首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
豆英状铬铁矿按其矿物化学组分分为高铝型(Cr#值为20~ 60)和高铬型(Cr#值为60~80)两类(Thayer,1970),在全球已报道的豆英状铬铁矿中普遍为在一岩体内只存一种类型的矿体,而在同一岩体内发现两种类型的铬铁矿体较少见.位于雅鲁藏布江缝合带西段普兰岩体中首次发现同时存在高铬型和高铝型铬铁矿,岩体由地幔橄榄岩、辉长辉绿岩、火山岩等组成.地幔橄榄岩主要为方辉橄榄岩、纯橄岩和少量二辉橄榄岩.在方辉橄榄岩中发现7处透镜状的铬铁矿矿体露头,矿石类型主要有致密块状、稠密浸染状和稀疏浸染状等.矿体长2~6m,厚0.5~2m,矿体的最大延伸方向为北西-南东向,与岩体的展布方向一致,矿石的Cr#=52~88,高铬型铬铁矿包括Cr-2~5矿体,Cr#值为63~89,高铝型铬铁矿有Cr-1和Cr-6矿体,Cr#=52 ~55.矿石中脉石矿物主要为橄榄石、角闪石、蛇纹石等.普兰地幔橄榄岩的矿物结构显示,岩体经历了强烈的部分熔融以及塑性变形作用,地幔橄榄岩的地球化学特征显示岩体形成于MOR,后受到SSZ环境的改造.并且依据铬尖晶石-橄榄石/单斜辉石的矿物化学成分,识别出普兰地幔橄榄岩至少经历了3次不同的部分熔融,包括早期部分熔融(~10%)、晚期部分熔融(20%~30%)和局部的减压部分熔融作用(~15%).对比其他铬铁矿矿体和地幔橄榄岩的矿物组合,矿物化学和地球化学等,显示普兰豆荚状铬铁矿矿体与典型高铬型、高铝型铬铁矿具相似性,并存在较大的找矿空间.  相似文献   

2.
The ultramafic massif of Bulqiza, which belongs to the eastern ophiolitic belt of Albania, is a major source of metallurgical chromitite ore. The massif consists of a thick (> 4 km) sequence, composed from the base upward of tectonized harzburgite with minor dunite, a transitional zone of dunite, and a magmatic sequence of wehrlite, pyroxenite, troctolite and gabbro. Only sparse, refractory chromitites occur within the basal clinopyroxene-bearing harzburgites, whereas the upper and middle parts of the peridotite sequence contain abundant metallurgical chromitites. The transition zone dunites contain a few thin layers of metallurgical chromitite and sparse bodies are also present in the cumulate section. The Bulqiza Ophiolite shows major changes in thickness, like the 41–50 wt.% MgO composition similar with forearc peridotite as a result of its complex evolution in a suprasubduction zone (SSZ) environment. The peridotites show abundant evidence of mantle melt extraction at various scales as the orthopyroxene composition change from core to rim, and mineral compositions suggest formation in a forearc, as Fo values of olivine are in 91.1–93.0 harzburgite and 91.5–91.9 in dunite and 94.6–95.9 in massive chromitite. The composition of the melts passing through the peridotites changed gradually from tholeiite to boninite due to melt–rock reaction, leading to more High Cr# chromitites in the upper part of the body. Most of the massive and disseminated chromitites have high Cr# numbers (70–80), although there are systematic changes in olivine and magnesiochromite compositions from harzburgites, to dunite envelopes to massive chromitites, reflecting melt–rock reaction. Compositional zoning of orthopyroxene porphyroblasts in the harzburgite, incongruent melting of orthopyroxene and the presence of small, interstitial grains of spinel, olivine and pyroxene likewise attest to modification by migrating melts. All of the available evidence suggests that the Bulqiza Ophiolite formed in a suprasubduction zone mantle wedge.  相似文献   

3.
Dunite and serpentinized harzburgite in the Cheshmeh-Bid area, northwest of the Neyriz ophiolite in Iran, host podiform chromitite that occur as schlieren-type, tabular and aligned massive lenses of various sizes. The most important chromitite ore textures in the Cheshmeh-Bid deposit are massive, nodular and disseminated. Massive chromitite, dunite, and harzburgite host rocks were analyzed for trace and platinum-group elements geochemistry. Chromian spinel in chromitite is characterized by high Cr~#(0.72-0.78), high Mg~#(0.62–0.68) and low TiO_2(0.12 wt%-0.2 wt%) content. These data are similar to those of chromitites deposited from high degrees of mantle partial melting. The Cr~# of chromian spinel ranges from 0.73 to 0.8 in dunite, similar to the high-Cr chromitite, whereas it ranges from 0.56 to 0.65 in harzburgite. The calculated melt composition of the high-Cr chromitites of the Cheshmeh-Bid is 11.53 wt%–12.94 wt% Al_2O_3, 0.21 wt%–0.33 wt% TiO_2 with FeO/MgO ratios of 0.69-0.97, which are interpreted as more refractory melts akin to boninitic compositions. The total PGE content of the Cheshmeh-Bid chromitite, dunite and harzburgite are very low(average of 220.4, 34.5 and 47.3 ppb, respectively). The Pd/Ir ratio, which is an indicator of PGE fractionation, is very low(0.05–0.18) in the Cheshmeh-Bid chromitites and show that these rocks derived from a depleted mantle. The chromitites are characterized by high-Cr~#, low Pd + Pt(4–14 ppb) and high IPGE/PPGE ratios(8.2–22.25), resulting in a general negatively patterns, suggesting a high-degree of partial melting is responsible for the formation of the Cheshmeh-Bid chromitites. Therefore parent magma probably experiences a very low fractionation and was derived by an increasing partial melting. These geochemical characteristics show that the Cheshmeh-Bid chromitites have been probably derived from a boninitic melts in a supra-subduction setting that reacted with depleted peridotites. The high-Cr chromitite has relatively uniform mantle-normalized PGE patterns, with a steep slope, positive Ru and negative Pt, Pd anomalies, and enrichment of PGE relative to the chondrite. The dunite(total PGE = 47.25 ppb) and harzburgite(total PGE =3 4.5 ppb) are highly depleted in PGE and show slightly positive slopes PGE spidergrams, accompanied by a small positive Ru, Pt and Pd anomalies and their Pdn/Irn ratio ranges between 1.55–1.7 and 1.36-1.94, respectively. Trace element contents of the Cheshmeh-Bid chromitites, such as Ga, V, Zn, Co, Ni, and Mn, are low and vary between 13–26, 466–842, 22-84, 115–179, 826–-1210, and 697–1136 ppm, respectively. These contents are compatible with other boninitic chromitites worldwide. The chromian spinel and bulk PGE geochemistry for the Cheshmeh-Bid chromitites suggest that high-Cr chromitites were generated from Cr-rich and, Ti-and Al-poor boninitic melts, most probably in a fore-arc tectonic setting related with a supra-subduction zone, similarly to other ophiolites in the outer Zagros ophiolitic belt.  相似文献   

4.
达机翁蛇绿岩位于雅鲁藏布江缝合带的西段北亚带,该蛇绿岩主要由地幔橄榄岩、玄武岩以及硅质岩组成,其中地幔橄榄岩以方辉橄榄岩为主,同时含有少量的纯橄榄岩,纯橄岩主要呈不规则透镜状或团块状分布于方辉橄榄岩中。在达机翁地幔橄榄岩中产出有3种不同类型的铬铁矿,分别为块状,豆状以及浸染状铬铁矿。文章主要对达机翁地幔橄榄岩的方辉橄榄岩及豆荚状铬铁矿进行了研究,结合岩石的主量元素和铂族元素,对地幔橄榄岩和豆荚状铬铁矿的成因以及雅鲁藏布江缝合带的找矿远景进行了探讨。达机翁地幔橄榄岩具有较高的Mg O含量以及较低的Al2O3和Ca O等含量,这种亏损的全岩成分指示了达机翁地幔橄榄岩经历了较高的部分熔融作用,同时方辉橄榄岩的PGEs的总量为23.68×10-9~31.02×10-9,高于原始地幔的值,Pd和Cu 2个元素的含量较为分散明显偏离部分熔融曲线,指示了达机翁方辉橄榄岩可能遭受了熔体的改造,在熔体-岩石反应的过程中,导致了富含PPGE的硫化物的加入。达机翁豆荚状铬铁矿为高Cr型铬铁矿,具有IPGE和Rh明显富集以及Pt,Pd明显亏损的特征,不同类型的铬铁矿之间具有一致的PGEs的分配模式。雅鲁藏布江缝合带内大量分布的超镁铁岩体在岩石组合、地球化学特征、成因以及形成时代等方面,均具有相似性,是中国铬铁矿找矿的有利远景区。  相似文献   

5.
The Bulqiza ultmafic massif, which belongs to the eastern Mirdita ophiolite of northern Albania, is world renowned for its high‐Cr chromite resource. The high‐Cr chromitites commonly host in the mantle section, while high‐Al chromitites also present in massive dunite of the mantle‐crust transition zone (MTZ) in this massif. Chromian‐spinel in the MTZ high‐Al chromitites and MTZ dunites have much lower Cr# values [Cr/(Cr+Al)×100] (47.7–55.1 and 46.5–51.7, respectively) than those of chromian‐spinel in the high‐Cr chromitites (78.2–80.4), harzburgites (72.6–77.9) and mantle dunites (79.4–84.3). The high‐Cr chromitites are rich in IPGE relative to PPGE with 0.10–0.45 PPGE/IPGE ratios, whereas the high‐Al chromitites have higher PPGE/IPGE ratios between 1.20 and 7.80. The partial melting degrees of parental magmas for the high‐Cr chromitites are beyond the critical interval (> 25%) and thus prevented sulfide saturation and diluted Pt and Pd in melts, producing high‐Cr chromitites barren of Pt and Pd. However, the degrees for the high‐Al chromitites just enter the critical interval (20–25%) for the effective extraction of PGE from mantle sulfides, which may account for the enrichments of PPGE in high‐Al chromitites. The parental melts of the high‐Cr chromitites have Al2O3 and TiO2 contents of ~10.6–11.4 wt.% and 0.14–0.31 wt.%, whereas the calculated Al2O3 and TiO2 for the high‐Al chromitites are ~14.9–15.9 wt.% and 0.07–0.61 wt.%, respectively. The calculated melts in equilibrium with the high‐Cr chromitites are boninitic‐like, and those with high‐Al chromitites are MORB‐like but with hydrous, oxidized and TiO2‐poor affinities. To make a compromise between the inconsistence above, we proposed that coexistence of both types of chromitites in the Bulqiza ultramafic massif may reflect that their magma compositions transited from MORB‐like to boninitic‐like in a proto‐forearc setting during subduction initiation. Key words: Chromian‐spinel, Platinum‐group elements, high‐Cr and high‐Al chromitite, Mirdita ophiolite, Albania.  相似文献   

6.
刘建国  王建 《地质学报》2016,90(6):1182-1194
西昆仑库地蛇绿岩发育小规模的铬铁矿床,矿体呈豆荚状和层状、似层状,均与纯橄岩紧密伴生。这些纯橄岩主要由橄榄石和副矿物尖晶石组成,与方辉橄榄岩相比,橄榄岩中的橄榄石粒径粗(平均2.5mm),Mg#(88~90)低,这与它们全岩低Mg#(90)值,富Al_2O_3、TiO_2、Cr_2O_3、Fe_2O_3相吻合,与熔融残余成因的纯橄岩明显不同,反映了其很可能是由熔体与方辉橄榄岩反应而成。矿体主要由块状、浸染状及脉状铬铁矿石组成;铬铁矿石中的尖晶石具有低而相对稳定的Cr#(43~56),低于富铬型铬铁矿矿床中的铬铁矿(Cr#60)。块状矿石与纯橄岩呈突变接触,矿石中的尖晶石呈浑圆状,包裹有较多橄榄石、辉石等硅酸盐矿物及角闪石等含水硅酸盐矿物;浸染状铬铁矿石中的尖晶石与橄榄石颗粒构成交织结构,或呈云朵状,沿橄榄石颗粒边界相互连接,矿石的结构构造显示了熔/岩反应成因特征。通过计算分析,我们认为该区富铝型铬铁矿石是由拉斑玄武质熔体与地幔橄榄岩反应而成,由于熔体中含有较高的H_2O,参与反应的熔体可能源于弧后扩张脊环境。  相似文献   

7.
熊发挥  杨经绥  高健  来盛民  陈艳虹  张岚 《岩石学报》2016,32(12):3635-3648
泽当蛇绿岩位于雅鲁藏布江缝合带东段,岩体由地幔橄榄岩、辉长辉绿岩、辉石岩、火山岩等组成。地幔橄榄岩主要为方辉橄榄岩、纯橄岩和二辉橄榄岩。在方辉橄榄岩中发现7处豆荚状铬铁矿,矿石类型主要有致密块状和浸染状。出露地表的长度0.5~3m,厚0.2~1m。矿体的延伸方向为北西向,与岩体展布的方向一致,铬铁矿的Cr~#=67.9~88.5,属于高铬型铬铁矿。泽当地幔橄榄岩岩相学特征以及矿物组合、矿物化学成份及岩相学特征,显示岩体至少存在两次的部分熔融过程,即为早期的MOR构造背景,以及后期SSZ环境的改造。铬铁矿的铂族元素(PGE)以富集Os、Rh、Pd,亏损Ir、Ru、Pt的负斜率分布模式,表明其形成过程中经受后期熔体/流体的改造。对比罗布莎岩体的矿物组合,矿物化学和地球化学等特征,显示泽当豆荚状铬铁矿矿体与典型高铬型具相似性,存在较大的找矿空间。  相似文献   

8.
On the basis of their mineral chemistry, podiform chromitites are divided into high-Al (Cr# = 20–60) (Cr# = 100 1 Cr/(Cr + Al)) and high-Cr (Cr# = 60–80) varieties. Typically, only one type occurs in a given peridotite massif, although some ophiolites contain several massifs that can have different chromitite compositions. We report here the occurrence of both high-Cr and high-Al chromitite in a single massif in China, the Dongbo mafic-ultramafic body in the western Yarlung-Zangbo suture zone of Tibet. This massif consists mainly of mantle peridotites, with lesser pyroxenite and gabbro. The mantle peridotites are mainly composed of harzburgites and minor lherzolites; a few dike-like bodies of dunite are also present. Seven small, lenticular bodies of chromitite ores have been found in the harzburgites, with ore textures ranging from massive through disseminated to sparsely disseminated; no nodular ore has been observed. Individual chromitite pods are 1–3 m long, 0.2–2 m wide and strike NW, parallel to the main trend of the peridotites. Chromitite pods 3, 4, and 5 consist of high-Al chromitite (Cr# = 12–47), whereas pods 1 and 2 are high-Cr varieties (Cr# = 73 to 77). In addition to chromian spinel, all of the pods contain minor olivine, amphibole and serpentine. Mineral structures show that the peridotites experienced plastic deformation and partial melting. The mineralogy and geochemistry of the Dongbo peridotites suggest that they formed originally at a mid-ocean ridge (MOR), and were later modified by suprasubduction zone (SSZ) melts/fluids. We interpret the high-Al chromitites as the products of early mid-ocean ridge basalt (MORB) or arc tholeiite magmas, whereas the high-Cr varieties are thought to have been generated by later SSZ melts.  相似文献   

9.
The Dangqiong ophiolite, the largest in the western segment of the Yarlung-Zangbo Suture Zone(YZSZ)ophiolite belt in southern Tibet, consists of discontinuous mantle peridotite and intrusive mafic rocks. The former is composed dominantly of harzburgite, with minor dunite, locally lherzolite and some dunite containing lenses and veins of chromitite. The latter, mafic dykes(gabbro and diabase dykes), occur mainly in the southern part. This study carried out geochemical analysis on both rocks. The results show that the mantle peridotite has Fo values in olivine from 89.92 to 91.63 and is characterized by low aluminum contents(1.5–4.66 wt%) and high Mg# values(91.06–94.53) of clinopyroxene. Most spinels in the Dangqiong peridotites have typical Mg# values ranging from 61.07 to 72.52, with corresponding Cr# values ranging from 17.67 to 31.66, and have TiO2 contents from 0 to 0.09%, indicating only a low degree of partial melting(10–15%). The olivine-spinel equilibrium and spinel chemistry of the Dangqiong peridotites suggest that they originated deeper mantle(20 kbar). The gabbro dykes show N-MORB-type patterns of REE and trace elements. The presence of amphibole in the Dangqiong gabbro suggests the late-stage alteration of subduction-derived fluids. All the lherzolites and harzburgites in Dangqiong have similar distribution patterns of REE and trace elements, the mineral chemistry in the harzburgites and lherzolites indicates compositions similar to those of abyssal and forearc peridotites, suggesting that the ophiolite in Dangqiong formed in a MOR environment and then was modified by late-stage melts and fluids in a suprasubduction zone(SSZ) setting. This formation process is consistent with that of the Luobusa ophiolite in the eastern Yarlung-Zangbo Suture Zone and Purang ophiolite in the western Yarlung-Zangbo Suture Zone.  相似文献   

10.
Systematics of chromitite occurrences in Central Palawan,Philippines   总被引:1,自引:0,他引:1  
The chromitite occurrences in the Central Palawan ophiolite can be classified into four groups based on their chemistry and geological relationships. Group-I chromites from a deep tectonite level of the ophiolite complex show Cr/(Cr+Al) values of between 0.78 and 0.90, whereas group II from a shallower level gives values of 0.64–0.78, and group III from the immediate gabbro lower contact (dunite: cumulates and diapirs) show values of 0.5–0.64. Group-IV chromites from the gabbro zone have ratios around 0.38–0.5. Larger orebodies (type A), representing a first stage of partial melting of a primordial mantle, show Cr/Fe ratios between 2.5 and 4.5, whilst those of small chromitite bodies with a thin dunite envelope (type B) lie below 2.5. These small bodies belong to a second stage of magma generation. For both types the Cr/Fe ratio increases with the chromite/silicate ratio within individual occurrences. An additional method which may help to subdivide these chromitites involves their silicate and ore inclusions. The platinum-group minerals, for example, occur mainly in chromites of group II, type A. The intensive Tertiary tectonic activity to which the ophiolite was subjected during and after emplacement disturbs the regular pattern of the ophiolite stratigraphy and its chromitite occurrences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号