首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed to facilitate the design of tracer tests by root determination of the one-dimensional advection-dispersion equation (ADE) using a preset average tracer concentration which provides a theoretical basis for an estimate of necessary tracer mass. The method uses basic measured field parameters (e.g., discharge, distance, cross-sectional area) that are combined in functional relationships that describe solute-transport processes related to flow velocity and time of travel. These initial estimates for time of travel and velocity are then applied to a hypothetical continuous stirred tank reactor (CSTR) as an analog for the hydrological-flow system to develop initial estimates for tracer concentration, tracer mass, and axial dispersion. Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be necessary for describing the predicted tracer-breakthrough curve (BTC). Inclusion of tracer retardation and decay cause a net increase in tracer-mass estimates so that the preset average tracer concentration will be maintained and there will be a consequent steepening of the BTC, but retardation also causes BTC spreading and a delay in tracer arrival.  相似文献   

2.
Effective tracer-test design requires that the likely results be predicted in advance of test initiation to ensure tracer-test success. EHTD-predicted breakthrough curves (BTCs) for various hydrological conditions were compared with measured BTCs obtained from actual tracer tests. The hydrological conditions for the tracer tests ranged from flowing streams to porous-media systems. Tracer tests evaluated included flowing streams tracer tests conducted in small and large surface-water streams, a karst solution conduit, and a glacial-meltwater stream and porous-media systems conducted as natural-gradient, forced-gradient, injection-withdrawal, and recirculation tracer tests. Comparisons between the actual tracer tests and the predicted results showed that tracer breakthrough, hydraulic characteristics, and sample-collection frequency may be forecasted sufficiently well in most instances as to facilitate good tracer-test design. Comparisons were generally improved by including tracer decay and/or retardation in the simulations. Inclusion of tracer decay in the simulations also tended to require an increase in set average tracer concentration to facilitate matching peak concentrations in the measured BTCs, however. Both nonreactive tracer and reactive tracer predictions produced recommended sample-collection frequencies that would adequately define the actual BTCs, but estimated tracer-mass estimates were less precise.  相似文献   

3.
A comparison of estimated and calculated effective porosity   总被引:1,自引:1,他引:0  
 Effective porosity in solute-transport analyses is usually estimated rather than calculated from tracer tests in the field or laboratory. Calculated values of effective porosity in the laboratory on three different textured samples were compared to estimates derived from particle-size distributions and soil–water characteristic curves. The agreement was poor and it seems that no clear relationships exist between effective porosity calculated from laboratory tracer tests and effective porosity estimated from particle-size distributions and soil–water characteristic curves. A field tracer test in a sand-and-gravel aquifer produced a calculated effective porosity of approximately 0.17. By comparison, estimates of effective porosity from textural data, moisture retention, and published values were approximately 50–90% greater than the field calibrated value. Thus, estimation of effective porosity for chemical transport is highly dependent on the chosen transport model and is best obtained by laboratory or field tracer tests. Received, March 1997 · Revised, August 1997 · Accepted, August 1997  相似文献   

4.
This paper describes a natural-gradient field tracer test to characterise solute-transport properties in a sand and gravel aquifer in the Hebei Province, northern China. Some laboratory-scale column tests on aquifer material and a local-scale field borehole-dilution test have been conducted previously, but the field test reported herein represents the only large-scale tracer test in the aquifer, which is the sole water supply to the city of Shi Jiazhuang and which is threatened by urban pollution. The aim of the study was to quantify the transport behaviour of nonreactive pollutants in this aquifer. Little quantitative data are available concerning its solute-transport properties; thus, the results of the tracer test are significant and critical for understanding pollutant transport and fate. The in-situ tracer test was carried out in the aquifer using a slug injection of the geochemically conservative, radioactive iodine tracer 131I. The longitudinal (α L ) and transverse (α T ) hydrodynamic dispersivities for solute transport in the field are 1.72 and 0.0013 m, respectively. The ratio of longitudinal dispersivity α L and the flow length at the field scale is 1:10. The ratio between α L and α T from the in-situ test (~1,300:1) demonstrates a dominant longitudinal dispersion in this fluvial sand and gravel aquifer. The tracer test further indicates a relatively short transit time for the aquifer (linear velocities ~13 m/d) under natural-gradient conditions. Electronic Publication  相似文献   

5.
Conservative tracer experiments can provide information useful for characterizing various subsurface transport properties. This study examines the effectiveness of three different types of transport observations for sensitivity analysis and parameter estimation of a three-dimensional site-specific groundwater flow and transport model: conservative tracer breakthrough curves (BTCs), first temporal moments of BTCs (m 1), and tracer cumulative mass discharge (M d) through control planes combined with hydraulic head observations (h). High-resolution data obtained from a 410-day controlled field experiment at Vandenberg Air Force Base, California (USA), have been used. In this experiment, bromide was injected to create two adjacent plumes monitored at six different transects (perpendicular to groundwater flow) with a total of 162 monitoring wells. A total of 133 different observations of transient hydraulic head, 1,158 of BTC concentration, 23 of first moment, and 36 of mass discharge were used for sensitivity analysis and parameter estimation of nine flow and transport parameters. The importance of each group of transport observations in estimating these parameters was evaluated using sensitivity analysis, and five out of nine parameters were calibrated against these data. Results showed the advantages of using temporal moment of conservative tracer BTCs and mass discharge as observations for inverse modeling.  相似文献   

6.
建立基于模拟退火遗传算法(Sjmualted Annealing Genetic Algorithm,SAGA)的改进极大似然法,即将似然函数相反数求解极小值的表达式作为目标函数,依据矩法估计参数取值范围作为约束条件,然后应用SAGA进行参数估计.与常规极大似然法思路有本质不同,改进极大似然法通过遗传算法进行参数优化.通过蒙特卡罗试验,验证了改进极大似然法在参数估计和不同频率设计值估计两个方面均具有很好的准确性,与基于最大熵原理的方法效果相当,优于其他方法;同时该方法不受线型类型、参数数目和约束条件的限制;可以避免应用常规极大似然法时出现似然方程无解等情况;且求解过程简便快捷,使极大似然法在理论上和实际应用中都成为有效的方法.  相似文献   

7.
In this study, Hydrologic Engineering Center-Hydrologic Modeling System is used to simulate hydrologic processes in a watershed in Western Black Sea Region that frequently experiences flooding. The region is mountainous with steep hill slopes and receives high precipitation throughout the year. There are three stream gauging stations in the basin whose data are available for calibration and validation of hydrologic parameters. Simulations are performed for different scenarios to investigate the effect of using multiple stream gauging stations’ data on catchment wide calibration and validation of hydrologic parameters. Furthermore, performance of using calibrated internal stream gauging stations’ flow data in the estimation of hydrologic parameters in an assumed neighboring ungauged basin was assessed. It is found that using data of multiple stream gauging stations for calibration and validation gives satisfactory results for direct runoff hydrograph but the peak discharge predictions are not improved. The study results suggest that using data of internal stream gauging stations enables improved understanding of internal dynamics and transport in the basin and better predicted direct runoff hydrograph for the assumed neighboring ungauged basin.  相似文献   

8.
蒸发皿系数Kp计算方法研究   总被引:5,自引:0,他引:5  
周振民 《水文》2003,23(1):21-23
应用指标回归法和定性(风速和相对湿度)定量(吹程)资料,建立了蒸发皿系数Kp计算方程,并用黄河下游引黄灌区48个观测站实测资料进行了验证计算。计算结果表明,应用该方程,可大大改善Kp值的计算精度。  相似文献   

9.
《Applied Geochemistry》2005,20(9):1677-1686
Understanding the effect of chemical reactions on the hydrologic properties of geological media, such as porosity, permeability and dispersivity, is critical to many natural and engineered sub-surface systems. Influence of glass corrosion (precipitation and dissolution) reactions on fractured and rubbelized (crushed) forms HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted using fractured and rubbelized forms, before and after subjecting them to corrosion using vapor hydration testing (VHT) at 200 °C temperature and 200 psig pressure, causing the precipitation of alteration products. Data were analyzed using analytical expressions and CXTFIT, a transport parameter optimization code, for the estimation of the hydrologic characteristics before and after VHT. It was found that glass reactions significantly influence the hydrologic properties of ILAW glass media. Hydrologic properties of rubbelized glass decreased due to precipitation reactions, whereas those of fractured glass media increased due to reaction which led to unconfined expansion of fracture aperture. The results are unique and useful to better understand the effect of chemical reactions on the hydrologic properties of fractured and rubbelized stony media in general and glass media in particular.  相似文献   

10.
杜尧  马腾  邓娅敏  廖曼  郑倩琳 《地球科学》2017,42(5):661-673
精确量化潜流带水文交换和生物地球化学反应一直是一个挑战,潜流带水文-生物地球化学研究的核心任务是将小尺度上的水文通量及生物地球化学反应动力学与更大尺度上它们对河流水质和生态的累积效应关联起来.基于潜流带水文-生物地球化学耦合原理,系统综述了渗流仪测量、测压管测量、示踪剂注射试验、温度示踪等潜流带水文学研究方法以及野外示踪试验、室内培养试验等生物地球化学研究方法,针对性地评述了潜流带水文-生物地球化学过程在更大尺度上的累积效应及其对河流生态系统的重要意义,并指出未来的研究将从潜流带研究技术方法的先进化、水文地貌理论与模型的深入化和潜流带生物地球化学过程的尺度化等方面持续地发展.   相似文献   

11.
Precipitation-dissolution reactions are important for a number of applications such as isotopic tracer transport in the subsurface. Analytical solutions have been developed for tracer transport in both single-fracture and multiple-fracture systems associated with these reactions under transient and steady-state transport conditions. These solutions also take into account advective transport in fractures and molecular diffusion in the rock matrix. For studying distributions of disturbed tracer concentration (the difference between actual concentration and its equilibrium value), effects of precipitation-dissolution reactions are mathematically equivalent to a “decay” process with a decay constant proportional to the corresponding bulk reaction rate. This important feature significantly simplifies the derivation procedure by taking advantage of the existence of analytical solutions for tracer transport associated with radioactive decay in fractured rock. It is also useful for interpreting tracer breakthrough curves, because the impact of a decay process is relatively easy to analyze. Several illustrative examples are presented, which show that the results are sensitive to fracture spacing, matrix diffusion coefficient (fracture surface area), and bulk reaction rate (or “decay” constant), indicating that the relevant flow and transport parameters may be estimated by analyzing tracer signals.  相似文献   

12.
水文频率分析述评   总被引:19,自引:0,他引:19       下载免费PDF全文
金光炎 《水科学进展》1999,10(3):319-327
对水文频率分析研究进行了回顾与评述,分别对常遇的几个问题——频率曲线线型、经验频率公式、统计参数估计和特殊水文资料应用等作了叙述,总结了我国近50年来在频率分析上的主要成就以及对分析思路、研究探索、实际应用和实践经验等作出剖析。可以认为,现在已发展成一套具有中国特色的水文频率分析方法,为工程所需提供了科学依据,为水文学科的发展作出了贡献。  相似文献   

13.
Artificial tracer experiments were conducted in the mature karst system of Jeita (Lebanon) under various flow conditions using surface and subsurface tracer injection points, to determine the variation of transport parameters (attenuation of peak concentration, velocity, transit times, dispersivity, and proportion of immobile and mobile regions) along fast and slow flow pathways. Tracer breakthrough curves (TBCs) observed at the karst spring were interpreted using a two-region nonequilibrium approach (2RNEM) to account for the skewness in the TBCs’ long tailings. The conduit test results revealed a discharge threshold in the system dynamics, beyond which the transport parameters vary significantly. The polynomial relationship between transport velocity and discharge can be related to the variation of the conduit’s cross-sectional area. Longitudinal dispersivity in the conduit system is not a constant value (α?=?7–10 m) and decreases linearly with increasing flow rate because of dilution effects. Additionally, the proportion of immobile regions (arising from conduit irregularities) increases with decreasing water level in the conduit system. From tracer tests with injection at the surface, longitudinal dispersivity values are found to be large (8–27 m). The tailing observed in some TBCs is generated in the unsaturated zone before the tracer actually arrives at the major subsurface conduit draining the system. This work allows the estimation and prediction of the key transport parameters in karst aquifers. It shows that these parameters vary with time and flow dynamics, and they reflect the geometry of the flow pathway and the origin of infiltrating (potentially contaminated) recharge.  相似文献   

14.
Theoretical approaches are of fundamental importance to predict the potential impact of waste disposal facilities on ground water contamination. Appropriate design parameters are generally estimated by fitting theoretical models to data gathered from field monitoring or laboratory experiments. Transient through-diffusion tests are generally conducted in the laboratory to estimate the mass transport parameters of the proposed barrier material. These parameters are usually estimated either by approximate eye-fitting calibration or by combining the solution of the direct problem with any available gradient-based techniques. In this work, an automated, gradient-free solver is developed to estimate the mass transport parameters of a transient through-diffusion model. The proposed inverse model uses a particle swarm optimization (PSO) algorithm that is based on the social behavior of animals searching for food sources. The finite difference numerical solution of the forward model is integrated with the PSO algorithm to solve the inverse problem of parameter estimation. The working principle of the new solver is demonstrated and mass transport parameters are estimated from laboratory through-diffusion experimental data. An inverse model based on the standard gradient-based technique is formulated to compare with the proposed solver. A detailed comparative study is carried out between conventional methods and the proposed solver. The present automated technique is found to be very efficient and robust. The mass transport parameters are obtained with great precision.  相似文献   

15.
It is often difficult to directly obtain specific design parameters of interest. In these situations, estimation based on empirical correlations is an alternative. The deformation modulus of a rock mass, which is important to know for engineering projects, is measured by in situ tests, such as plate bearing, flat jack, pressure chamber, borehole jacking and dilatometer tests. Nevertheless, these in situ tests are expensive, time consuming and sometimes even impossible. Many attempts have been made to estimate the E modulus using easy-to-obtain parameters of a rock mass. This paper reviews previous studies and the equations that have been developed. In addition, this study presents a new relation developed using a database of 82 dilatometer test results gathered from two dam sites and a tunnel site. Statistical analyses were performed to correlate accessible rock parameters with measured E modulus values from in situ tests. Knowing that discontinuity characteristics and the strength of rock materials are the most important contributors to rock deformability, the focus was on identifying parameters that are affected by the mentioned properties. Among the tested parameters, RMR (Rock Mass Rating) showed the best correlation with the E modulus. Statistical analyses resulted in a new empirical equation that has an acceptable estimation ability.  相似文献   

16.
The groundwater tracer injection and withdrawal tests are often carried out for the determination of aquifer solute transport parameters. However, the parameter analyses encounter a great difficulty due to the radial flow nature and the variability of the temporal boundary conditions. An adaptive methodology for the determination of groundwater solute transport parameters using tracer injection and withdrawal test data had been developed and illustrated through an actual case. The methodology includes the treatment of the tracer boundary condition at the tracer injection well, the normalization of tracer concentration, the groundwater solute transport finite element modelling and the method of least squares to optimize the parameters. An application of this methodology was carried out in a field test in the South of Hanoi city. The tested aquifer is Pleistocene aquifer, which is a main aquifer and has been providing domestic water supply to the city since the French time. Effective porosity of 0.31, longitudinal dispersivity of 2.2 m, and hydrodynamic dispersion coefficients from D = 220 m2/d right outside the pumping well screen to D =15.8 m2/d right outside the tracer injection well screen have been obtained for the aquifer at the test site. The minimal sum of squares of the differences between the observed and model normalized tracer concentration is 0.00119, which is corresponding to the average absolute difference between observed and model normalized concentrations of 0.035 5 (while 1 is the worst and 0 is the best fit).  相似文献   

17.
The main goal of this study is to investigate the effect of the size of the subbasins of a watershed on the hydrologic parameters and their spatial variability in an estimation of the hydrologic parameters and hydrograph of a neighbouring ungauged basin. In this paper, Hydrologic Engineering Center-Hydrologic Modelling System (HEC-HMS), a semi-distributed hydrologic model, is used to calibrate and cross-validate two flood events occurred in 1998 and then validate four other flood events occurred in 1991, 1994, 2002, and 2009 in Gokirmak Basin in Western Black Sea Region, Turkey. The basin is divided into seven different subbasins to investigate the effect of watershed partitioning on calibrated hydrologic parameters of each subbasin using the peak-weighted root mean square error method as an objective function and the hydrograph at the outlet of the whole basin. It is found out that as the geometric magnitudes of the subbasins changed, the calibrated values of the hydrologic parameters of those subbasins changed as well. Then, a neighbouring basin, Kocanaz, is considered as an assumed neighbouring ungauged basin to investigate the effect of watershed partitioning of a gauged basin on the estimation of hydrograph of a neighbouring ungauged basin. Hydrologic parameters and direct runoff hydrograph of assumed ungauged neighbouring basin are estimated from the hydrologic parameters of the HEC-HMS calibration results of Gokirmak. Statistical indicators of the simulation results for each basin partitioning were graded with respect to the boundary values of the simulation outputs to find the best alternative. The grading results show that the simulation results with a single basin gave better representation among all other partitioning except two flood events.  相似文献   

18.
Heap leaching is essentially a process in which metals are extracted from mine ores with lixiant. For a better understanding and modeling of this process, solute transport parameters are required to characterize the solute transport system of the leach heap. For porous media like leach ores, which contain substantial gravelly particles and have a broad range of particle size distributions, traditional small-scale laboratory experimental apparatus is not appropriate. In this paper, a 2.44 m long, 0.3 m inner diameter column was used for tracer test with boron as the tracer. Tracer tests were conducted for 2 bulk densities (1.92 and 1.62 g/cm3) and 2 irrigation rates (2 and 5 L/ (m2·h−1)). Inverse modeling with two-region transport model using computer code CXTFIT was conducted based on the measured breakthrough curves to estimate the transport parameters. Fitting was focused on three parameters: dispersion coefficient D, partition coefficient β, and mass transfer coefficient ω. The results turned out to fall within reasonable ranges. Sensitivity analysis was conducted for the three parameters and showed that the order of sensitivity is β > ω > D. In addition, scaling of these parameters was discussed and applied to a real scale heap leach to predict the tracer breakthrough.  相似文献   

19.
The sinuosity factor (SF) is a critical value in karst systems in terms of estimating their hydrodynamic parameters including groundwater velocity, coefficient of dispersion, etc., through dye tracer experiments. SF has been used in a number of different dye tracer experiments in karstic systems to estimate a representative flow path. While knowing SF is crucially important in the estimation of hydrodynamic parameters, its calculation is associated with significant uncertainty due to the complexity of subsurface karstic features. And yet, only a few studies have discussed its uncertainties, which might lead some errors in estimation of hydrodynamic parameters from dye tracer experiment. In this study, dye tracer experiments were conducted in two consecutive years (2003 and 2004) representing low and high flow conditions in the Beyyayla sinkhole (Eski?ehir, Turkey) where the flow path is well known. Uranine was used in experiments as a tracer and QTRACER computer program was used to determine the hydrodynamic properties of the Beyyayla karst system as well as to gain insights into the effects of SF from dye tracer experiments on estimated parameters. The results showed that the breakthrough curve follows a unimodal and a bimodal distribution in low and high flow conditions, respectively. These different distributions stem from the water transport mechanisms, where velocities were calculated as 58.2 and 93.6 m h?1 during low and high flow conditions observed in a spring emerging from the south side of the studied system. The results also show that the coefficient of dispersion, Reynolds number, and Peclet number increased and longitudinal dispersivity decreased with the higher flow rate. Furthermore, the estimated parameters did not vary with either the flow conditions or the tracer transit time, but they have shown some variations with SF. When SF was increased by 50 %, a change in these parameters was obtained in the range of 50–125 %.  相似文献   

20.
Simple governing equations coupling diffusional transport at a macroscopic scale and deformation in a tight rock are formulated. The deformation alone is described by a linear viscous rheology. Several deformations of geological interest are analyzed, including the folding of an embedded layer. A basic feature is the length-scale dependence of diffusional effects. Interpretation of natural structures permits the estimation of parameters governing the diffusional transport and rate of deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号