in As and Cu in plants collected from mining and sewage areas revealed an important accumulation of these elements in leaves and may explain enrichment of As in shallow groundwater relative to deep groundwater. This investigation also showed that Cu is more available in sewage area than in mining zone, as opposed to As.  相似文献   

2.
The content of heavy metals and arsenic in sediments of karst streams in southern Missouri was investigated for its potential use as an indicator of pollution. A three-step sequential extraction procedure was utilized for this purpose. The amount of trace elements bound to each extraction phase gives insight of its availability and geochemical dependence. These results were complemented with analyses of correlation and spatial variability. Although sediments collected in this study remained below EPAs critical value guidelines, concentration in the mobile phases and higher normalized Mn values successfully identified sites with concentrations higher than background levels. Correlation among elements was poor in most cases; among the trace metals only Cu and Zn correlated while Pb correlated with Ca, Al, Mn and Fe. Spatial variability analysis confirmed that natural variation among adjacent sediment samples is a common occurrence. The urban spring Ward Branch showed the highest levels of Cr, Zn, Pb and As.  相似文献   

3.
Core and surface sediment samples were collected from three sub-lakes ( Lake Nanyang, Lake Dushan and Lake Zhaoyang) in the Lake Nansi Basin, Shandong Province. In order to reveal the characteristics of spatial and historical distribution of heavy metals in different sublakes of the Upper Lake Nansi, heavy metal (As, Cr, Cu, Hg, K, Mn, Ni, Pb, Zn, Al, Fe, Ti and V) concentrations of sediment samples were investigated. Based on the activity of^137Cs in the sediments, the modem accumulation rate of Lake Nansi sediments is 3.5 mm/a. Our results show that the whole Upper Lake Nansi has been already polluted by heavy metals, among which Lake Nanyang has been polluted seriously by mercury, as well as by lead and arsenic, while Lake Dushan has been most seriously polluted by lead and arsenic. Historical variation of heavy metal (Cr, Cu, K, Ni, Zn, A1, Fe, Ti and V) concentrations shows an abrupt shift in 1962, resuiting in a division of two periods: from 1957 to 1962 when metal enrichment increased with time, and from 1962 to 2000 when it decreased with time, while that of some anthropogenic elements such as Hg, Pb and Mn tend to increase toward the surface. However, the variation trend of As in the sediments is different from that of Hg, Pb and Mn, with its maximum value appearing in 1982. Since 1982 the concentrations of As have decreased due to the forbidden use of arsenite pesticides. This variation trend revealed changes in manner of human activity (coal combustion, waste discharges from both industries and urban sewage ) within the catchment during different periods.  相似文献   

4.
Um Bogma area is the most famous mineralized locality in Sinai, Egypt. It is characterized by the presence of manganese, iron, and copper deposits. Apart from the mill tailings and spoil heaps, the results indicated the decrease of soil contamination downstream. As a result of random manganese mining activity in Um Bogma area, many hazardous elements such as iron, copper, manganese, lead, and zinc as well as many others associating heavy metals such as arsenic, selenium, and sulfur are dispersed in the environment. This study assesses and monitors the environmental impacts of such mining activities in the west central Sinai, using multitemporal spectral remote-sensing sensors (MSS 1972, TM 1986, and ETM+7 2000). The results have shown the very high potential of temporal imagery in mining-related contamination either directly through mineral and rock mapping of the mining waste and residues and related contaminated areas.  相似文献   

5.
This study provided a picture of the spatial and temporal distributions of Cr, Co, Ni Cu, Zn, As, Cd and Pb in bottom sediments of Tolo Harbour. The concentrations of the eight heavy metals differed significantly between sites due to the poor tidal flushing in Tolo Harbour. The levels of Cu, Zn, Cd and Pb were generally enriched in sediments from inner Tolo Harbour, while sediments from outer Tolo Harbour (Tolo Channel) had higher levels of Cr, Co and Ni. The redox sensitive element arsenic showed no distinct spatial pattern in Tolo Harbour. The decreasing levels of Cu, Zn, Pb and Cd in sediments with increasing distance from land demonstrated a typical diffusion pattern from land to the direction of sea. Two hot spots of Cu, Zn, Pb and Cd in sediments were located near Tai Po and Sha Tin new town, indicating that Cu, Zn, Pb and Zn were from land-derived sources. The sites with relatively high levels of Cr, Co and Ni in sediments were located in areas close to waste spoil in sea floor. The natural and anthropogenic inputs from Sha Tin and Tai Po to Tolo Harbour were mostly responsible for Cu, Zn, Cd and Pb enrichment in sediments from inner Tolo Harbour. The waste spoil in sea floor was believed to contribute to the Cr, Co and Ni in outer Tolo Harbour. The results of correlation coefficient between the eight heavy metals showed that Cu, Zn, Cd and Pb were strongly positively correlated, and Cr, Co and Ni were also significantly correlated with each other. The best explanation of strong correlation was their similar source. As, however, is not well correlated with the other seven heavy metals. The average concentrations of Cu and Zn displayed general increasing trends from 1978 to 2006 in Tolo Harbour, while the mean levels of Cr and Pb displayed a substantial decrease from 1978 to 1987, then a slight increase after 1987. No distinct temporal trends of the concentrations of Ni and As were observed from 1978 due to the inconsecutive data. On the other hand, the increasing trends of Cr, Cu, Zn, Cd and Pb were observed since 1996.  相似文献   

6.
《Applied Geochemistry》2003,18(3):409-421
This study provides a geochemical partitioning pattern of Fe, Mn and potentially toxic trace elements (As, Cd, Cr, Cu, Ni, Pb, Zn) in sediments historically contaminated with acid mine drainage, as determined by using a 4-step sequential extraction scheme. At the upperstream, the sediments occur as ochreous precipitates consisting of amorphous or poorly crystalline oxy-hydroxides of Fe, and locally jarosite, whereas the estuarine sediments are composed mainly of detrital quartz, illite, kaolinite, feldspars, carbonates and heavy minerals, with minor authigenic phases (gypsum, vivianite, halite, pyrite). The sediments are severely contaminated with As, Cd, Cu, Pb and Zn, especially in the vicinity of the mining pollution sources and some sites of the estuary, where the metal concentrations are several orders of magnitude above background levels. Although a significant proportion of Zn, Cd and Cu is present in a readily soluble form, the majority of heavy metals are bonded to reducible phases, suggesting that Fe oxy-hydroxides have a dominant role in the metal accumulation. In the estuary, the sediments are potentially less reactive than in the riverine environment, because relevant concentrations of heavy metals are immobilised in the crystalline structure of minerals.  相似文献   

7.
朱伯万  薛怀友 《江苏地质》2006,30(3):187-190
对扬中长江漫滩柱状沉积物Cd、Pb、Cu、N i、Cr、Zn重金属垂向变化特征分析,表层20 cm以上,重金属含量普遍较高,表明了人类活动对长江重金属输入量呈现日益增加的趋势。通过重金属与Fe元素作线性回归方程,求得重金属的背景含量。相比而言,表层沉积物重金属含量反映了长江滩涂沉积物已经呈现明显的污染趋势。  相似文献   

8.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

9.
Partitioning of heavy metals in surface Black Sea sediments   总被引:1,自引:0,他引:1  
Bulk heavy metal (Fe, Mn, Co, Cr, Ni, Cu, Zn and Pb) distributions and their chemical partitioning, together with TOC and carbonate data, were studied in oxic to anoxic surface sediments (0–2 cm) obtained at 18 stations throughout the Black Sea. TOC and carbonate contents, and available hydrographic data, indicate biogenic organic matter produced in shallower waters is transported and buried in the deeper waters of the Black Sea. Bulk metal concentrations measured in the sediments can be related to their geochemical cycles and the geology of the surrounding Black Sea region. Somewhat high Cr and Ni contents in the sediments are interpreted to reflect, in part, the weathering of basic-ultrabasic rocks on the Turkish mainland. Maximum carbonate-free levels of Mn (4347 ppm), Ni (355 ppm) and Co (64 ppm) obtained for sediment from the shallow-water station (102 m) probably result from redox cycling at the socalled ‘Mn pump zone’ where scavenging-precipitation processes of Mn prevail. Chemical partitioning of the heavy metals revealed that Cu, Cr and Fe seem to be significantly bound to the detrital phases whereas carbonate phases tend to hold considerable amounts of Mn and Pb. The sequential extraction procedures used in this study also show that the metals Fe, Co, Ni, Cu, Zn and Pb associated with the ‘oxidizable phases’ are in far greater concentrations than the occurrences of these metals with detrital and carbonate phases. These results are in good agreement with the recent studies on suspended matter and thermodynamic calculations which have revealed that organic compounds and sulfides are the major metal carriers in the anoxic Black Sea basin, whereas Fe-Mn oxyhydroxides can also be important phases of other metals, especially at oxic sites. This study shows that, if used with a suitable combination of the various sequential extraction techniques, metal partitioning can provide important information on the varying geological sources and modes of occurrence and distribution of heavy metals in sediments, as well as, on the physical and chemical conditions prevailing in an anoxic marine environment.  相似文献   

10.
The chemical forms of Fe, Mn, Zn, Cu, Cr, Pb and Cd in the Huanghe River sediments have been studied by sequential extraction techniques and the comparison with data from the Rhine River sediments has been made. In the Huanghe River sediments the average contents of metals, without exception, are below their respective contents in average shales and very close to their levels in Ca-poor granites. The major portion of metals is combined with the detrital and moderately reducible phases. Both in the Huanghe River and in the Rhine River sediments the distribution ratios of metals between the moderately reducible and the easily reducible phases are generally more than unity. However, the distribution ratios of Mn, Zn and Cd are obviously lower than those of Fe, Cr, Cu and Pb. As a result of contamination, the ratios of Fe, Cr, Cu and Pb show an apparent increase, but no remarkable ratio variation is observed for Mn, Zn and Cd. Metals in the Huanghe River sediments, especially Cu and Zn, show a tendency to be associated with the organic phase. The effect of carbonate on metal association preference seems to be less important than that in the Rhine River although there is higher content of carbonate in the Huanghe River sediments. Cd has a greater percentage of the exchangeable phase, which is similar to the result from the Rhine River sediments.  相似文献   

11.
Nador lagoon sediments (East Morocco) are contaminated by industrial iron mine tailings, urban dumps and untreated wastewaters from surrounding cities. The lagoon is an ecosystem of biological, scientific and socio-economic interests but its balance is threatened by pollution already marked by biodiversity changes and a modification of foraminifera and ostracods shell structures. The aim of the study is to assess the heavy metal contamination level and mobility by identifying the trapping phases. The study includes analyses by ICP-AES and ICP-MS, of, respectively, major (Si, Al, Mg, Ca, Fe, Mn, Ti, Na, K, P) and trace elements (Sr, Ba, V, Ni, Co, Cr, Zn, Cu, As, Pb, Cd) in sediments and suspended matter, heavy metals enrichment factors calculations and sequential extractions. Results show that sediments contain Zn, Cu, Pb, V, Cr, Co, As, Ni with minimum and maximum concentrations, respectively, of 4–1190 μg/g, 4–466 μg/g, 11–297 μg/g, 11–194 μg/g, 9–139 μg/g, 1–120 μg/g, 4–76 μg/g, 2–62 μg/g. High concentrations in Zn are also present in suspended matter. The enrichment factors show contamination in Zn, Pb and As firstly induced by the mining industry and secondly by unauthorized dumps and untreated wastewaters. Cr and Ni are bound to clays, whereas V, Co, Cu and Zn are related to oxides. Thus, the risk in metal mobility is for the latter elements and lies in the oxidation–reduction-changing conditions of sediments.  相似文献   

12.
The heavy metal contents of Mn, Ni, Cu, Zn, Cr, Co, Pb, Cd, Fe, and V in the surface sediments from five selected sites of El Temsah Lake was determined by graphite furnace atomic absorption spectrophotometer. Geochemical forms of elements were investigated using four-step sequential chemical extraction procedure in order to identify and evaluate the mobility and the availability of trace metals on lake sediments, in comparison with the total element content. The operationally defined host fractions were: (1) exchangeable/bound to carbonate, (2) bound to Fe/Mn oxide, (3) bound to organic matter/sulfides, and (4) acid-soluble residue. The speciation data reveals that metals Zn, Cd, Pb, Ni, Mn, Cu, Cr, Fe, and V are sink primarily in organic and Fe–Mn oxyhydroxides phases. Co is mainly concentrated in the active phase. This is alarming because the element is enriched in Al Sayadin Lagoon which is still the main site of open fishing in Ismailia. Average concentration of the elements is mostly above the geochemical background and pristine values of the present study. There is a difference on the elemental composition of the sediment collected at the western lagoon (Al Sayadin Lagoon), junction, the shoreline shipyard workshops, and eastern beach of the lake. Depending upon the nature of elements and local pollution source, high concentration of Zn, Pb, and Cu are emitted by industrial wastewater flow (shoreline workshops), while sanitary and agricultural wastewater (El Bahtini and El Mahsama Drains) emit Co and Cd in Al Sayadin Lagoon. On the other hand, there is a marked decrease in potentially toxic heavy metal concentrations in the sediments at the most eastern side of the lake, probably due to the successive sediment dredging and improvements in water purification systems for navigation objective. These result show that El Temsah receives concentrations in anthropogenic metals that risk provoking more or less important disruptions, which are harmful and irreversible on the fauna and flora of this lake and on the whole ecobiological equilibrium.  相似文献   

13.
Chromium and lead concentrations and distribution have been fully studied within Bahía Blanca estuary inner area, which is strongly influenced by urban and industrial stress. Not only metals dissolved in estuarine water but also those included in sediments and suspended particulate matters (SPM) were measured. In all cases, internationally standardized protocols were applied to metal measurements, including analytical quality check test through analysis of certified reference materials. Total metal contents from surface sediments and SPM were compared with those from a historical database of the area, as well as with values representing the natural geochemical baseline within the system. Results showed that heavy metal pollution is mainly localized in the areas close to both industrial effluents discharge system and urban sewage outfall discharge. Data from sequential extractions indicate that metals from anthropogenic sources (i.e., Pb) are potentially more mobile than those inherited from geological parent material (i.e., Cr). The influences of other potential sources of metals (i.e., streams, runoff) were also considered. SPM was clearly identified as the main carrier of the studied heavy metals within the system, and its significance to metals input into sediments and/or biota was verified. Finally, the normalization of measured metal concentrations against background reference elements (i.e., Al or Fe) has allowed to identify that most of the measured Cr was lithogenic, while a significant percentage of Pb was from anthropogenic origin within Bahía Blanca estuary.  相似文献   

14.
湖南水口山及周边是湖南省重金属污染较为严重的地区之一,龙王山金矿床是该区中部的一个重要金矿床.为调查该矿床废石堆污染状况、是否为周边环境的污染源、污染途径、重金属迁移能力和潜在的危害,对矿区FS17废石堆进行了自然淋滤水和24 m浅钻系统取样,开展重金属元素总量分析,利用单因子指数法和内梅罗综合污染指数法对其重金属污染程度进行污染评价,采用四步改良BCR提取法分析废石堆中8种重(类)金属元素(Pb、Zn、Cd、Cu、Cr、Ni、As和Fe)的赋存形态,并利用迁移指数量化废石堆重金属元素迁移能力;发现废石堆中Cd、Cu、Pb、As、Zn、Ni重金属元素严重超标,且在垂向上分布极不均匀;其自然淋滤水样中重金属元素Cd、Ni、Zn、Cu也严重超标;废石堆浅层重金属元素潜在迁移能力顺序为:Cd>Ni≈Zn>Cu>Pb>As>Cr>Fe,深层重金属元素迁移能力顺序为:Cd>Zn>Cu>Ni>Cr>Pb>As>Fe,浅层重金属元素的迁移性大于深层;说明该废石堆重金属元素含量高,是周围环境重要污染源,酸性废水排放为其释放污染元素的主要途径;Cd、Cu、Zn、Ni迁移能力强,是周围环境的主要污染元素;Pb、Ni、As的迁移性在深层明显降低,可以通过埋深来削弱其迁移性,而Cr不会对周边环境产生污染.   相似文献   

15.
Water, sediment, and mine spoil samples were collected within the vicinity of the Okpara coal mine in Enugu, Southeastern Nigeria, and analyzed for trace elements using ICP-MS to assess the level of environmental contamination by these elements. The results obtained show that the mine spoils and sediments are relatively enriched in Fe, with mean values of 1,307.8(mg/kg) for mine spoils and 94.15% for sediments. As, Cd, Cr, Mn,Ni, Pb, and Zn in the sediments were found to be enriched relative to the mean values obtained from the study area, showing contamination by these elements. The mean values of Fe, Mn, Cu, and Cr in the mine spoils and mean values of Fe, Cu, Pb, Zn, Ni, Cr, and Mn in sediments, respectively, are above the background values obtained from coal and shale in the study area, indicating enrichment with these elements. The water and sediments are moderately acidic, with mean pH values of 4.22?±?1.06 and 4.66?±?1.35, respectively. With the exception of Fe, Mn, and Ni, all other elements are within the Nigerian water quality standard and WHO limits for drinking water and other domestic purposes. The strong to moderate positive correlation between Fe and Cu (r?=?0.72), Fe and Zn (r?=?0.88), and Fe and As (r?=?0.60) at p?<?0.05 as obtained for the sediments depict the scavenging effect of Fe on these mobile elements. As also shows a strong positive correlation with Mn (r?=?≥ 0.70, p?<?0.05), indicating that Mn plays a major role in scavenging elements that are not co-precipitated with Fe. In water, the strong positive correlation observed between Cr and Cd (r?=?1.00), Cu and Ni (r?=?0.94), Pb and Cu (r?=?0.87) and Zn and Cu (r?=?0.99); Ni and Pb (r?=?0.83) and Zn and Ni (r?=?0.97); and between Pb and Zn (0.84) at p?<?0.05 may indicate similar element–water reaction control on the system due to similarities in chemical properties as well as a common source. Elevated levels of heavy metals in sediments relative to surface water probably imply that sorption and co-precipitation on Al and Fe oxides are more effective in the mobilization and attenuation of heavy metals in the mine area than acid-induced dissolution. The level of concentration of trace elements for the mine spoils will serve as baseline data for future reference in the study area.  相似文献   

16.
H. Leenaers 《GeoJournal》1989,19(1):37-43
The floodplain soils in the Guel basin have unacceptably high levels of pollution,v brought about by metal mining and related industrial activities in the past. Spoil heaps still exist along the Geul river and these are susceptible to erosion and leaching processes. An additional source of metals is formed by erosion of older, locally highly contaminated streambank deposits. These older sediments are polluted as a result of solid waste disposal containing metalliferous ore and tailings in the sand fraction. At present, these sediments function as a major source of heavy metals during high flow stages when streambanks are undermined and suspended sediments are deposited on the floodplains. The flood deposits have a relatively coarse texture, i.e. 70% dry weight in the fraction > 63 um.In order to obtain an indication about the potential mobility of the heavy metals in these deposits, 16 samples (8 samples < 63 um and 8 samples > 63 um) out of a set of 122 were subjected to a sequential extraction scheme as proposed by Calmano & Förstner (1983). It was found that up to 80% of the metals may be present in the first three leaching stages (exchangeable cations, carbonate fraction and easily reducible fraction) and that hardly any difference exists between the chemical partitioning of metals in the size fractions < 63 um and > 63 um. Moreover, as the total metal concentrations exponentially decrease along the 40 km distance away from the source area, the percentage of metals in these 3 potentially mobile fractions steadily increases. It is concluded that despite the rapid decay of total metal concentrations, Large amounts of potentially mobile metals are probably stored in the floodplain sediments even at a large distance from the source area.  相似文献   

17.
 The distribution of Si, Al, Fe, Mn, Cu, Zn, Ni and Cr in different grain-size fractions and geochemical association of Fe, Mn, Cu and Zn with <63-μm size fraction of bed sediments of Damodar River has been studied. In general, concentrations of heavy metals tend to increase as the size fractions get finer. However at two sites, near mining areas, the coarser particles show similar or even higher heavy metal concentrations than finer ones. The higher residence time and/or presence of coarser particles from mining wastes are possibly responsible for higher metal content in the coarser size fractions. The chemical fractionation study shows that lithogenic is the major chemical phase for heavy metals. Fe and Mn are the major elements of the lithogenic lattice, constituting 34–63% and 22–59%, respectively, of total concentrations. Fe-Mn oxide and organic bound fractions are significant phases in the non-lithogenic fraction. The carbonate fraction is less significant for heavy metal scavenging in the present environment and shows the following order of abundance Zn>Cu>Mn>Fe. The exchangeable fraction of the Damodar sediments contains very low amounts of heavy metals suggesting poor bioavailability of metals. Received: 18 August 1998 · Accepted: 1 December 1998  相似文献   

18.
福建龙海土壤重金属含量特征及影响因素研究   总被引:1,自引:0,他引:1  
为有效预防土壤重金属生态风险,以福建龙海市表层土壤为研究对象,应用经典统计分析、随机森林等方法,研究重金属元素含量特征及其影响因素。结果表明:(1)第四纪冲洪(海)积成因水稻土中多数重金属元素含量较高;(2)燕山期中酸性岩风化形成的残坡积红壤中重金属元素活动态含量较高;(3)As、Cu、Ni形态含量与全量相关性较好,而Cd、Cr、Hg的多数形态含量与全量相关性较差;(4)除元素全量外,土壤有机质对弱有机结合态重金属(不包括Ni、Pb元素)以及离子交换态、碳酸盐结合态Cd、Zn有重要影响,阳离子交换量对各形态Ni,(Fe×Al)/Si对各形态Cu具有重要影响,而土壤成因、土壤类型对重金属形态组成的影响较小。研究表明土壤重金属形态组成及其富集区与其全量不尽一致,土壤重金属生态风险评价应考虑土壤重金属形态分布特征。  相似文献   

19.
重金属元素易于累积,生态效应影响强烈。分析了陕豫接壤的西峪河水系沉积物中Hg、Pb、Cd、As、Cr、Cu、Zn 7种重金属元素的含量,根据地区参比值,评价了金矿活动对西峪河底泥的污染。结果显示Hg、Pb是主要的污染元素;进而用潜在生态危害指数法探讨了重金属元素污染的潜在生态危害性,认为整个西峪河流域的Hg、Pb潜在生态危害很强,Cd具有强的潜在生态危害,而Cr、As、Zn的潜在生态危害性轻微。  相似文献   

20.
In order to assess the pollution levels of selected heavy metals, 45 bottom sediment samples were collected from Al-Kharrar lagoon in central western Saudi Arabia. The concentrations of the heavy metals were recorded using inductively coupled plasma-mass spectrometer (ICP-MS). The results showed that the concentrations of Pb and Cd exceeded the environmental background values. However, the heavy metal contents were less than the threshold effect level (TEL) limit. The concentrations of heavy metals in lagoon bottom sediments varied spatially, but their variations showed similar trends. Elevated levels of metals were observed in the northern and southern parts of the lagoon. Evaluation of contamination levels by the sediment quality guidelines (SQG) of the US-EPA revealed that sediments were non-polluted-moderately to heavily polluted with Pb; non-polluted to moderately polluted with Cu; and non-polluted with Mn, Zn, Cd, and Cr. The geoaccumulation index showed that lagoon sediments were unpolluted with Cd, Mn, Fe, Hg, Mo, and Se; unpolluted to moderately polluted with Zn and Co; and moderately polluted with Pb, Cr, Cu, and As. The high enrichment factor values for Pb, As, Cu, Cr, Co, and Zn (>2) indicate their anthropogenic sources, whereas the remaining elements were of natural origins consistent with their low enrichment levels. The values of CF indicate that the bottom sediments of Al-Kharrar lagoon are moderately contaminated with Mn and Pb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号