首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Although natural siderite has been investigated to remove both As(III) and As(V), it has relatively low adsorption rate and capacity. It is crucial to enhance its adsorption characteristics for As removal prior to being used in practical application. Modified granular natural siderite (MGNS) was fabricated through addition of organic binder, extrusion granulation and calcination, and evaluated for adsorption characteristics by means of batch and column tests. Results showed that MGNS had higher adsorption rate and capacity for As(III) in comparison with natural siderite. Arsenic(III) adsorption achieved equilibrium at 24 h, with adsorption capacity of 9.43 mg/g estimated from Langmuir isotherm at 25 °C. Column tests showed that there was less difference in total As loads in MGNS-packed filters for As(III)-spiked deionized water, As(III)-spiked tap water, and real-world high-As groundwater. The coexistence of anions had no significant effect on As adsorption in both batch and column experiments. Results of XRD, SEM and BET analysis indicated that MGNS, as an Fe(II)/(III) hybrid system, had a much larger specific surface area relative to the pristine natural siderite due to massive spherical aggregates attaching to the siderite matrix. XANES spectra showed that As(V) was the major species in the adsorbent after As(III) adsorption. Its proportion in total As slightly increased with the increase in contact time. Adsorption and heterogeneous oxidation of As(III) were believed to be the main mechanisms of As(III) removal by MGNS. This study suggested that MGNS is a potential adsorbent for effectively removing As from As-contaminated groundwater in filter application.  相似文献   

2.
《Applied Geochemistry》2003,18(9):1453-1477
Observed As concentrations in groundwater from boreholes and wells in the Huhhot Basin of Inner Mongolia, northern China, range between <1 μg l−1 and 1480 μg l−1. The aquifers are composed of Quaternary (largely Holocene) lacustrine and fluvial sediments. High concentrations are found in groundwater from both shallow and deep boreholes as well as from some dug wells (well depths ranging between <10 m and 400 m). Populations from the affected areas experience a number of As-related health problems, the most notable of which are skin lesions (keratosis, melanosis, skin cancer) but with internal cancers (lung and bladder cancer) also having been reported. In both the shallow and deep aquifers, groundwaters evolve down the flow gradient from oxidising conditions along the basin margins to reducing conditions in the low-lying central part of the basin. High As concentrations occur in anaerobic groundwaters from this low-lying area and are associated with moderately high dissolved Fe as well as high Mn, NH4, dissolved organic C (DOC), HCO3 and P concentrations. Many of the deep groundwaters have particularly enriched DOC concentrations (up to 30 mg l−1) and are often brown as a result of the high concentrations of organic acid. In the reducing groundwaters, inorganic As(III) constitutes typically more than 60% of the total dissolved As. The highest As concentrations tend to be found in groundwater with low SO4 concentrations and indicate that As mobilisation occurs under strongly reducing conditions, where SO4 reduction has been an active process. High concentrations of Fe, Mn, NH4, HCO3 and P are a common feature of reducing high-As groundwater provinces (e.g. Bangladesh, West Bengal). High concentrations of organic acid (humic, fulvic acid) are not a universal feature of such aquifers, but have been found in groundwaters from Taiwan and Hungary for example. The observed range of total As concentrations in sediments is 3–29 mg kg−1 (n=12) and the concentrations correlate positively with total Fe. Up to 30% of the As is oxalate-extractable and taken to be associated largely with Fe oxides. The release of As into solution under the reducing conditions is believed to be by desorption coupled with reductive dissolution of the Fe oxide minerals. The association of dissolved As with constituents such as HCO3, DOC and P may be a coincidence related to the prevalent reducing conditions and slow groundwater flow, but they may also be directly involved because of their competition with As for binding sites on the Fe oxides. The Huhhot groundwaters also have some high concentrations of dissolved U (up to 53 μg l−1) and F (up to 6.8 mg l−1). In contrast to As, U occurs predominantly under the more oxidising conditions along the basin margins. Fluoride occurs dominantly in the shallow groundwaters which have Na and HCO3 as the dominant ions. The combination of slow flow of groundwater and the young age of the aquifer sediments are also considered potentially important causes of the high dissolved As concentrations observed as the sediments are likely to contain newly-formed and reactive minerals and have not been well flushed since burial.  相似文献   

3.
Although arsenic (As) contamination has been extensively investigated in the aquifers of the lower and middle Gangetic plains, less attention has been given to the distribution and fate of As in the groundwater of the upper Gangetic plain, India. In the current study, groundwater samples (n = 40) were collected from Moradabad district in the upper Gangetic plain and analyzed for several physicochemical parameters to characterize the groundwater chemistry and evaluate various geogenic and anthropogenic factors controlling the occurrence, mobilization, and fate of As in the plain. Arsenic concentrations in groundwater ranged from 0.17 μg/L to 139 μg/L, with the majority of high-As groundwater associated with high Fe, Mn, and HCO3 and low NO3, SO42−, and negative Eh values, implying that As was released via reductive dissolution of Fe and Mn oxyhydroxides in reducing conditions under the influence of organic matter degradation. Interrelationships between various geochemical variables and the natural background level (NBL) quantification of As suggested the influence of anthropogenic processes on the mobility of As in groundwater. Piper and Gibbs diagrams and various bivariate plots revealed that the majority of groundwater was of the Ca2+ − Mg2+ − HCO3 type and that the major ions in groundwater were derived from carbonate and silicate weathering, cation exchange and reverse ion exchange processes, and anthropogenic activities. Moreover, the results of principal component analysis (PCA), and hierarchical cluster analysis (HCA) also suggested geogenic and anthropogenic sources for the ion concentration in groundwater. The health risk assessment showed a higher non-carcinogenic risk for children and a higher carcinogenic risk for adults, respectively, due to the daily intake of As contaminated groundwater. Overall, this study represents the first systematic investigation of the distribution, geochemical behavior, and release process of As in groundwater in the study area and provides a strong base for future research in the alluvial aquifers of the upper Gangetic plain.  相似文献   

4.
《Applied Geochemistry》2002,17(5):517-568
The range of As concentrations found in natural waters is large, ranging from less than 0.5 μg l−1 to more than 5000 μg l−1. Typical concentrations in freshwater are less than 10 μg l−1 and frequently less than 1 μg l−1. Rarely, much higher concentrations are found, particularly in groundwater. In such areas, more than 10% of wells may be ‘affected’ (defined as those exceeding 50 μg l−1) and in the worst cases, this figure may exceed 90%. Well-known high-As groundwater areas have been found in Argentina, Chile, Mexico, China and Hungary, and more recently in West Bengal (India), Bangladesh and Vietnam. The scale of the problem in terms of population exposed to high As concentrations is greatest in the Bengal Basin with more than 40 million people drinking water containing ‘excessive’ As. These large-scale ‘natural’ As groundwater problem areas tend to be found in two types of environment: firstly, inland or closed basins in arid or semi-arid areas, and secondly, strongly reducing aquifers often derived from alluvium. Both environments tend to contain geologically young sediments and to be in flat, low-lying areas where groundwater flow is sluggish. Historically, these are poorly flushed aquifers and any As released from the sediments following burial has been able to accumulate in the groundwater. Arsenic-rich groundwaters are also found in geothermal areas and, on a more localised scale, in areas of mining activity and where oxidation of sulphide minerals has occurred. The As content of the aquifer materials in major problem aquifers does not appear to be exceptionally high, being normally in the range 1–20 mg kg−1. There appear to be two distinct ‘triggers’ that can lead to the release of As on a large scale. The first is the development of high pH (>8.5) conditions in semi-arid or arid environments usually as a result of the combined effects of mineral weathering and high evaporation rates. This pH change leads either to the desorption of adsorbed As (especially As(V) species) and a range of other anion-forming elements (V, B, F, Mo, Se and U) from mineral oxides, especially Fe oxides, or it prevents them from being adsorbed. The second trigger is the development of strongly reducing conditions at near-neutral pH values, leading to the desorption of As from mineral oxides and to the reductive dissolution of Fe and Mn oxides, also leading to As release. Iron (II) and As(III) are relatively abundant in these groundwaters and SO4 concentrations are small (typically 1 mg l−1 or less). Large concentrations of phosphate, bicarbonate, silicate and possibly organic matter can enhance the desorption of As because of competition for adsorption sites. A characteristic feature of high groundwater As areas is the large degree of spatial variability in As concentrations in the groundwaters. This means that it may be difficult, or impossible, to predict reliably the likely concentration of As in a particular well from the results of neighbouring wells and means that there is little alternative but to analyse each well. Arsenic-affected aquifers are restricted to certain environments and appear to be the exception rather than the rule. In most aquifers, the majority of wells are likely to be unaffected, even when, for example, they contain high concentrations of dissolved Fe.  相似文献   

5.
《Applied Geochemistry》2004,19(2):231-243
In large parts of rural Argentina people depend on groundwater whose As content exceeds the Argentine drinking water standards (0.05 mg l−1). The most affected areas are located in the Chaco-Pampean Plain, where aquifers comprise Tertiary loess deposits (in the Pampean Plain) and Tertiary and Quaternary fluvial and aeolian sediments (in the Chaco Plain). Robles county is located in the alluvial cone of the Dulce River consisting of loess (aeolian), and gravel, silt, sand and clay (alluvial) deposits. In the shallow aquifers, more than 48% of the 63 studied wells show As at toxic levels (maximum 4.8 mg l−1), while in the deep groundwater the concentration is below 0.05 mg l−1. The pH of the shallow groundwaters range between 6.5 and 9 and generally have high electrical conductivity with mean values of 2072 and 1693 μS/cm−1 in the years 1998 and 1999, respectively. Arsenic concentrations are high in the alkaline Na–HCO3 type groundwaters, where As correlates positively with Na+ and HCO3. Moreover, As correlates positively with Mo, U, and V, while a negative correlation was observed with Ca2+ and Mg2+. The potential sources of groundwater As are: (i) layers of volcanic ash with 90% of rhyolitic glass; (ii) volcanic glass dispersed in the sediments; and (iii) clastic sediments of metamorphic and igneous origin. Great lateral variability in the concentration of groundwater As is caused by several hydrogeological and hydrogeochemical factors.  相似文献   

6.
《Applied Geochemistry》2003,18(9):1479-1496
Arsenic species were measured in a bundled-piezometer installed in the Holocene barrier of the Stuarts Point coastal sands aquifer, northern New South Wales, Australia. Vertical distribution shows two peaks of elevated As concentration. At a depth of 10–11 m, concentrations of AsTot, As(V) and As(III) are in the range of 52–85, 38–67 and 14–18 μg/l respectively and the ratio of As(V)/As(III) is well above 1 at 3.7–2.7. The second peak, at a depth of 25 m, shows the highest concentrations of AsTot, As(V) and As(III) with values reaching 337, 125 and 212 μg/l, respectively. The As(V)/As(III) ratio is below 1 at 0.6–0.7. High AsTot and As(V) concentrations at shallower depths are associated with acidic conditions and very low concentrations of all ions. Desorption of As from Al-hydroxides and As-enriched Fe-oxyhydroxides are plausible mechanisms releasing As into the groundwater system. The elevated concentration of AsTot and As(III) at 25 m is potentially related to the leaching of the clay surfaces. Elevated HCO3- and alkaline pH conditions at this depth cause desorption of As which is later present as As(III) species in the reducing environment. The high concentrations of HCO3- further reduce the possible extent of As sorption on Fe and Mn oxyhydroxides. The identification of As in a groundwater system associated with the coastal barrier sand-dune environment raises serious questions of the suitability of human consumption of untreated groundwater, drawn from these aquifer types. Further investigation both in Australia and globally are needed to classified the extent of this hydrogeochemical occurrence near coastal communities that rely on groundwater.  相似文献   

7.
Groundwater is a precious resource for humankind not only in Nepal but also across the globe due to its diverse functions. A total of 48 groundwater samples were collected from three villages of Nawalparasi district, Nepal, during pre-monsoon and monsoon to estimate the overall groundwater quality and to identify the sources of contamination with emphasis on arsenic (As). The average concentrations of all tested groundwater quality parameters (temp., pH, EC, ORP, Ca2+, Mg2+, Na+, K+, Cl?, F?,SO4 2?, PO4 3?, HCO3 ?, NO3 ?, Cu, Ni, Mn, Cd, Pb, Fe, Zn, Cr, and As) were well within permissible limits of WHO for drinking water, except for Ni, Cd, Pb, Cr, and As. Concentration of As ranged from 60 to 3,100 μg L?1 and 155 to 1,338 μg L?1 in pre-monsoon and monsoon, respectively. The Piper diagram of the groundwater chemistry showed groundwater of Nawalparasi belongs to Ca–Mg–HCO3 and Mg–HCO3 water type with HCO3 ? as dominant ions. As content in the study area was negatively correlated with Fe in pre-monsoon, while it was positively correlated in monsoon. Furthermore, As was negatively correlated with oxidation reduction potential suggesting reducing condition of groundwater. Principal component analysis revealed seven major factors that explained 81.996 and 83.763 % of total variance in water quality in pre-monsoon and monsoon, respectively. The variance of water quality was related mainly with the degree of water–rock interaction, mineralization, and anthropogenic inputs.  相似文献   

8.
《Applied Geochemistry》2004,19(2):201-214
Detailed hydrochemical measurements, δ34SSO4 and 3H analyses were performed on 37 groundwater samples collected during February 1999, January and March 2000 from 6 locations in eastern and southeastern Bangladesh to examine redox processes that lead to As mobilization in groundwater. The study sites were chosen based on available nation-wide As surveys to span the entire spectrum of As concentrations in Bangladesh groundwater, and to represent 3 of 5 major geological units of the Ganges-Brahmaputra Delta: uplifted Pleistocene terrace, fluvial flood plain and delta plain. Arsenic was found to be mobilized under Fe-reducing conditions in shallow aquifers (<35 m depth), presumably of Holocene age. It remained mobile under SO4-reducing conditions, suggesting that authigenic sulfide precipitation does not constitute a significant sink for As in these groundwaters. The redox state of the water was characterized by a variety of parameters including dissolved O2, NO3, Mn2+, Fe2+ concentrations, and SO42−/Cl ratios. High dissolved [As] (> 50 μg/l; or > 0.7 μM ) were always accompanied by high dissolved [HCO3] (> 4 mM), and were close to saturation with respect to calcite. Groundwater enriched in As (200–800 μg/l; or 2.7–10.7 μM) and phosphate (30–100 μM) but relatively low in dissolved Fe (5–40 μM) probably resulted from re-oxidation of reducing, As and Fe enriched water. This history was deduced from isotopic signatures of δ34SSO4 and 3H2O (3H) to delineate the nature of redox changes for some of the reducing groundwaters. In contrast, As is not mobilized in presumed Pleistocene aquifers, both shallow (30–60 m) and deep (150–270 m), because conditions were not reducing enough due to lack of sufficient O2 demand.  相似文献   

9.
An integrated study has been carried out to elucidate the distribution and occurrence of arsenic in selected groundwater samples in the area of Sherajdikhan, Bangladesh. Arsenic and other parameters (T, pH, EC, Na+, K+, Ca2+, Mg2+, Cl, NO3 , SO4 2−, HCO3 , PO4 3−, Fe, Mn and DOC) have been measured in groundwater samples collected from shallow/deep tube wells at different depths. Hydrogeochemical data suggest that the groundwaters are generally Ca–Mg–HCO3 and Mg–Ca–HCO3 types with bicarbonate (HCO3 ) as the dominant anion, though the other type of water has also been observed. Dissolved arsenic in groundwater ranged from 0.006 to 0.461 mg/l, with 69% groundwater samples exceeded the Bangladesh limit for safe drinking water (0.05 mg/l). Correlation and principal component analysis have been performed to find out possible relationships among the examined parameters in groundwater. Low concentrations of NO3 and SO4 2−, and high concentrations of DOC, HCO3 and PO4 3− indicate the reducing condition of subsurface aquifer where sediments are deposited with abundant organic matter. Distinct relationship of As with Fe and Mn, and strong correlation with DOC suggests that the biodegradation of organic matter along with reductive dissolution of Fe–Mn oxyhydroxides has being considered the dominant process to release As in the aquifers studied herein.  相似文献   

10.
《Applied Geochemistry》2002,17(3):259-284
Groundwaters from Quaternary loess aquifers in northern La Pampa Province of central Argentina have significant quality problems due to high concentrations of potentially harmful elements such as As, F, NO3-N, B, Mo, Se and U and high salinity. The extent of the problems is not well-defined, but is believed to cover large parts of the Argentine Chaco-Pampean Plain, over an area of perhaps 106 km2. Groundwaters from La Pampa have a very large range of chemical compositions and spatial variability is considerable over distances of a few km. Dissolved As spans over 4 orders of magnitude (<4–5300 μg l−1) and concentrations of F have a range of 0.03–29 mg l−1, B of 0.5–14 mg l−l, V of 0.02–5.4 mg l−1, NO3–N of <0.2–140 mg l−1, Mo of 2.7–990 μg l−1 and U of 6.2–250 μg l−1. Of the groundwaters investigated, 95% exceed 10 μg As l−1 (the WHO guideline value) and 73% exceed 50 μg As l−1 (the Argentine national standard). In addition, 83% exceed the WHO guideline value for F (1.5 mg l−1), 99% for B (0.5 mg l−1), 47% for NO3-N (11.3 mg l−1), 39% for Mo (70 μg l−1), 32% for Se (10 μg l−1) and 100% for U (2 μg l−1). Total dissolved solids range between 730 and 11400 mg l−1, the high values resulting mainly from evaporation under ambient semi-arid climatic conditions. The groundwaters are universally oxidising with high dissolved-O2 concentrations. Groundwater pHs are neutral to alkaline (7.0–8.7). Arsenic is present in solution predominantly as As(V). Groundwater As correlates positively with pH, alkalinity (HCO3), F and V. Weaker correlations are also observed with B, Mo, U and Be. Desorption of these elements from metal oxides, especially Fe and Mn oxides under the high-pH conditions is considered an important control on their mobilisation. Mutual competition between these elements for sorption sites on oxide minerals may also have enhanced their mobility. Weathering of primary silicate minerals and accessory minerals such as apatite in the loess and incorporated volcanic ash may also have contributed a proportion of the dissolved As and other trace elements. Concentrations of As and other anions and oxyanions appear to be particularly high in groundwaters close to low-lying depressions which act as localised groundwater-discharge zones. Concentrations up to 7500 μg l−1 were found in saturated-zone porewaters extracted from a cored borehole adjacent to one such depression. Concentrations are also relatively high where groundwater is abstracted from close to the water table, presumably because this zone is a location of more active weathering reactions. The development of groundwaters with high pH and alkalinity results from silicate and carbonate reactions, facilitated by the arid climatic conditions. These factors, together with the young age of the loess sediments and slow groundwater flow have enabled the accumulation of the high concentrations of As and other elements in solution without significant opportunity for flushing of the aquifer to enable their removal.  相似文献   

11.
A survey on quality of groundwater was carried out for assessing the geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India, where the area is underlain by Peninsular Gneissic Complex. The results of the groundwater chemistry show a variation in pH, EC, TDS, Ca2+, Mg2+, Na+, K+, HCO3 ?, Cl?, SO4 2?, NO3 ? and F?. The chemical composition of groundwater is mainly characterized by Na+?HCO3 ? facies. Hydrogeochemical type transits from Na+–Cl?–HCO3 ? to Na+–HCO3 ?–Cl? along the flow path. Graphical and binary diagrams, correlation coefficients and saturation indices clearly explain that the chemical composition of groundwater is mainly controlled by geogenic processes (rock weathering, mineral dissolution, ion exchange and evaporation) and anthropogenic sources (irrigation return flow, wastewater, agrochemicals and constructional activities). The principal component (PC) analysis transforms the chemical variables into four PCs, which account for 87% of the total variance of the groundwater chemistry. The PC I has high positive loadings of pH, HCO3 ?, NO3 ?, K+, Mg2+ and F?, attributing to mineral weathering and dissolution, and agrochemicals (nitrogen, phosphate and potash fertilizers). The PC II loadings are highly positive for Na+, TDS, Cl? and F?, representing the rock weathering, mineral dissolution, ion exchange, evaporation, irrigation return flow and phosphate fertilizers. The PC III shows high loading of Ca2+, which is caused by mineral weathering and dissolution, and constructional activities. The PC IV has high positive loading of Mg2+ and SO4 2?, measuring the mineral weathering and dissolution, and soil amendments. The spatial distribution of PC scores explains that the geogenic processes are the primary contributors and man-made activities are the secondary factors responsible for modifications of groundwater chemistry. Further, geochemical modeling of groundwater also clearly confirms the water–rock interactions with respect to the phases of calcite, dolomite, fluorite, halite, gypsum, K-feldspar, albite and CO2, which are the prime factors controlling the chemistry of groundwater, while the rate of reaction and intensity are influenced by climate and anthropogenic activities. The study helps as baseline information to assess the sources of factors controlling the chemical composition of groundwater and also in enhancing the groundwater quality management.  相似文献   

12.
The major ionic and dissolved inorganic carbon (DIC) concentrations and the stable carbon isotope composition of DIC (δ13CDIC) were measured in a freshwater aquifer contaminated by produced water brine with petroleum hydrocarbons. Our aim was to determine the effects of produced water brine contamination on the carbonate evolution of groundwater. The groundwater was characterized by three distinct anion facies: HCO3-rich, SO42−-rich and Cl-rich. The HCO3-rich groundwater is undergoing closed system carbonate evolution from soil CO2(g) and weathering of aquifer carbonates. The SO42−-rich groundwater evolves from gypsum induced dedolomitization and pyrite oxidation. The Cl-rich groundwater is contaminated by produced water brine and undergoes common ion induced carbonate precipitation. The δ13CDIC of the HCO3-rich groundwater was controlled by nearly equal contribution of carbon from soil CO2(g) and the aquifer carbonates, such that the δ13C of carbon added to the groundwater was −11.6‰. In the SO42−-rich groundwater, gypsum induced dedolomitization increased the 13C such that the δ13C of carbon added to the groundwater was −9.4‰. In the produced water brine contaminated Cl-rich groundwater, common ion induced precipitation of calcite depleted the 13C such that the δ13C of carbon added to the groundwater was −12.7‰. The results of this study demonstrate that produced water brine contamination of fresh groundwater in carbonate aquifers alters the carbonate and carbon isotopic evolution.  相似文献   

13.
《Applied Geochemistry》1999,14(7):927-938
The tunnel excavation at the Äspö Hard Rock Laboratory opened several fracture zones at various depths in the crystalline bedrock. One of these zones is the `Redox zone', a vertical fracture zone penetrated at 70 m depth. Except for the tunnel intersection, several boreholes were drilled to intersect the zone at various depths (ranging from 5 to 70 m) and distances from the tunnel. The response in groundwater chemistry to the opening of the zone has been monitored in these boreholes during 3 a, starting in 1991 and for the boreholes at 70 m depth the monitoring is still ongoing. The water chemistry during this monitoring can be largely explained by mixing between fresh water and native saline groundwater (4900 ppm Cl). An increase in HCO3 was recorded, which was interpreted as due to anaerobic respiration. This was supported by 14C-contents in dissolved organic Carbon and HCO3, indicating that recent organic C is transported into the zone and oxidised to CO2. This study exemplifies the use of 14C-analyses of HCO3 in order to trace different C sources contributing to the HCO3 in the groundwater. Three sources were identified: (1) dissolved CO2, dominantly soil-CO2 possibly with some contribution of atmospheric CO2; (2) dissolution of calcite, with low 14C content, which dominantly occurs in the near-surface recharge area; and (3) oxidation of organic material through anaerobic respiration. Corrections for 14C and HCO3 in the native saline water made it possible to determine 2 different fresh water components corresponding to different flow paths. The C isotope data are in accordance with the results from the tracer test and the groundwater flow model, and support that the extensive build up of HCO3 does not mainly takes place locally within the zone but is transported into the zone by dominantly lateral flow. The results from the monitoring showed that new hydrochemical stability is established, which also comprises the interaction between the organic and inorganic C cycles.  相似文献   

14.
Core sediments from two boreholes and groundwater from fifty four As-contaminated well waters were collected in the Chapai-Nawabganj area of northwestern Bangladesh for geochemical analysis. Groundwater arsenic concentrations in the uppermost aquifer (10 to 40 m of depth) range from 2.76?C315.15 mg/l (average 48.81 mg/l). Arsenic concentration in sediments ranges from 3.26?C10 mg/kg. Vertical distribution of arsenic in both groundwater and sediments shows that maximum As concentration (462 mg/l in groundwater and 10 mg/kg in sediments) occurs at a depth of 24 m. In January 2008, 2009 and 2010, maximum As concentration occurs at the same depth. Environmental scanning electron microscope (ESEM) with EDAX was used to investigate the presence of major and trace elements in the sediments. The dominant groundwater type is Ca-HCO3 with high concentrations of As and Fe, but with low levels of NO3 ? and SO3 ?2. Statistical analysis clearly shows that As is closely associated with Fe (R2 = 0.64) and Mn (R2 = 0.91) in sediments while As is not correlated with Fe and Mn in groundwater samples. Comparatively low Fe and Mn concentrations in some groundwater, suggest that probably siderite and/or rhodochrosite precipitated as secondary mineral on the surface of the sediment particles. The correlations along with results of sequential leaching experiments suggest that reductive dissolution of FeOOH and MnOOH mediated by anaerobic bacteria represents mechanism for releasing arsenic into the groundwater.  相似文献   

15.
The chemical and microbiological characteristics of groundwater from two provinces of central Spain were studied. In some zones of this area, the concentrations of As in groundwater exceed the guideline concentrations, set internationally between 10 g/l and 50 g/l, reaching levels over 100 g/l. A narrow correlation between the contents of arsenic and HCO3 was observed. These data suggest a possible mechanism of the As mobilization from aquifer sediments to groundwater: the bicarbonate ions could displace HAsO42– adsorbed on aquifer oxyhydroxides. Sediments containing relatively high contents of adsorbed arsenic are deposited in surface water environments with low carbonate concentrations. Subsequently, the sediments become exposed to groundwater with highly dissolved carbonate content, and arsenic can be mobilized by displacement from mineral surfaces. In addition, the presence of Pseudomonas genera bacteria, which secrete siderophores (Fe chelating agents) could mobilize As adsorbed on Fe oxides through their dissolution. These combined microbiological and chemical processes might have increased the natural mobility of As.  相似文献   

16.
《Applied Geochemistry》2001,16(9-10):1241-1249
A two-column reactor was designed to remove dissolved As and Cd from contaminated water. The reactor functions by equilibrating the targeted water with CO2 and directing it via saturated flow through a column of crushed siderite. This results in siderite dissolution and an increase in dissolved Fe(II). The feedwater is then directed into the top of a second, aerated column of crushed limestone, where it passes by unsaturated flow. The Fe2+ ion oxidizes quickly to Fe3+ and precipitates as Fe(III) oxyhydroxide, which is an effective sorbent of AsO43−. The aeration that occurs in the second column also removes dissolved CO2 from the feedwater. This causes precipitation of Ca and Cd carbonates. Together, the two processes reduce As and Cd concentrations from 1 and 3 mg/l, respectively, to below detection (respectively <0.005 and <0.01 mg/l). A time-limited reduction in Cr concentration also occurred. Much of the As was removed in the first column of the reactor, because Fe(III) oxyhydroxides also formed there. This was due to oxidation of Fe(II) by Cr(VI) and other oxidants present in the input wastewater. Although As is removed in the reactor columns by a sorption mechanism, the sorbent responsible, Fe(III) oxyhydroxide, is continuously produced during the operation of the reactor. Thus, unlike attenuation in a system with a fixed amount of sorbent, breakthrough of the As contaminant should never occur.  相似文献   

17.
The study area is located in the southwestern part of Bangladesh. Twenty-six groundwater samples were collected from both shallow and deep tube wells ranging in depth from 20 to 60 m. Multivariate statistical analyses including factor analysis, cluster analysis and multidimensional scaling were applied to the hydrogeochemical data. The results show that a few factors adequately represent the traits that define water chemistry. The first factor of Fe and HCO3 is strongly influenced by bacterial Fe (III) reduction which would raise both Fe and HCO3 concentrations in water. Na, Cl, Ca, Mg and PO4 are grouped under the second factor representing the salinity sources of waters. The third factor, represented by As, Mn, SO4 and K is related to As mobilization processes. Cluster analysis has been applied for the interpretation of the groundwater quality data. Initially Piper methods have been employed to obtain a first idea on the water types in the study area. Hierarchical cluster analysis was carried out for further classification of water types in the study area. Twelve components, namely, pH, Fe, Mn, As, Ca, Mg, Na, K, HCO3, Cl, SO4 and NO3 have been used for this purpose. With hierarchical clustering analysis the water samples have been classified into 3 clusters. They are very high, high and moderately As-enriched groundwater as well as groundwater with elevated SO4.  相似文献   

18.
Insufficient knowledge of the hydrogeochemistry of aquifers in the Central Region of Ghana has necessitated a preliminary water quality assessment in some parts of the region. Major and minor ions, and trace metal compositions of groundwater have been studied with the aim of evaluating hydrogeochemical processes that are likely to impair the quality of water in the study area. The results show that groundwater in the area is weakly acidic with mean acidity being 5.83 pH units. The dominant cation in the area is Na, followed by K, Ca, and Mg, and the dominant anion is Cl?, followed by HCO3 ? and SO4 2?. Two major hydrochemical facies have been identified as Na–Cl and Na–HCO3, water types. Multivariate statistical techniques such as cluster analysis (CA) and factor analysis/principal component analysis (PCA), in R mode, were employed to examine the chemical compositions of groundwater and to identify factors that influenced each. Q-mode CA analysis resulted in two distinct water types as established by the hydrochemical facies. Cluster 1 waters contain predominantly Na–Cl. Cluster 2 waters contain Na–HCO3 and Na–Cl. Cluster 2 waters are fresher and of good quality than cluster 1. Factor analysis yielded five significant factors, explaining 86.56% of the total variance. PC1 explains 41.95% of the variance and is contributed by temperature, electrical conductivity, TDS, turbidity, SO4 2?, Cl?, Na, K, Ca, Mg, and Mn and influenced by geochemical processes such as weathering, mineral dissolution, cation exchange, and oxidation–reduction reactions. PC2 explains 16.43% of the total variance and is characterized by high positive loadings of pH and HCO3 ?. This results from biogenic activities taking place to generate gaseous carbon dioxide that reacts with infiltrating water to generate HCO3 ?, which intend affect the pH. PC3 explains 11.17% of the total variance and is negatively loaded on PO4 3? and NO3 ? indicating anthropogenic influence. The R-mode PCA, supported by R-mode CA, have revealed hydrogeochemical processes as the major sources of ions in the groundwater. Factor score plot revealed a possible flow direction from the northern sections of the study area, marked by higher topography, to the south. Compositional relations confirmed the predominant geochemical process responsible for the various ions in the groundwater as mineral dissolution and thus agree with the multivariate analysis.  相似文献   

19.
Batch and column experiments were conducted on As adsorption from aqueous solution by natural solids to test the feasibility of these materials to act as adsorbents for As removal from groundwater and drinking water. The solids considered are natural hematite and natural siderite. The As species studied are As(V), As(III) and dimethylarsinic acid (DMA). Arsenic(III), As(V) and DMA were removed to different extents by the solids studied from water solutions containing these three As species, with the highest efficiency for As(V). In aqueous solutions with a mixture of As species, adsorption kinetics depend on the species. On both materials, As(V) was preferentially adsorbed in the batches and first reached equilibrium, followed by DMA and As(III). The As adsorption took place more slowly on natural hematite and natural siderite compared with ferrihydrite. The results demonstrate that the amount of As removed from As(III) batches was greater than that from As(V) batches due to a surface alteration of the solids caused by As(III) oxidation. Although the highest efficiency for As retention was observed on hematite HIO1 in the batch experiments, siderite used as column filling was more efficient in removing As from water containing the As species studied in comparison with hematite. The coating of fresh Fe(III)-oxides was much more intensive in the siderite-packed column than in the hematite-packed column. The combination of siderite and hematite would promote the column filling performance in removing As from aqueous solution.  相似文献   

20.
The fate of arsenic in groundwater depends largely on its interaction with mineral surfaces. We investigated the kinetics of As(III) oxidation by aquifer materials collected from the USGS research site at Cape Cod, MA, USA, by conducting laboratory experiments. Five different solid samples with similar specific surface areas (0.6-0.9 m2 g−1) and reductively extractable iron contents (18-26 μmol m−2), but with varying total manganese contents (0.5-3.5 μmol m−2) were used. Both dissolved and adsorbed As(III) and As(V) concentrations were measured with time up to 250 h. The As(III) removal rate from solution increased with increasing solid manganese content, suggesting that manganese oxide is responsible for the oxidation of As(III). Under all conditions, dissolved As(V) concentrations were very low. A quantitative model was developed to simulate the extent and kinetics of arsenic transformation by aquifer materials. The model included: (1) reversible rate-limited adsorption of As(III) onto both oxidative and non-oxidative (adsorptive) sites, (2) irreversible rate-limited oxidation of As(III), and (3) equilibrium adsorption of As(V) onto adsorptive sites. Rate constants for these processes, as well as the total oxidative site densities were used as the fitting parameters. The total adsorptive site densities were estimated based on the measured specific surface area of each material. The best fit was provided by considering one fast and one slow site for each adsorptive and oxidative site. The fitting parameters were obtained using the kinetic data for the most reactive aquifer material at different initial As(III) concentrations. Using the same parameters to simulate As(III) and As(V) surface reactions, the model predictions were compared to observations for aquifer materials with different manganese contents. The model simulated the experimental data very well for all materials at all initial As(III) concentrations. The As(V) production rate was related to the concentrations of the free oxidative surface sites and dissolved As(III), as with apparent second-order rate constants of and for the fast and the slow oxidative sites, respectively. The As(III) removal rate decreased approximately by half for a pH increase from 4 to 7. The pH dependence was explained using the acid-base behavior of the surface oxidative sites by considering a surface pKa = 6.2 (I = 0). In the presence of excess surface adsorptive and oxidative sites, phosphate diminished the rate of As(III) removal and As(V) production only slightly due to its interaction with the oxidative sites. The observed As(III) oxidation rate here is consistent with previous observations of As(III) oxidation over short transport distances during field-scale transport experiments. The model developed here may be incorporated into groundwater transport models to predict arsenic speciation and transport in chemically heterogeneous systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号