首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diffusion modeling of zoning profiles in eclogite garnets from three different tectonic units of Mt. Dabie, UHPM unit, HPM unit and northern Dabie, was used to estimate the relative time span and cooling rates of these rocks. Modeling result for the Huangzhen eclogite garnet shows that the maximal time span for the diffusion-adjustment process is about 22 Ma since the peak-temperature metamorphism, which is the maximum time span from amphibolite facies metamorphism to greenschist facies metamorphism. The Bixiling eclogites had subjected to a cooling process at a rate of - 10℃/Ma from 750℃ to 560℃ during 20 Ma. The second cooling stage of the Raobazhai eclogite following granulite-facies metamorphism is an initial fast cooling process at a rate of about 25℃/Ma and then slowed down gradually. All these belong to a coherent Dabie collision orogen with differences in subduction depth and exhumation/uplifting path.  相似文献   

2.
The high-pressure (HP) eclogite in the western Dabie Mountain encloses numerous hornblendes, mostly barroisite. Opinions on the peak metamorphic P-T condition, PT path and mineral paragenesis of it are still in dispute. Generally, HP eclogite involves garnet, omphacite, hornblendes and quartz, with or without glaucophane, zoisite and phengite. The garnet has compositional zoning with XMg increase, XCa and XMn decrease from core to rim, which indicates a progressive metamorphism. The phase equilibria of the HP eclogite modeled by the P-T pseudosection method developed recently showed the following: (1) the growth zonation of garnet records a progressive metamorphic PT path from pre-peak condition of 1.9–2.1 GPa at 508°C–514°C to a peak one of 2.3–2.5 GPa at 528°C–531°C for the HP eclogite; (2) the peak mineral assemblage is garnet+omphacite+glaucophane+quartz±phengite, likely paragenetic with lawsonite; (3) the extensive hornblendes derive mainly from glaucophane, partial omphacite and even a little garnet due to the decompression with some heating during the post-peak stage, mostly representing the conditions of about 1.4–1.6 GPa and 580°C–640°C, and their growth is favored by the dehydration of lawsonite into zoisite or epidote, but most of the garnet, omphacite or phengite in the HP eclogite still preserve their compositions at peak condition, and they are not obviously equilibrious with the hornblendes.  相似文献   

3.
《地学前缘(英文版)》2018,9(6):1795-1807
The high-to ultrahigh-pressure metamorphic rocks of the Atbashy complex were petrologically investigated. The eclogites of the Choloktor Formation show a prograde evolution from epidote-blueschist facies(P = 17-21 kbar and T = 450-515 ℃) to peak eclogite-UHP conditions(P = 26-29 kbar and T = 545-615 ℃) with a subsequent epidote-amphibolite and greenschist facies overprint. The micaschists of the Choloktor Formation also show a clockwise P-T path from blueschist/epidote-blueschist facies conditions through peak eclogite facies conditions(P = 21-23 kbar and T = 530-580 ℃) to retrograde epidote-amphibolite and greenschist facies stages. A comparison of the P-T paths in the eclogites and mica-schists of Choloktor Formation reveal that they may have shared their P-T history from peak to retrograde stages. The mica-schists of the Atbashy Formation record peak metamorphism of P = 10-12 kbar and T = 515-565 ℃, which indicates that the highest grade of regional metamorphism in the Atbashy Ridge was epidote-amphibolite facies.The newly obtained P-T conditions for the mica-schists of Choloktor Formation indicate that sheets of sedimentary rocks were brought to great depths along the subduction zone and they metamorphosed under eclogite facies HP conditions. The eclogite blocks were amalgamated with mica-schists of Choloktor Formation in the eclogite facies HP conditions and together they experienced isothermal decompression to ~40 km. During this path, the eclogites and mica-schists of Choloktor Formation docked with mica-schists of Atbashy Formation at 10-12 kbar and 515-565 ℃, and from this depth(~40 km) the whole sequence was exhumed together. These new results improve our understanding of high-pressure metamorphism in subduction-related accretionary prism zones and the exhumation processes of deeply-seated rocks in the Atbashy HP-UHP complex.  相似文献   

4.
After the integration of petrographic study, geothermobarometry and Gibbs method, the synthetic P-T paths for the rocks from different geological profiles in the North Qilian, China, have been derived. The composite P-T paths from different methods indicate that all the high-pressure rocks in the Qilian area recorded P-T paths with clockwise loops starting at the blueschist facies, later reaching peak metamorphism at the blueschist facies, eclogite fades or epidote-amphibolite facies and ending up with the greenschist facies. The incremental Ar-Ar dating shows that the plateau ages for the high-pressure rocks range from 410 to 443 Ma. The plateau ages could be used as a minimum age constraint for the subduction that resulted in the formation of these high-pressure rocks in the Qilian area. It is proposed that the late-stage decompressional and cooling P-T paths with ends at the greenschist facies for these high-pressure rocks probably reflect the uplift process which could occur after shifting the arc-t  相似文献   

5.
Eclogite lenses in marbles from the Dabie-Sulu ultrahigh-pressure (UHP) terrane are deeply subducted meta-sedimentary rocks. Zircons in these rocks have been used to constrain the ages of prograde and UHP metamorphism during subduction, and later retrograde metamorphism during exhumation. Inherited (detrital) and metamorphic zircons were distinguished on the basis of transmitted light microscopy, cathodoluminescence (CL) imaging, trace element contents and mineral inclusions. The distribution of mineral inclusions combined with CL imaging of the metamorphic zircon make it possible to relate zircon zones (domains) to different metamorphic stages. Domain 1 consists of rounded, oblong and spindly cores with dark-luminescent images, and contains quartz eclogite facies mineral inclusion assemblages, indicating formation under high-pressure (HP) metamorphic conditions of T = 571-668℃and P = 1.7-2.02 GPa. Domain 2 always surrounds domain 1 or occurs as rounded and spindly cores with white-luminescent images. It contains coesite edogite facies mineral inclusion assemblages, indicating formation under UHP metamorphic conditions of T = 782-849℃and P > 5.5 GPa. Domain 3, with gray-luminescent images, always surrounds domain 2 and occurs as the outermost zircon rim. It is characterized by low-pressure mineral inclusion assemblages, which are related to regional amphibolite facies retrograde metamorphism of T = 600-710℃and P = 0.7-1.2 GPa. The three metamorphic zircon domains have distinct ages; sample H1 from the Dabie terrane yielded SHRIMP ages of 245±4 Ma for domain 1, 235±3 Ma for domain 2 and 215±6 Ma for domain 3, whereas sample H2 from the Sulu terrane yielded similar ages of 244±4 Ma, 233±4 Ma and 214±5 Ma for Domains 1, 2 and 3, respectively. The mean ages of these zones suggest that subduction to UHP depths took place over 10-11 Ma and exhumation of the rocks occurred over a period of 19-20 Ma. Thus, subduction from~55 km to > 160 km deep mantle depth took place at rates of approximately 9.5-10.5 km/Ma and exhumation from depths >160 km to the base of the crust at~30 km occurred at approximately 6.5 km/Ma. We propose a model for these rocks involving deep subduction of continental margin lithosphere followed by ultrafast exhumation driven by buoyancy forces after break-off of the UHP slab deep within the mantle.  相似文献   

6.
The Qinling-Dabie-Sulu high-pressure and ultra-high pressure metamorphic belt wasformed by subduction and collision between the North China and Yangtze plates. The study ofthe eclogite belt is very important in understanding the evolution of the Qinling Dabie orogen. Inthe present paper the geology, petrology, minerology and chronology of the eclogites in the Dabieand Sulu areas are described. The principal conclusions of this work are as follows: (1) Based up-on the field occurrence and the P-T conditions of the eclogites, two types of eclogite can be dis-tinguished: Type 1—the low-temperature and high-pressure eclogite in the mid-late Proterozoicmetamorphic series, and Type 2—the ultra-high pressure eclogite in the late Archaean to earlyProterozoic metamorphic complex. In the Dabie area, the ultra-high-pressure eclogite,high-pressure eclogite and epidote-blueschist units are nearly parallel to each other and stretchintermittently from north to south. (2) The P-T conditions of the high-pressure eclogites and ul-tra-high pressure eclogites have been estimated. The former are formed at 450-550℃ and1.4-1.6 GPa; while the latter at 650-870℃ and >2.7-2.9 GPa in the Dabie area and at820-1000℃ and >2.8-3.1 GPa in the Sulu area. The metamorphic temperatures of the eclogitesincrease progressively from west to east. (3) The ultra-high pressure eclogites were subjected to 5stages of metamorphism: pre-eclogite epidote amphibolite facies, peak coesite eclogite facies,post-eclogite amphibolite facies, epidote-blueschist facies or epidote amphibolite facies andgreenschist facies. The general features of the PTt path of the ultra-high pressure eclogite are:clockwise pattern, progressive metamorphism being a process of slow increasing temperature andrapid increasing pressure, and the retrogressive section with nearly isothermal decompression atthe early stage, isobaric cooling at the middle stage and nearly isothermal decompression at thelate stage. (4) At least two stages of high-pressure metamorphism occurred in the orogenic belt:the high-pressure eclogite and ultra-high pressure eclogite were formed by the subduction of theoceanic crust northward beneath the North China plate or the Dabie block during theCaledonian; while the epidote-blueschist belt came into being by subdution and collision be-tween the two continental plates during the Indosinian. (5) Due to the continuous sequentialsubduction of the cold plate, the ultra high-presssure metamorphic rocks were uplifted to thecrust by the underplating processes. They can be preserved just because of the "frozen effect" re-sulting from the continuous subduction of the cold plate. (6) The carbonates, such as magnesite,breunnerite, aragonite and dolomite, and the H_2O-bearing minerals, such as phengite, epidoteand zoisite, were stable during the high-pressure and/or ultra-high pressure metamorphism.  相似文献   

7.
The North Qaidam orogenic belt(NQOB) is generally considered to be an early Paleozoic ultrahigh pressure metamorphic belt,but increasing reports of the Neoproterozoic magmatic and metamorphic events indicate that the NQOB probably also experienced the assembly of the Rodinia.However,the Neoproterozoic evolution of the NQOB is not well constrained due to the sparse records and ambiguous nature of the Neoproterozoic metamorphism.In order to reveal the multi-orogenic history of the NQOB,an integrated study of petrology,phase equilibrium modelling and geochronology was conducted on an epidote eclogite and host garnet mica schist from the Yuka–Luofengpo terrane.New zircon and monazite U–Pb ages show that the protolith of the garnet mica schist was deposited during 994–920 Ma and experienced Neoproterozoic(920–915 Ma) and early Paleozoic(451–447 Ma) polyphase metamorphism together with the enclosed eclogite.Relic omphacite inclusions were first identified in garnet and early Paleozoic zircon domains from the garnet mica schist,which provide solid evidence for the early Paleozoic eclogite facies metamorphism of the mica schist.Similar early Paleozoic peak P–T conditions of 27.4 kbar/613–670 ℃ and 30.2–30.8 kbar/646–655 ℃ were obtained for the garnet mica schist and enclosed eclogite,respectively,indicating that eclogites and their host paragneisses in this region underwent continental deep subduction as a coherent metamorphic terrane in early Paleozoic.The peak P–T conditions of the Neoproterozoic metamorphism were roughly constrained at 7.7–12.0 kbar and 634–680 ℃ for the garnet mica schist,based on stability field of mineral inclusions in Neoproterozoic zircons domains in P–T pseudosection,the relic garnet core composition and Ti-in-zircon thermometer.The high thermal gradients(16–37 ℃/km) defined by presently our and previously reported P–T conditions indicate that the Neoproterozoic metamorphism likely occurred in continental collision setting at 945–890 Ma.Since the Grenvillian syn-orogenic granitic magmatism and metamorphism(ca.1.0–0.9 Ga) in the NQOB are much younger than the Grenvillian orogeny in the central part of Rodinia,the Qaidam Block was probably located at the north margin of Rodinia in Neoproterozoic.  相似文献   

8.
Eclogites have been recently discovered in the Xitieshan area in the middle segment of the northern margin of the Qaidam basin. These eclogites, together with those recognized earlier in the Yuka area of the western segment of the northern margin of the Qaidam basin and in the Dulan area of the eastern segment of the northern margin of the Qaidam basin, form an eclogite belt with a length of 350 km. A comparison of the eclogites from the Yuka and Xitieshan areas suggests that they show different country rocks, microtextures, mineral assemblages, and especially, different peak temperatures, PT paths during decompression and isotopic features. Eclogites from the Yuka area bear evidence of prograde metamorphism, such as prograde mineral relics in garnet and growth zoning of garnet, and hairpin-shaped PT paths with coincidence of the baric and thermal peaks of metamorphism, which reflect rapid burial and uplift. Sm-Nd isotopic determination shows obvious Sm-Nd disequilibrium, and no isochron ages of Early P  相似文献   

9.
On Continent-Continent Point-Collision and Ultrahigh-Pressure Metamorphism   总被引:4,自引:0,他引:4  
Up to now it is known that almost all ultrahigh-pressure (UHP) metamorphism of non-impact origin occurred in continent-continent collisional orogenic belt, as has been evidenced by many outcrops in the eastern hemisphere. UHP metamorphic rocks are represented by coesite- and diamond-bearing eclogites and eclogite facies metamorphic rocks formed at 650-800℃ and 2.6-3.5 GPa, and most of the protoliths of UHP rocks are volcanic-sedimentary sequences of continental crust. From these it may be deduced that deep subduction of continental crust may have occurred. However, UHP rocks are exposed on the surface or occur near the surface now, which implies that they have been exhumed from great depths. The mechanism of deep subduction of continental crust and subsequent exhumation has been a hot topic of the research on continental dynamics, but there are divergent views. The focus of the dispute is how deep continental crust is subducted so that UHP rocks can be formed and what mechanism causes it to be subducte  相似文献   

10.
We undertook a boat expedition to explore the geological framework of a very remote, lesser-known island, in the Chilean Patagonia: the Diego de Almagro Island(latitude S51°330'). This uninhabited, ca.400 km~2 Island is one of the very rare exposures of the Mesozoic accretionary subduction complex along the Chilean margin. Unstable weather, strong winds, steep topography, and very dense vegetation make an on-land mission difficult. Careful preparation based on high-resolution satellite images is advised to optimize shore access and minimize risks of injury. Despite a relatively important degree of regional reequilibration of metamorphic assemblages due to sluggish exhumation through the forearc crust, our results have shown that the island is composed of a nappe stack of ocean-floor derived slivers of metasedimentary units that exhibit very different pressure-temperature-time paths during burial by subduction under the Chilean margin and subsequent exhumation. These rocks are witness to a complex thermal evolution of the subduction zone between Jurassic and Cretaceous times from granulite facies to blueschist facies conditions as well as multiple episodes of accretion at ca. 35 -40 km in depth for almost100 Ma over the Mesozoic era.  相似文献   

11.
Discontinuous chains of ultramafic rock bodies form part of the 3800–3700 Ma Isua Supracrustal Belt(ISB),hosted in the Itsaq Gneiss Complex of southwestern Greenland.These bodies are among the world’s oldest outcrops of ultramafic rocks and hence an invaluable geologic record.Ultramafic rocks from Lens B in the northwestern limb of ISB show characteristics of several stages of serpentinization and deserpentinization forming prograde and retrograde mineral assemblages.Ti-rich humite-group minerals such as titanian chondrodite(Ti-Chn)and titanian clinohumite(Ti-Chu)often occur as accessory phases in the metamorphosed ultramafic rocks.The Ti-rich humite minerals are associated with metamorphic olivine.The host olivine is highly forsteritic(Fo96-98)with variable Mn O and Ni O contents.The concentrations of the rare-earth elements(REE)and high-field strength elements(HFSE)of the metamorphic olivine are higher than typical mantle olivine.The textural and chemical characteristics of the olivine indicate metamorphic origin as a result of deserpentinization of a serpentinized ultramafic protolith rather than primary assemblage reflecting mantle residues from high-degrees of partial melting.The close association of olivine,antigorite and intergrown Ti-Chn and Ti-Chu suggests pressure condition between$1.3–2.6 GPa within the antigorite stability field(<700°C).The overall petrological and geochemical features of Lens B ultramafic body within the Eoarchean ISB indicate that these are allochthonous ultramafic rocks that recorded serpentine dehydration at relatively lower temperature and reached eclogite facies condition during their complex metamorphic history similar to exhumed UHP ultramafic rocks in modern subduction zone channels.  相似文献   

12.
The experimental study on the melting of potassic basalt and eclogite with about 2% waterat 800-1300℃ and 1.0-3.5 GPa shows that the solidi of both rocks are significantly lower thanthose obtained from the previous experiments of the same type of rocks under dry conditions,and the former which is enriched in potassium has a lower melting point than the latter. It is con-sistent with the previous study. The melting temperature of eclogite increases with pressure,whereas potassic basalt has similar properties only at 1.5—2.5 GPa and>3.0 GPa, and at 2.5—3.0 GPa the melting temperature decreases with pressure. This can be explained as follows: (1)eclogite only has one hydrous mineral amphibole and the dehydous temperature is lower than thewet solidus of the rock. (2) Amphibole exists in potassic basalt at the pressures lower than 2.5GPa and phlogopite exists at pressures higher than 2.5 GPa, and the special compositions of bothminerals determine that amphibole has a dehydration temperature higher than or close to that ofthe wet solidus of the rocks, while phlogopite has a dehydration temperature lower than that ofthe wet solidus. On the other hand the features of the continuous solidus in the experiment ofhydrous eclogite were produced by the fact that the dehydration temperature of its amphibolelower than or close to the melting temperature of the hydrous conditions. So the melting tempera-ture lowers at higher pressures. Therefore, the composition of the rocks in the lithosphere and thetypes of hydrous minerals and their stable P-T conditions are the important factors controllingthe solidi of rocks. It can quite well explain the partial melting of rocks and the origin of the lowvelocity zone in the deep lithosphere.  相似文献   

13.
Ophiolites represent fragments of ancient oceanic lithosphere, tectonically incorporated into continental margins during plate subduction or remained in the subduction-collisional orogenic belt. We report for the first time a Paleoproterozoic supra-subduction zone maficultramafic complex from north Huangling dome, northern Yangtze craton. They are dismembered and incorporated within a NE distributed mélange belt, and show close association with the strong deformed biotite-plagioclase gneiss/schist, metapelite, siliceous rocks and granitic gneiss. The metamafic-ultramafic rocks mainly consist of serpentinization harzburgite, olive pyroxenite, and amphibolite. Serpentinization harzburgite shows high magnesium and low silicon characteristic with low SiO_2 content(37.35-38.03 wt.%), high MgO content(37.00-37.96 wt.%) and high Mg~# value(87.5-88.4), ∑REE=3.17-7.91 ppm. They have slightly enriched LREE patterns with flat shape of HREE and MREE distribution, while spinels from the harzburgite show abyssal peridotites origin, indicating a LREE-enriched abyssal residual mantle peridotites affected by subduction metasomatism. The TiO_2 contents of the amphibolite range from 1.02 wt.% to 1.39 wt.%, MgO from 5.87 wt.% to 7.29 wt.%, Mg~# value from 45.9 to 53.0, and Na_2O/K_2O from 2.25 to 2.70,FeO T/MgO from 1.59 to 2.12, indicate that the amphibolite belongs to tholeiite series. Amphibolite exhibit subparallel and generally flat to right-sloping patterns with weak enriched LREE relative to HREEs and enrichment in LILE(e.g. K,Rb, Ba, Th, Cs) along with HFSE negative anomalies such as Nb, Ti, suggest a supra-subduction zone(SSZ) environment with an enriched mantle source for the amphibolite. LA-ICP-MS zircon U-Pb dating give approximate formation ages of 2142-2148 Ma for Amphibolite and a later metasomatic event(2048-2025 Ma) both for amphibolite and serpentinization harzburgite caused by melt/fluid derived from the subducted slab. We infer that the protolith of amphibolite may derived from depleted mantle at early paleoproterozoic(ca. 2.20-2.15 Ga), and zircon in harzburgite show negative eHf(t) values and model age old as Archean, indicate the zircon grains mainly formed in the process of metasomatism by subduction melt/fluid in the mantle wedge. The quartz monzonitic dyke crosscutting the harzburgite yields a crystallization age of 1999±10 Ma, represent the minimum emplacement age of the mafic-ultramafic rocks. In conclusion, we infer that the metamafic-ultramafic rocks is paleoproterozoic(ca. 2.2-2.1 Ga) back arc ophiolite fragments formed in a supra-subduction zone in the northern Huangling dome, Yangtze craton, and it provides important geological evidence for the paleoproterozoic oceanic-continental subduction and accretion-collision orogenic event associated with the amalgamation of the Columbia supercontinent.  相似文献   

14.
Distributions of the rare-earth elements (REE) in omphacite and garnet and REE behaviors during metamorphic processes were discussed. The REE concentrations of garnet and omphacite in six eclogite samples from the Dabie Mountain, central China, were measured by inductively coupled plasma-mass spectrometry (ICP-MS). The correlation of δEu ratios between garnet and omphacite indicated that chemical equilibrium of REE distribution between garnet and omphacite could be achieved during ultra-high pressure (UHP) metamorphism. Most of the partition coefficients (Kd=CiOmp/CiGrt) of light rare-earth elements (LREE) are higher than 1. However the partition coefficients of heavy rare-earth elements (HREE) are lower than 1. This indicated that the LREE inclined to occupy site M2 in omphacite, but the HREEs tended to occupy eightfold coordinated site in garnet during the eclogite formation. The REE geochemistry of the eclogites indicated that LREE could be partially lost during the prograde metamorphic process of protolith, but be introduced into the rocks during the symplectite formation. LREE are more active than HREE during the UHP metamorphism. The results are favorable to highlighting the REE behavior and evolution of UHP metamorphic rocks.  相似文献   

15.
Permo-Triassic high-pressure(HP) mafic granulites, together with the Bibong retrogressed eclogite,preserved along the central western Korean Peninsula provide important insights into the Late Permian to Triassic collisional orogeny in northeast Asia. The metamorphic pressureetemperatureetime(P-T-t)paths of these rocks, however, remain poorly constrained and even overestimated, owing to outdated geothermobarometers and inaccurate isopleth techniques. Here we evaluate the metamorphic Pe T conditions of Triassic HP mafic granulites including those in Baekdong, Sinri and Daepan and the Bibong Triassic retrogressed eclogite in the Hongseong area, and the Permo-Triassic Samgot mafic granulite in the Imjingang Belt of the central western Korean Peninsula through the application of modern phase equilibria techniques. The Baekdong and Samgot mafic granulites and the Bibong retrogressed eclogite yield a range of 12.0 -16.0 kbar and 800 -900℃, representing HP granulite facies conditions. The Sinri and Daepan granulites from the Hongseong area show relatively lower grade metamorphic conditions between HP granulite and normal granulite facies, and are characterized by sub-isothermal decompression during exhumation. The similarities in the metamorphic ages and the post-collisional igneous activity from the central western Korean Peninsula indicate that the Triassic ages represent the retrograde stage of the metamorphic Pe T paths. In contrast, the Late Permian metamorphic ages, which are older than protolith ages of the post-collisional igneous rocks, correspond to the possible prograde stage of metamorphism. The P-T-t paths presented in this paper, together with the metamorphic ages and post-orogenic igneous events reported from these areas suggest trace of the subduction, accretion and exhumation history, and indicate a tectonic linkage among the northeast Asian continents during the Paleo-Tethyan Ocean closure.  相似文献   

16.
The high-pressure metamorphic belt (HPMB) of eciogite-blueschist in Central Qiangtang (羌塘) lies in the Longmu Co (龙木错)-Shuanghu (双湖) suture zone. To the west, the HPMB extends 500 km from Hongjishan (红脊山) to Caiduochaka (才多茶卡), east of Shuanghu; to the east it extends to Baqing (巴青) and Jitang (吉塘) in Qamdo (昌都), and then bends southward to Yunnan (云南)Province. Including the Lancangjiang (澜沧江) blueschist belt, the entire HPMB is about 2 000 km long. In Central Qiangtang, the belt is mainly composed of blueschist and eclogite, whereas in West Yunnan it contains only blueschist. The Baqing-Jitang segment is dominated by garnet phengite schist. 40Ar-39Ar dating of giaucophane and phengite from the blueschists yielded plateau ages ranging from 223 to 215 Ma, whereas SHRIMP U-Pb dating of zircon from the eclogites gives metamorphic ages of 243-217 Ma. The calculated metamorphic conditions for the blueschists are 410-460℃ and 0.67-0.75 GPa, and for the eclogites, <500 ℃ and 1.56-2.35 GPa. The metamorphic ages suggest that the Longmu Co-Shuanghu suture closed in the Late Triassic. The region south of the Longmu Co-Shuanghu-Laneang suture consists of the pan-African basement overlain by Gondwana sedimentary and meta-sedimentary rocks, whereas the region north of the suture is dominated by the Jinning (晋宁) basement and Yangtze sedimentary and metasedimentary rocks. The Qiangtang HPMB marks the closure of the paleo-Tethys Ocean.  相似文献   

17.
Ultra-high pressure(UHP)eclogites that derive from subducted oceanic crust are rarely found at the Earth’s surface because they need to be enclosed in a buoyant host rock such as serpentinites that facilitate exhumation(Hermann et al.,2000;Guillot et al.,2001).Under normal subduction geotherms,serpentinites break down just before UHP conditions are reached and therefore most of the exhumed eclogites representing subducted oceanic crust formed under fore-arc conditions.We investigated eclogite blocks enclosed into serpentinites that occur in the southwestern Tianshan oceanic subduction,China.A previous study proved that the serpentinites derive from altered oceanic crust and experienced UHP metamorphism at low temperatures of 510-530°C(Shen et al.,2015).Three relatively fresh eclogite samples were studied in detail.Sample 129-7 shows the retrograde mineral assemblage of amphibole+biotite+albite+chlorite+minor titanite and peak metamorphic relics of omphacite+garnet±chlorite.Sample C107-23 is mainly composed of amphibole+albite+chlorite+zoisite+muscovite+minor titanite as a retrograde assemblage and garnet+phengite as the peak metamorphic relics with omphacite only found as inclusions in garnet.Similar to sample C107-23,sample C11066 preserves large-grained euhedral to subhedral garnet relics with omphacite inclusions,and epidote,diopside,amphibole,muscovite,chlorite,albite and biotite are in the matrix belong to the retrograde assemblage.These three retrograde eclogite samples were modelled using thermodynamic calculations in the Mn NCKFMSHO(Mn O-Na_2O-Ca O-K_2O-FeO-Mg O-Al_2O_3-SiO_2-H_2O-Fe_2O_3)system.Based on the peak assemblage of omphacite+garnet and the crossing of the grossular and pyrope isopleths in garnet,peak P-T conditions of~460-470oC,28-29 kbar(129-7),450-500oC,28-35 kbar(C107-23),~475-505oC,26-29 kbar(C11066)were calculated.The retrograde assemblages indicate near isothermal decompression resulting in a clockwise P-T evolution of these eclogites.The peak metamorphic pressures at 500°C are well within UHP conditions(coesite stability field)and are within error the same as peak conditions of the host serpentinites(Shen et al.,2015).This provides evidence that eclogites and serpentinites shared the same evolution.We infer that the subducted low-density serpentinites were assembled with the high-density eclogites during subdution and helped the latter to exhume back to the surface.The studied eclogites thus represent rare examples of relics of oceanic crust that was subducted to sub-arc depth.  相似文献   

18.
<正>The rocks form as amphibolite±garnet±epidote and orthogneisses in the Pan-African basement of the Bitlis Massif.The petrochemical data of the studied metamorphic rocks suggest different igneous protoliths ranging from calcalkaline basalt to andesite in composition. Petrochemically,the rocks can be classified as group 1(low Zr and La) and group 2(high Zr and La), all showing various enrichments in large ion lithophiles and light rare earth elements,and a depletion in high-field strength elements,suggestive of a destructive plate margin setting.The protoliths of the all samples might have formed mostly by the partial melting of an enriched source,possibly coupled with the fractional crystallization of plagioclase,apatite,and titaniferous magnetite±olivine±clinopyroxene±amphibole in relation with subduction-related magmatism neighboring the Andeantype active margins of Gondwana.The group 2 samples could,however,be generated by a relatively lower degree of the partial melting of an inhomogeneous source with a preponderance of a high-level, fractional crystallization process in comparison to group 1.The protoliths of the samples were metamorphosed up to amphibolite facies conditions,which destroys original igneous texture and mineral assemblages.Geothermobarometric calculations show that the metamorphic rocks are finally equilibrated between 540 and 610℃and~5 kbars,following a clockwise P-T-t path.  相似文献   

19.
In continental subduction complexes minor volumes of high-pressure mafic rocks(eclogites) often co-exist with much more abundant felsic(granitic) and metasedimentary rocks, which are vital for resolving the origin and metamorphic evolution of subducted continental crust.In SW Mongolia, the Alag Khadny eclogite-bearing accretionary complex(AKC) is assumed to represent either a remnant of oceanic slab, or a continental margin,subducted in the Early Cambrian.Here we present geochronological, geochemical and petrological evidence of subduction records for the three major types of lithologies that host mafic eclogites, including Mesoproterozoic and Neoproterozoic granitic basement and overlying Neoproterozoic continental-margin sediments.Variably deformed, ferroan and peraluminous metagranitoids compose a major part of AKC and are interlayered with eclogites in its southern and eastern margins.They have geochemical features of post-collisional/intraplate high-K calc-alkaline granites.LA-ICP-MS U-Pb zircon geochronology of three distinct metagranite samples show uniform protolith crystallization ages of ca.0.96 Ga and uncertain re-crystallization in the Late Neoproterozoic or Early Paleozoic metamorphic event, whereas abundant zircon inheritance indicates older,Mesoproterozoic to Paleoproterozoic crustal substrate during granite generation.The existence of Mesoproterozoic crust is highlighted by finding of distinct metagranitoids with the U-Pb zircon crystallization age of ca.1.6 Ga.Hafnium isotope signatures(T_(DM)~C 2.88–1.85 Ga) of zircons from all lithologies preserved the evidence of reworked Neoarchean to Paleoproterozoic crust, similar to that of the Baidrag block(southern Mongolia), for both Mesoproterozoic and Neoproterozoic rocks.Regardless of the specific lithology, the rocks display indicators of high-pressure metamorphic re-equilibration, including garnet(X_(Ca)up to 0.65) + epidote +phengite(Si p.f.u.up to 3.56) ± rutile assemblage in metagranitoids, garnet + phengite(Si p.f.u.up to 3.42)in quartz-rich semi-pelites and garnet + phengite(Si p.f.u.up to 3.39) + medium-Mg chloritoid(X_(Mg)up to 0.25) + kyanite + rutile in metapelites.Corresponding P-T conditions recovered from different lithologies reveal incoherent subduction of rocks, which could be shallow for granitic basement(1.1–1.4 GPa and 600–670 ℃) and clastic metasediments(1.4–1.6 GPa, 570–620 ℃), but deeper for metapelites(2.1–2.3 GPa, 500–570 ℃).consistent with that of eclogites, The combined data show that the Alag Khadny complex represents a remnant of a rifted Mesoproterozoic to Neoproterozoic(ca.1.6–0.96 Ga) continental margin consequently metamorphosed under HP conditions during Late Neoproterozoic–Early Cambrian evolution of the southern Central Asian Orogenic Belt.Acquired P-T estimates imply that high-pressure metagranitoids and metasedimentary rocks equilibrated at different depths, but most likely shared a common subduction-related metamorphic evolution.  相似文献   

20.
High-pressure(HP)or ultrahigh-pressure(UHP)rutile-quartz veins that form at mantle depths due to fluid-rock interaction can be used to trace the properties and behavior of natural fluids in subduction zones.To explore the fluid flow and the associated element mobility during deep subduction and exhumation of the continental crust,we investigated the major and trace elements of Ti-rich minerals.Additionally,U–Pb dating,trace element contents,and Lu–Hf isotopic composition of zircon grains in the UHP eclogite and associated rutile-quartz veins were examined in the North Qaidam UHP metamorphic belt,Yuka terrane.The zircon grains in the rutile-quartz veins have unzoned or weak oscillatory zonings,and show low Th/U ratios,steep chondrite-normalized patterns of heavy rare earth elements(HREEs),and insignificant negative Eu anomalies,indicating their growth in metamorphic fluids.These zircon grains formed in 4313 Ma,which is consistent with the 4322 Ma age of the host eclogite.As for the zircons in the rutile-quartz veins,they showed steep HREE patterns on one hand,and were different from the zircons present in the host eclogite on the other.This demonstrates that their formation might have been related to the breakdown of the early stage of garnet,which corresponds to the abundance of fluids during the early exhumation stage.The core-rim profile analyses of rutile recorded a two-stage rutile growth across a large rutile grain;the rutile core has higher Nb,Ta,W,and Zr contents and lower Nb/Ta ratios than the rim,indicating that the rutile domains grew in different metamorphic fluids from the core towards the rim.The significant enrichment of high field strength elements(HFSEs)in the rutile core suggests that the peak fluids have high solubility and transportation capacity of these HFSEs.Furthermore,variations in the Nb vs.Cr trends in rutile indicate a connection of rutile to mafic protolith.The zircon grains from both the rutile-quartz veins and the host eclogite have similar Hf isotopic compositions,indicating that the vein-forming fluids are internally derived from the host eclogite.These fluids accumulated in the subduction channel and were triggered by local dehydration of the deeply subducted eclogite during the early exhumation conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号