首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《地学前缘(英文版)》2018,9(6):1871-1882
A combined cluster and regression analysis were performed for the first time to identify rainfall threshold that triggers landslide events in Amboori, Kerala, India. Amboori is a tropical area that is highly vulnerable to landslides. The 2, 3, and 5-day antecedent rainfall data versus daily rainfall was clustered to identify a cluster of critical events that could potentially trigger landslides. Further, the cluster of critical events was utilized for regression analysis to develop the threshold equations. The 5-day antecedent (x-variable) vs. daily rainfall (y-variable) provided the best fit to the data with a threshold equation of y = 80.7–0.1981x. The intercept of the equation indicates that if the 5-day antecedent rainfall is zero, the minimum daily rainfall needed to trigger the landslide in the Amboori region would be 80.7 mm. The negative coefficient of the antecedent rainfall indicates that when the cumulative antecedent rainfall increases, the amount of daily rainfall required to trigger monsoon landslide decreases. The coefficient value indicates that the contribution of the 5-day antecedent rainfall is ∼20% to the landslide trigger threshold. The slope stability analysis carried out for the area, using Probabilistic Infinite Slope Analysis Model (PISA-m), was utilized to identify the areas vulnerable to landslide in the region. The locations in the area where past landslides have occurred demonstrate lower Factors of Safety (FS) in the slope stability analysis. Thus, rainfall threshold analysis together with the FS values from slope stability can be suitable for developing a simple, cost-effective, and comprehensive early-warning system for shallow landslides in Amboori and similar regions.  相似文献   

2.
Modeling rainwater infiltration in slopes is vital to the analysis of slope failure induced by heavy rainfall. Although the significance of rainwater infiltration in causing landslides is widely recognized, there have been different conclusions as to the relative roles of antecedent rainfall to slope failure. In this study, a numerical model was developed to estimate the effect of antecedent rainfall on an unsaturated slope, the formation of a saturated zone, and the change in slope stability under weak rainfall and rainstorm event. Results showed that under a rainstorm event, slope failure occurred at comparably similar time although the antecedent rainfall drainage periods prior to the major rainfall were different (i.e., 24-h, 48-h and 96-h). However, under weak rainfall condition, differences of the antecedent rainfall drainage periods have significant effect on development of pore-water pressure. A higher initial soil moisture conditions caused faster increase in pore water pressure and thus decreasing the safety factor of the slope eventually increasing likelihood of slope failure.  相似文献   

3.
Precipitation frequently triggers shallow landslides in the Loess Plateau of Shaanxi, China, resulting in loss of life, damage to gas and oil routes, and destruction of transport infrastructure and farmland. To assess the possibility of shallow landslides at different precipitation levels, a method to draw slope units and steepest slope profiles based on ARCtools and a new method for calculating slope stability are proposed. The methods were implemented in a case study conducted in Yan’an, north-west China. High resolution DEM (Digital Elevation Model) images, soil parameters from in-situ laboratory measurements and maximum depths of precipitation infiltration were used as input parameters in the method. Next, DEM and reverse DEM were employed to map 2146 slope units in the study area, based on which the steepest profiles of the slope units were constructed. Combining analysis of the water content of loess, strength of the sliding surface, its response to precipitation and the infinite slope stability equation, a new equation to calculate infinite slope stability is proposed to assess shallow landslide stability. The slope unit stability was calculated using the equation at 10-, 20-, 50- and 100-year return periods of antecedent effective precipitation. The number of slope units experiencing failure increased in response to increasing effective antecedent rainfall. These results were validated based on the occurrence of landslides in recent decades. Finally, the applicability and limitations of the model are discussed.  相似文献   

4.
考虑前期降雨过程的边坡稳定性分析   总被引:4,自引:0,他引:4  
唐栋  李典庆  周创兵  方国光 《岩土力学》2013,34(11):3239-3248
基于三峡库区实测降雨资料,研究了不同初始条件对不同土体边坡稳定性影响,建议了能够反映边坡含水状态的初始条件选取方法。在此基础上,采用非饱和渗流分析方法研究了前期降雨对不同土体边坡稳定性影响,以典型的砂土和黏土边坡为例初步探索了前期降雨对边坡稳定性影响规律。结果表明:初始条件对不同土体边坡稳定性影响不同;建议将多年平均降雨量对应的稳态渗流场作为初始条件进行非饱和渗流分析。边坡土体渗透系数越低,边坡稳定性受前期降雨的影响越大、影响时间也越长。砂土和黏土边坡稳定性分析时建议至少考虑15 d以上的前期降雨,对于砂土边坡还应根据这15 d前面5 d的降雨情况确定是否需要增加计算天数。短历时高强度前期降雨对砂土边坡稳定性影响更大,而长历时低强度前期降雨对黏土边坡稳定性影响更大。累积前期降雨量可以作为判断边坡最小安全系数出现时刻的依据。砂土边坡出现最小安全系数时刻与10 d累积前期降雨量最大的时刻较为吻合,而黏土边坡则与15 d累积前期降雨量最大的时刻较为吻合。  相似文献   

5.
Rainfall patterns for shallow landsliding in perialpine Slovenia   总被引:2,自引:0,他引:2  
This paper presents two types of analysis: an antecedent rainfall analysis based on daily rainfall and an intensity-duration analysis of rainfall events based on hourly data in perialpine Slovenia in the ?kofjelo?ko Cerkljansko hills. For this purpose, eight rainfall events that are known to have caused landslides in the period from 1990 to 2010 were studied. Over the observed period, approximately 400 records of landslides were collected. Rainfall data were obtained from three rain gauges. The daily rainfall from the 30 days before landslide events was investigated based on the type of landslides and their geo-environmental setting, the dates of confirmed landslide activity and different consecutive rainfall periods. The analysis revealed that the rainfall events triggering slope failure can be divided into two groups according to the different antecedent periods. The first group of landslides typically occurred after short-duration rainstorms with high intensity, when the daily rainfall exceeded the antecedent rainfall. The second group comprises the rainfall events with a longer antecedent period of at least 7 days. A comparison of the plotted peak and mean intensities indicates that the rainfall patterns that govern slope failure are similar but do not necessarily reflect the rainfall intensity at the time of shallow landslides in the Dav?a or Poljane areas, where the majority of the landslides occurred. Because of several limitations, the suggested threshold cannot be compared and evaluated with other thresholds.  相似文献   

6.
In February/March 2007, an extreme rainfall event occurred in the Jabiru region of the Northern Territory of Australia. Rainfall of 784 mm fell in a 72-h period. This rainfall event resulted in 49 separate landslides occurring in the adjacent, but remote and inaccessible region of Arnhem Land. The landslides were extensively mapped and characterised. A common feature of the landslides was their relatively surficial nature. This paper reports on laboratory and field tests to characterise the material properties of the slide material and the underlying, more competent material. One particular, large and relatively accessible landslide was chosen for detailed investigation. The experimental data are used to carry out seepage and slope stability analyses, taking account of changes in the degree of saturation (and thus the negative pore water pressure or suction) in the slope material during the rainfall event in question. Using a parametric study in which various material parameters were varied around the measured mean values, it is shown that the failure of this particular slope could have been predicted using relatively straightforward seepage and limit equilibrium slope stability analyses, coupled with the relevant rainfall data, as long as the contribution of matric suction to the engineering characteristics of the slope material was accounted for. The work also highlights the importance of in situ conditions at the time a particular rainfall event (particularly an extreme event such as that considered in this paper) occurs. If the slope has a relatively high degree of saturation, manifested as a low initial in situ suction, it is more susceptible to rainfall triggering a slope failure. Although this observation is not novel, the investigation described in this paper confirms the importance of ambient in situ conditions and provides an indication of how the likelihood of landslide occurrence at this particular site may in the future be quantified, i.e. by focussing on antecedent rainfall history.  相似文献   

7.
Transient seepage in unsaturated soil slope is one of the significant triggering factors in rainfall-induced landslides. Rainfall infiltration leads to the decrease in stabilizing effect because of increased positive pore-water pressures. SEEP/W and SLOPE/W used in this study have been widely employed to describe frameworks for understanding transient seepage in soil slope, and to perform slope stability analyses, respectively. The study area is in Sichon District in Nakhon Si Thammarat Province, southern Thailand. A landslide there was investigated by modeling the process of rainfall infiltration under positive and negative pore-water pressures and their effects on slope stability. GIS (Geographic Information System) and geotechnical laboratory results were used as input parameters. The van Genuchten’s soil water characteristic curve and unsaturated permeability function were used to estimate surface infiltration rates. An average rainfall was derived from 30-year monthly rainfall data between 1981 and 2011 in this area reported by the Thailand Royal Irrigation Department. For transient condition, finite element analysis in SEEP/W was employed to model fluctuations in pore-water pressure during a rainfall, using the computed water infiltration rates as surface boundary conditions. SLOPE/W employing Bishop simplified method was then carried out to compute their factors of safety, and antecedent precipitation indices (API) calculated. Heterogeneous slope at the site became unstable at an average critical API (APIcr) of 380 mm, agreeing well with the actual value of 388 mm.  相似文献   

8.
Bogotá is located in the central Andean region of Colombia, which is frequently affected by landslide processes. These processes are mostly triggered during the rainy season in the city. This fact remarks the importance of determining what rain-derived parameters (e.g. intensity, antecedent rain, daily rain) are better related with the occurrence of landslides. For this purpose, the linear discriminant analysis (LDA), a technique derived from multivariate statistics, was used. The application of this type of analysis led to obtain simple mathematical functions that represent the probability of occurrence of landslides in Bogotá. The functions also allow to identify the most relevant variables derived from records of rainfall linked to the generation of landslides. A proof of concept using the proposed methodology was done using historic rainfall data from a 9-km2 area of homogenous climatology and geomorphology in the south part of Bogotá. Landslides needed to be grouped for the LDA. Each one of these grouping categories represents landslides that occurred in similar geomorphologic conditions. Another set of events with no landslides was generated synthetically. Results of the proof of concept show that rainfall parameters such as normalized rainfall intensity I MAP, normalized daily rainfall R MAP and rainy-days normal RDN have the best statistical correlation with the landslides observed in the zone of analysis.  相似文献   

9.
In order to generate early warning for landslides, it is necessary to address the spatial and temporal aspects of slope failure. The present study deals with the temporal dimension of slope failures taking into account the most widespread and frequent triggering factor, i.e. rainfall, along the National Highway-58 from Rishikesh to Mana in the Garhwal Himalaya, India. Using the post-processed three-hourly rainfall intensity and duration values from the Tropical Rainfall Measuring Mission-based Multi-satellite Precipitation Analysis and the time-tagged landslide records along this route, an intensity–duration (ID)-based threshold has been derived as I?=?58.7D ?1.12 for the rainfall-triggered landslides. The validation of the ID threshold has shown 81.6 % accuracy for landslides which occurred in 2005 and 2006. From this result, it can be inferred that landslides in the study area can be initiated by continuous rainfall of over 12 h with about 4-mm/h intensity. Using the mean annual precipitation, a normalized intensity–duration relation of NI?=?0.0612D ?1.17 has also been derived. In order to account for the influence of the antecedent rainfall in slope failure initiation, the daily, 3-day cumulative, and 15- and 30-day antecedent rainfall values associated with landslides had been subjected to binary logistic regression using landslide as the dichotomous dependent variable. The logistic regression retained the daily, 3-day cumulative and 30-day antecedent rainfall values as significant predictors influencing slope failure. This model has been validated through receiver operating characteristic curve analysis using a set of samples which had not been used in the model building; an accuracy of 95.1 % has been obtained. Cross-validation of ID-based thresholding and antecedent rainfall-based probability estimation with slope failure initiation shows 81.9 % conformity between the two in correctly predicting slope stability. Using the ID-based threshold and the antecedent rainfall-based regression model, early warning can be generated for moderate to high landslide-susceptible areas (which can be delineated using spatial integration of preconditioning factors). Temporal predictions where both the methods converge indicate higher chances of slope failures for areas predisposed to instability due to unfavourable geo-environmental and topographic parameters and qualify for enhanced slope failure warning. This method can be verified for further rainfall seasons and can also be refined progressively with finer resolutions (spatial and temporal) of rainfall intensity and multiple rain gauge stations covering a larger spatial extent.  相似文献   

10.
On October 23, 2004, a series of powerful earthquakes with a maximum M w = 6.6 located near the western coast of northern Honshu struck parts of northern Japan, particularly Niigata Prefecture; these earthquakes were known as the Chuetsu event. Thousands of landslides, as a secondary geotechnical hazard associated with these earthquakes, were triggered over a broad area; these landslides were of almost all types. The purpose of this study was to detect correlations between landslide occurrence with geologic and geomorphologic conditions, slope geometry, and earthquake parameters using two indexes based on Geographic Information Systems (GIS). In the study area, the landslide–area ratio (LAR), which is defined as the percentage of the area affected by landslides, was 2.9%, and the landslide concentration (LC), the number of landslides per square kilometer, was 4.4 landslides/km2, which is much more than other reported cases of seismic activity with the same magnitude. This was possibly due to heavy rainfall just before the Chuetsu earthquakes. Statistical analyses show that LAR has a positive correlation with slope steepness and distance from the epicenter, while LC is inversely correlated with distance from the epicenter. The Wanazu Formation had the most concentrated landslide activity, followed by the Kawaguchi, Ushigakubi, Shiroiwa and Oyama Formations, although the Wanazu Formation occupied only 4.5% of the total area of geological units. With 8.2% of the area affected by seismic landslides, the Kawaguchi Formation had the highest LAR. It was followed by the Shiroiwa, Ushigakubi and Wanazu Formations with LAR ranging from 4.6% to 6.0%. For lots of geological subunits, landslides are more frequent in a range of slope angles between 15° and 40°. The susceptibility to landsliding of each geologic unit was thus evaluated to correlate with slope steepness. It was also noted that the effects of the earthquakes were made far worse by antecedent rainfall conditions induced by a␣typhoon, and further research emphasizing the role of antecedent rainfall was discussed.  相似文献   

11.
Rainfall-triggered landslides are the result of the complex water-related processes occurring in the atmosphere-soil-vegetation system. In this paper, we present a methodology to assess long-term slope stability from rainfall, soil, and vegetation parameters. Our approach couples the stochastic ecohydrological model developed by Rodríguez-Iturbe et al. (Proc R Soc A: Math Phys Eng Sci 455(1990): 3789–3805, 1999) and Laio et al. (Adv Water Resour 24(7):707–723, 2001b) and the unsaturated flow equation. In this way, the stochastic nature of the rainfall process propagates through the system, finally reaching the FS. Then, synthetic time series generated by numerical modeling are used to infer the FS statistical properties. The study of a hypothetical case study showed that the long-term slope stability is highly sensitive to the ratio of the amount of water that can be evapotranspirated and the amount of water the soil can infiltrate and less sensitive to the ratio of the saturated hydraulic coefficient and the long-term rainfall rate. A scaling analysis evidenced the existence of statistically significant (R2?≈?1) exponential relationships between ecohydrological dimensionless numbers and slope failure probability. The method presented here is a useful tool for landscape planning.  相似文献   

12.
Majority of landslides in the Indian sub-continent are triggered by rainfall. Several attempts in the global scenario have been made to establish rainfall thresholds in terms of intensity-duration and antecedent rainfall models on global, regional and local scales for the occurrence of landslides. However, in the context of the Indian Himalayas, the rainfall thresholds for landslide occurrences are not yet understood fully. Neither on regional scale nor on local scale, establishing such rainfall thresholds for landslide occurrences in Indian Himalayas has yet been attempted. This paper presents an attempt towards deriving local rainfall thresholds for landslides based on daily rainfall data in and around Chamoli-Joshimath region of the Garhwal Himalayas, India. Around 128 landslides taken place in last 4 years from 2009 to 2012 have been studied to derive rainfall thresholds. Out of 128 landslides, however, rainfall events pertaining to 81 landslides were analysed to yield an empirical intensity–duration threshold for landslide occurrences. The rainfall threshold relationship fitted to the lower boundary of the landslide triggering rainfall events is I?=?1.82 D ?0.23 (I?=?rainfall intensity in millimeters per hour and D?=?duration in hours). It is revealed that for rainfall events of shorter duration (≤24 h) with a rainfall intensity of 0.87 mm/h, the risk of landslide occurrence in this part of the terrain is expected to be high. Also, the role of antecedent rainfall in causing landslides was analysed by considering daily rainfall at failure and different period cumulative rainfall prior to failure considering all 128 landslides. It is observed that a minimum 10-day antecedent rainfall of 55 mm and a 20-day antecedent rainfall of 185 mm are required for the initiation of landslides in this area. These rainfall thresholds presented in this paper may be improved with the hourly rainfall data vis-à-vis landslide occurrences and also data of later years. However, these thresholds may be used in landslide warning systems for this particular region of the Garhwal Himalayas to guide the traffic and provide safety to the tourists travelling along this pilgrim route during monsoon seasons.  相似文献   

13.
ABSTRACT

This paper presents the spatial distribution, variation and trend of 5-day antecedent rainfall in Singapore based on rainfall data from 22 meteorological stations. The effect of climate was analyzed by dividing the study period into three decades i.e. Decade 1: 1982–1991, Decade 2: 1992–2001 and Decade 3: 2002–2011. Kriging interpolation was used for rainfall mapping. The results show that spatial distribution of 5-day antecedent rainfall does not coincide with that of the annual rainfall. The maximum annual rainfall occurred in the northwestern side of Singapore. On the other hand, the maximum 5-day antecedent rainfall occurred in the north and northeastern sides. The results of this study suggest that the climate change has increased the amount of 5-day antecedent rainfall quite significantly, i.e. from 420.5 (1987) to 592.9 mm (2006), thus affecting the vulnerability of the area with respect to rainfall-induced slope failure. The analyses also showed that most of slope failures were located in the north and northeast of Singapore between December and earlier March. More slope failures were observed in Decade 3 as compared to Decades 1 and 2. In other words, the analysis confirmed that 5-day antecedent rainfall had affected the slope stability in Singapore.  相似文献   

14.
A potential head ward retreat landslide area was identified in Munnar, a hill station in Western Ghats of Kerala, India. This imminent landslide was suspected to be formed in three different stages viz., evolution of plateau region, upliftment of the plateau region and the consequent slope modification which ultimately facilitated landslide occurrence. Geophysical study through vertical electrical sounding reveals that more than 11 m thick soil is still left in an overhanging position in the crown portion of the landslide and the thickness continues to the top of that ridge. In the event of high rainfall, the land can fail as there is no toe support, and the slope angle is >40º. This area is adjacent to a college building and in the event of any further landslide, the consequence will be high. Slope stability analysis using one-dimensional infinite slope stability model reveals that the entire area occupied by the college and the adjacent areas are unstable even in dry conditions. Rainfall threshold analysis shows that the landslide occurred due to very high amount of a 5-day antecedent rainfall rather than a daily rainfall during the monsoon. All these point towards a pressing requirement of landslide management practices in this area. This study also attempts to suggest a few management practices to minimize the effect of landslides.  相似文献   

15.
The impact of rainfall-induced shallow landslides on hillslope sediment discharge is not well understood. This paper reports experimental measurements of sediment discharge after water-induced shallow landslides are triggered on sandy soil in a flume under simulated rainfall. The principal aim of the research was to investigate how varying soil depth affects the location and occurrence of shallow slope failures, as well as how it affects sediment yields downslope. Four experiments were conducted using the same sandy soil and a 30° and 10° compound slope configuration under average rainfall intensity of 50 mm h− 1 for up to 390 min. Soil depths were set to 200, 300, 400 and 500 mm. Engineering and geotechnical properties of the soil were examined. Sediment discharge and runoff were collected from the flume outlet at 15 minute intervals. Changes in the soil slope profiles after landslides and soil physical properties resulted from soil armouring, under continuous rainfall were also recorded. Results showed that sediment yields at the flume outlet, before landslides occurred, were very low and limited to the finer soil particles as would be expected for a sandy soil. However subsequent variations in sediment discharge were strongly related to failure events and their proximity to the outlet. Sediment yield was also affected by the original soil depth; the greater the depth, the higher the sediment yields. Post-failure reductions in sediment discharge were observed and attributed to post-failure slope stabilization under continuing rainfall and extensive soil armouring near the flume outlet. The results provide a clear linkage between landslides and sediment discharge due to hydrological processes occurring in the hillslope. This knowledge is being used to develop a model to predict sediment discharges from hillslopes following shallow landslide events.  相似文献   

16.
This paper describes the potential applicability of a hydrological–geotechnical modeling system using satellite-based rainfall estimates for a shallow landslide prediction system. The physically based distributed model has been developed by integrating a grid-based distributed kinematic wave rainfall-runoff model with an infinite slope stability approach. The model was forced by the satellite-based near real-time half-hourly CMORPH global rainfall product prepared by NOAA-CPC. The method combines the following two model outputs necessary for identifying where and when shallow landslides may potentially occur in the catchment: (1) the time-invariant spatial distribution of areas susceptible to slope instability map, for which the river catchment is divided into stability classes according to the critical relative soil saturation; this output is designed to portray the effect of quasi-static land surface variables and soil strength properties on slope instability and (2) a produced map linked with spatiotemporally varying hydrologic properties to provide a time-varying estimate of susceptibility to slope movement in response to rainfall. The proposed hydrological model predicts the dynamic of soil saturation in each grid element. The stored water in each grid element is then used for updating the relative soil saturation and analyzing the slope stability. A grid of slope is defined to be unstable when the relative soil saturation becomes higher than the critical level and is the basis for issuing a shallow landslide warning. The method was applied to past landslides in the upper Citarum River catchment (2,310 km2), Indonesia; the resulting time-invariant landslide susceptibility map shows good agreement with the spatial patterns of documented historical landslides (1985–2008). Application of the model to two recent shallow landslides shows that the model can successfully predict the effect of rainfall movement and intensity on the spatiotemporal dynamic of hydrological variables that trigger shallow landslides. Several hours before the landslides, the model predicted unstable conditions in some grids over and near the grids at which the actual shallow landslides occurred. Overall, the results demonstrate the potential applicability of the modeling system for shallow landslide disaster predictions and warnings.  相似文献   

17.
Effects of different initial conditions of pore water pressure distribution on slope stability are investigated based on rainfall data in the Three Gorges Reservoir Area. A method to incorporate the initial condition of pore water pressure distribution into the slope stability analysis is suggested. Then, sandy and clayey slopes are taken as examples to investigate the effect of antecedent rainfall on slope stability. Results indicate that the influence of antecedent rainfall on the slope stability increases as the saturated permeability coefficient of the soil decreases.  相似文献   

18.
The Kualiangzi landslide was triggered by heavy rainfalls in the “red beds” area of Sichuan Basin in southwestern China. Differing from other bedrock landslides, the movement of the Kualiangzi landslide was controlled by the subvertical cracks and a subhorizontal bedding plane (dip angle < 10°). The ingress of rainwater in the cracks formed a unique groundwater environment in the slope. Field measurement for rainfall, groundwater movement, and slope displacement has been made for the Kualiangzi landslide since 2013. The field monitoring system consists of two rainfall gauges, seven piezometers, five water-level gauges, and two GPS data loggers. The equipments are embedded near a longitudinal section of the landslide, where severe deformation has been observed in the past 3 years. The groundwater responses to four heavy rainfall events were analyzed between June 16 and July 24 in 2013 coincided with the flood season in Sichuan. Results showed that both of the water level and the pore-water pressure increased after each rainfall event with delay in the response time with respect to the precipitation. The maximum time lag reached 35 h occurred in a heavy rainfall event with cumulative precipitation of 127 mm; such lag effect was significantly weakened in the subsequent heavy rainfall events. In each presented rainfall event, longer infiltration period in the bedrock in the upper slope increased the response time of groundwater, compared to that of in the gravels in the lower slope. A translational landslide conceptual model was built for the Kualiangzi landslide, and the time lag was attributed to the gradual formation of the uplift pressure on the slip surface and the softening of soils at the slip surface. Another important observation is the effect on the slope movement which was caused by the water level (H w) in the transverse tension trough developed at the rear edge of the landslide. Significant negative correlation was found for H w and the slope stability factor (F s), in particular for the last two heavy rainfall events, of which the drastic increase of water level caused significant deterioration in the slope stability. The rapid drop (Δ?=?22.5 kPa) of pore-water pressure in the deep bedrock within 1 h and the large increase (Δ?=?87.3 mm) of surficial displacement were both monitored in the same period. In the end, a four-level early warning system is established through utilizing H w and the displacement rate D r as the warning indicators. When the large deformation occurred in flood season, the habitants at the leading edge of the landslide can be evacuated in time.  相似文献   

19.
Extreme and/or prolonged rainfall events frequently cause landslides in many parts of the world. In this study, infiltration of rainfall into an unsaturated soil slope and triggering of landslides is studied through laboratory model (flume) tests, with the goal of obtaining the triggering rainfall intensity–duration (I–D) threshold. Flume tests with fine sand at two different relative densities (34 and 48%) and at slope angle of 56.5° are prepared, and rainfall (intensity in the range of 18 to 64 mm/h) is applied via a mist sprinkler system to trigger landslides. Soil water characteristic curve and hydraulic conductivity function of the fine sand are also presented. In flume tests, suction in the soil is measured with tensiometers, the progress of wetting front with time and deformations in the soil are also measured. Some of the findings of this study are: for the fine sand used in this study (a) the failure mechanism is infinite-slope type (mostly translational), and the failure surface is generally coincident with the wetting front or is in its vicinity, (b) the deformations leading to a landslide occurred abruptly, (c) both relatively high-intensity–short-duration rainfalls and relatively low-intensity–long duration rainfalls triggered landslides, (d) the shape of the I–D threshold is demonstrated to be a bilinear relation in log intensity–log duration plot, (e) below a certain rainfall intensity landslides are not triggered, (f) the effect of relative density of the soil on the I–D threshold is demonstrated by physical laboratory tests (as the relative density of the soil increases, the triggering rainfall intensity–duration threshold moves to larger rainfall events). The results of this study could be useful for accurate numerical modeling of rainfall-triggered landslides.  相似文献   

20.
In Nepal, people live in widely spread settlements in the fragile Himalayan terrains, and suffer more from landslides than from any other type of natural disaster. The small-scale rainfall-triggered landslides in the Lesser Himalaya of Nepal are generally shallow (about 0.5 to 2.5 m) and are triggered by changes in the physical property of soil layers during rainfall. The relation between landslides and slope hydrology has received little attention in Himalayan landslide research. Thus, this paper deals with the probability of slope failure during extreme rainfall events by considering a digital elevation model (DEM)-based hydrological model for soil saturation depth and an infinite slope stability model. Deterministic distributed analysis in a geographic information system (GIS) was carried out to calculate the probability of slope failure. A simple method of error propagation was used to calculate the variance of the safety factors and the probability of failure. When normally distributed failure probability values were checked against existing landslides, it was found that more than 50% of the pixels of existing landslides coincided with a high calculated probability of failure. Although the deterministic distributed analysis has certain drawbacks, as described by previous researchers, this study concluded that the calculated failure probability can be utilised to predict the probability of slope failure in Himalayan terrain during extreme rainfall events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号