首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Progress of machine learning in geosciences: Preface   总被引:1,自引:1,他引:0  
正In the past two decades,artificial intelligence(AI)algorithms have proved to be promising tools for solving several tough scientific problems.As a broad subfield of AI,machine learning is concerned with algorithms and techniques that allow computers to"learn".The machine learning approach covers main domains such as data mining,difficult-to-program applications,and software applications.It is a collection of a variety of algorithms that  相似文献   

2.
Tarim Precambrian bedrocks are well exposed in the Kuluketage and Aksu areas,where twenty four samples were taken to reveal the denudation history of the northern Tarim Craton.Apatite fission track dating and thermal history modeling suggest that the northern Tarim experienced multi-stage cooling events which were assumed to be associated with the distant effects of the Cimmerian orogeny and India-Eurasia collision in the past.But the first episode of exhumation in the northern Tarim,occurring in the mid-Permian to Triassic,is here suggested to be induced by docking of the Tarim Craton and final amalgamation of the Central Asian Orogenic Belt.The cooling event at ca.170 Ma may be triggered by the Qiangtang-Eurasia collision.Widespread Cretaceous exhumation could be linked with docking of the Lhasa terrane in the late Jurassic.Cenozoic reheating and recooling likely occurred because of the northpropagating stress,however,this has not affected the northern Tarim much because the Tarim is characterized by rigid block-like motion.  相似文献   

3.
The predictability of dangerous atmospheric phenomena such as tornado outbreaks has generally been limited to a week or less. However, recent work has demonstrated the importance of the Rossby wavetrain phasing over the United States in establishing outbreak-favorable environments. The predictability of Rossby wavetrain phasing is strongly related to numerous climate-scale interannual variability indices, which are predictable many months in advance. To formalize the relationship between interannual variability indices and seasonal tornado outbreak frequency, indices derived from monthly mean Northern Hemisphere 500-hPa and 1000-hPa geopotential height fields and Ni?o 3.4 indices for ENSO phase were compared to annual tornado outbreak seasonal frequencies. Statistical models predicting seasonal outbreak frequency were established using linear(stepwise multivariate linear regressione SMLR) and nonlinear(support vector regressione SVR) statistical modeling techniques.The stepwise methodology revealed predictors that are important in establishing outbreak-favorable environments at long lead times. Additionally, the results of the statistical modeling revealed that the nonlinear SVR technique reduced root mean square errors produced by the control SMLR technique by 28% and provided more consistent forecasts. A preliminary physical analysis revealed that years with high outbreak frequencies were associated with the presence of 500-mb troughs over the central and western US during the peak of outbreak season, while lower frequencies were consistent with ridging over the US or northwest flow over the Plains. These patterns support the results of the statistical modeling, which demonstrate the utility of geopotential height variability as a predictability measure of outbreak frequency.  相似文献   

4.
Seafloor polymetallic sulfide resources exhibit significant development potential.In 2011,China received the exploration rights for 10,000 km~2 of a polymetallic sulfides area in the Southwest Indian Ocean;China will be permitted to retain only 25%of the area in 2021.However,an exploration of seafloor hydrothermal sulfide deposits in China remains in the initial stage.According to the quantitative prediction theory and the exploration status of seafloor sulfides,this paper systematically proposes a quantitative prediction evaluation process of oceanic polymetallic sulfide resources and divides it into three stages:prediction in a large area,prediction in the prospecting region,and the verification and evaluation of targets.The first two stages of the prediction process have been employed in seafloor sulfides prospecting of the Chinese contract area.The results of stage one suggest that the Chinese contract area is located in the high posterior probability area,which indicates good prospecting potential area in the Indian Ocean.In stage two,the Chinese contract area of 48°-52° E has the highest posterior probability value,which can be selected as the reserved region for additional exploration.In stage three,the method of numerical simulation is employed to reproduce the ore-forming process of sulfides to verify the accuracy of the reserved targets obtained from the three-stage prediction.By narrowing the exploration area and gradually improving the exploration accuracy,the prediction will provide a basis for the exploration and exploitation of seafloor polymetallic sulfide resources.  相似文献   

5.
The intense study of coleopteran inclusions from Spanish(Albian in age) and French(Albian-Santonian in age) Cretaceous ambers,both of Laurasian origin,has revealed that the majority of samples belong to the Polyphaga suborder and,in contrast to the case of the compression fossils,only one family of Archostemata,one of Adephaga,and no Myxophaga suborders are represented.A total of 30 families from Spain and 16 families from France have been identified(with almost twice bioinclusions identified in Spain than in France);13 of these families have their most ancient representatives within these ambers.A similar study had previously only been performed on Lebanese ambers(Barremian in age and Gondwanan in origin),recording 36 coleopteran families.Few lists of taxa were available for Myanmar(Burmese) amber(early Cenomanian in age and Laurasian in origin).Coleopteran families found in Cretaceous ambers share with their modern relatives mainly saproxylic and detritivorous habits in the larval or adult stages,rather than wood-boring behavior.Fifteen of the coleopteran families occur in both the Lebanese and Spanish ambers;while only five are present in both Spanish and French.Considering the paleogeographic proximity and similarity of age of the Spanish and French ambers,the small number of taxa found in common at both areas is surprising.The ancient origin for the Lebanese and Spanish ambers,the paleogeography(including some barriers for terrestrial biota) and the local paleohabitats are factors that may explain the dissimilarity with the French specimens.Wildfires are believed to be a more likely cause of resin production during the Cretaceous than infestation by beetles.Current knowledge of the beetle species found in the Cretaceous ambers is introduced.  相似文献   

6.
The Lajeado Group in the Ribeira Belt,southeastern Brazil,corresponds to an open-sea carbonate platform,comprised of seven overlapping siliciclastic and carbonatic formations,intruded in its upper portion by the Apiai Gabbro.These rocks have a Neoproterozoic tectonometamorphic overprint related to arc magmatism and the Brasiliano collisional orogeny.Geochronological constraints are given by new UPb SHRIMP and LA-ICP-MS data for Lajeado Group detrital zircons and for magmatic zircons from the Apiai Gabbro.The youngest detrital zircons in the Lajeado Group are 1400-1200 Ma,and constrain its maximum age of deposition to be 1200 Ma,whereas the 877 ± 8 Ma age for magmatic zircons in the Apiai Gabbro give the minimum age.Detritus source areas are mainly Paleoproterozoic(2200-1800 Ma)with some Archean and Mesoproterozoic contribution(1500-1200 Ma),with distal or tectonic stable cratonic character.The Lajeado Group should be a Stenian-Tonian carbonate platform passive margin of a continent at this time,namely the Columbia/Nuna or the Rodinia.The Apiai Gabbro displays similar age to other intrusive basic rocks in the Lajeado and Itaiacoca groups and represents tholeiitic MORB-like magmatism that we relate to the initial break-up of a Mesoproterozoic continent and the formation of the Brasiliano oceans.  相似文献   

7.
http://www.sciencedirect.com/science/article/pii/S1674987115000882   总被引:1,自引:0,他引:1  
A detailed vibrational Raman-IR spectroscopic and diffractional analyses have been performed on basalts from two locations from Tenerife Island:(1) the Arenas Negras volcano which belongs to the historical eruption not showing visible alteration and(2) Pillow Lavas zone from Anaga Massif which shows a clearly fluid-rock interaction caused by submarine alteration.These places have been extensively studied due to its similarity with the surface of Mars.The analysis is based on the mineral detection of selected samples by a Micro-Raman study of the materials.The complementary techniques have confirmed the mineralogy detected by the Raman measurement.The results show a volcanic environment behavior with primary phases like olivine,pyroxene,and feldspar/plagioclase.Moreover,the presence of accessory minerals or secondary mineralization like phosphate,iron oxides,zeolite or carbonates shows the alteration processes on each outcrop.The variation in the crystallinity and amorphous phases is related to fluid-rock interaction caused by hydrothermal episodes and external weathering processes,which shows several analogies with the ancient volcanic activity from Mars.  相似文献   

8.
In the present paper lignites from the Cambay basin have been studied for their hydrocarbon potential.The samples were collected from three lignite fieldse Vastan, Rajpardi and Tadkeshwar, and were investigated by petrography, chemical analyses and Rock-Eval pyrolysis. The results are well comparable with the empirically derived values. The study reveals that these ‘low rank C' lignites are exceedingly rich in reactive macerals(huminite t liptinite) while inertinite occurs in low concentration. These high volatile lignites generally have low ash yield except in few sections. The Rock-Eval data indicates the dominance of kerogen type-III with a little bit of type-II. The study reveals that the lignites of Vastan(lower and upper seams) and Tadkeshwar upper seam are more gas-prone while Rajpardi and Tadkeshwar lower seams are oil-prone. Further, the fixed hydrocarbons are several times higher than the free hydrocarbons. The relation between TOC and fixed hydrocarbon indicates that these lignites are excellent source rock for hydrocarbon which could be obtained mainly through thermal cracking. The empirically derived values reveal a high conversion(94e96%) and high oil yield(64e66%) for these lignites.  相似文献   

9.
U-Pb analyses were carried out on detrital zircon grains from major river-mouth sediments draining South Korea to infer provenance characteristics and the crustal growth history of the southern Korean Peninsula, using a laser ablation inductively coupled plasma mass spectrometer(LA-ICP-MS). The Korean Peninsula is located in the East Asian continental margin and mainly comprises three Precambrian massifs and two metamorphic belts in between them. We obtained 515 concordant to slightly discordant zircon ages ranging from ca. 3566 to ca. 48 Ma. Regardless of river-mouth location, predominance of Mesozoic(249e79 Ma) and Paleoproterozoic(2491e1691 Ma) ages with subordinate Archean ages indicates that the zircon ages reflect present exposures of plutonic/metamorphic rocks in the drainage basins of the South Korean rivers and the crustal growth of the southern Korean Peninsula was focused in these two periods. Comparison of detrital zircon-age data between the North and South Korean river sediments reveals that the Paleoproterozoic zircon age distributions of both regions are nearly identical,while the Neoproterozoice Paleozoic ages exist and the Mesozoic ages are dominant in southern Korean Peninsula. This result suggests that Precambrian terrains in Korea record the similar pre-Mesozoic magmatic history and that the influence of Mesozoic magmatism was mainly focused in South Korea.  相似文献   

10.
The Semail ophiolite of Oman and the United Arab Emirates(UAE) provides the best preserved large slice of oceanic lithosphere exposed on the continental crust,and offers unique opportunities to study processes of ocean crust formation,subduction initiation and obduction.Metamorphic rocks exposed in the eastern UAE have traditionally been interpreted as a metamorphic sole to the Semail ophiolite.However,there has been some debate over the possibility that the exposures contain components of older Arabian continental crust.To help answer this question,presented here are new zircon and rutile U-Pb geochronological data from various units of the metamorphic rocks.Zircon was absent in most samples.Those that yielded zircon and rutile provide dominant single age populations that are 95-93 Ma,partially overlapping with the known age of oceanic crust formation(96.5-94.5 Ma),and partially overlapping with cooling ages of the metamorphic rocks(95-90 Ma).The data are interpreted as dating high-grade metamorphism during subduction burial of the sediments into hot mantle lithosphere,and rapid cooling during their subsequent exhumation.A few discordant zircon ages,interpreted as late Neoproterozoic and younger,represent minor detrital input from the continent.No evidence is found in favour of the existence of older Arabian continental crust within the metamorphic rocks of the UAE.  相似文献   

11.
Belonechitina capitata, a typically middle to late Ordovician chitinozoan index taxon was for the first time recovered from the northeastern Kumaon region, a part of Garhwal-Kumaon Tethys basin of the Himalaya, India. This species is of great biostratigraphic importance and has already been reported from Avalonia, Baltica and northern Gondwana. The study area was during Ordovician, part of a lowpalaeolatitudinal Gondwana region. The vesicles of recovered forms are black and fragmentary. This is principally attributed to intense tectonic activity during the Himalayan orogenic movement which resulted into high thermal alteration. The chitinozoans are found along with melanosclerites.  相似文献   

12.
The Oyu Tolgoi cluster of seven porphyry Cu-Au-Mo deposits in southern Mongolia,define a narrow,linear,12 km long,almost continuously mineralised trend,which contains in excess of 42 Mt of Cu and1850 t of Au,and is among the largest high grade porphyry Cu-Au deposits in the world.These deposits lie within the Gurvansayhan island-arc terrane,a fault bounded segment of the broader Silurian to Carboniferous Kazakh-Mongol arc,located towards the southern margin of the Central Asian Orogenic Belt,a collage of magmatic arcs that were periodically active from the late Neoproterozoic to PermoTriassic,extending from the Urals Mountains to the Pacific Ocean.Mineralisation at Oyu Tolgoi is associated with multiple,overlapping,intrusions of late Devonian(~372 to 370 Ma) quartzmonzodiorite intruding Devonian(or older) juvenile,probably intra-oceanic arc-related,basaltic lavas and lesser volcaniclastic rocks,unconformably overlain by late Devonian(~370 Ma) basaltic to dacitic pyroclastic and volcano sedimentary rocks.These quartz-monzodiorite intrusions range from earlymineral porphyritic dykes,to larger,linear,syn-,late- and post-mineral dykes and stocks.Ore was deposited within syn-mineral quartz-monzodiorites,but is dominantly hosted by augite basalts and to a lesser degree by overlying dacitic pyroclastic rocks.Following ore deposition,an allochthonous plate of older Devonian(or pre-Devonian) rocks was overthrust and a post-ore biotite granodiorite intruded at~365 Ma.Mineralisation is characterised by varying,telescoped stages of intrusion and alteration.Early A-type quartz veined dykes were followed by Cu-Au mineralisation associated with potassic alteration,mainly K-feldspar in quartz-monzodiorite and biotite-magnetite in basaltic hosts.Downward reflux of cooled,late-magmatic hydrothermal fluid resulted in intense quartz-sericite retrograde alteration in the upper parts of the main syn-mineral intrusions,and an equivalent chlorite-muscovite/illite-hematite assemblage in basaltic host rocks.Uplift,facilitated by syn-mineral longitudinal faulting,brought sections of the porphyry deposit to shallower depths,to be overprinted and upgraded by late stage,shallower,advanced argillic alteration and high sulphidation mineralisation.Key controls on the location,size and grade of the deposit cluster include(i) a long-lived,narrow faulted corridor;(ii) multiple pulses of overlapping intrusion within the same structure;and(iii) enclosing reactive,mafic dominated wall rocks,focussing ore.  相似文献   

13.
http://www.sciencedirect.com/science/article/pii/S1674987110000071   总被引:2,自引:1,他引:1  
<正>The lithospheric structure of China and its adjacent area is very complex and is marked by several prominent characteristics.Firstly,China's continental crust is thick in the west but thins to the east,and thick in the south but thins to the north.Secondly,the continental crust of the Qinghai—Tibet Plateau has an average thickness of 60—65 km with a maximum thickness of 80 km,whereas in eastern China the average thickness is 30—35 km,with a minimum thickness of only 5 km in the center of the South China Sea.The average thickness of continental crust in China is 47.6 km,which greatly exceeds the global average thickness of 39.2 km.Thirdly,as with the crust,the lithosphere of China and its adjacent areas shows a general pattern of thicker in the west and south,and thinner in the east and north.The lithosphere of the Qinghai—Tibet Plateau and northwestern China has an average thickness of 165 km, with a maximum thickness of 180—200 km in the central and eastern parts of the Tarim Basin,Pamir, and Changdu areas.In contrast,the vast areas to the east of the Da Hinggan Ling—Taihang—Wuling Mountains,including the marginal seas,are characterized by lithospheric thicknesses of only 50—85 km.Fourthly,in western China the lithosphere and asthenosphere behave as a "layered structure", reflecting their dynamic background of plate collision and convergence.The lithosphere and asthenosphere in eastern China display a "block mosaic structure",where the lithosphere is thin and the asthenosphere is very thick,a pattern reflecting the consequences of crustal extension and an upsurge of asthenospheric materials.The latter is responsible for a huge low velocity anomaly at a depth of 85—250 km beneath East Asia and the western Pacific Ocean.Finally,in China there is an age structure of "older in the upper layers and younger in the lower layers" between both the upper and lower crusts and between the crust and the lithospheric mantle.  相似文献   

14.
<正>The thermo-electric coefficients of twenty-six magnetite samples,formed either by magmatism or metamorphism,were tested by the thermo-electric instrument BHET—06.Results showed that the coefficient is of a constant value of about -0.05 mV/℃.It is emphasized that because every magnetite grain was tested randomly,the coefficient is independent of the crystallographic direction.This fact means the thermal voltage generated from a single magnetite crystal can be accumulated,and as a result a new thermo-electric field can arise when a gradient thermal field exists and is active within the earth's crust.Because magnetite is widespread in the earth's crust(generally appearing more in the middle-lower crust),there is more-than-random probability that the additional thermo-electric field can be generated when certain thermal conditions are fulfilled.We,therefore,used the thermo-electric effect of magnetite to study the mechanism responsible for the presence of abnormal geo-electric fields during earthquake formation and occurrence, because gradient thermal fields always exist before earthquakes.The possible presence of additional thermo-electric fields was calculated under theoretical seismological conditions,using the following calcu-lation formula:E= - 0.159(σ×△T×φ×ρ_2×[(h~2-2x~2)cosα+ 3hxsinα]/ρ_1(h~2 +x~2)~(5/2)).In the above formula,σis thermo-electric coefficient of magnetite,△T is the temperature difference acting on it,φis a sectional area on a block of magnetite vertically perpendicular to the direction of the thermal current.ρ_1 andρ_2 are the respective resistivities of magnetite and the crust,and h,α,and x,respectively,h is the depth of embedded magnetite block,αmeans the angle created by the horizontal line and ligature of the two poles of magnetite block,and x is the distance from observation point to projective center point of the magnetite block on earth surface.According to simulations calculated with this formula,additional thermo-electric field intensity may reach as high as n to n×10~2 mV/km.This field is strong enough to cause obvious anomalies in the background geo-electric field,and can be easy probed by earthquake monitoring equipment. Therefore,we hypothesize that geo-electric abnormalities which occur during earthquakes may be caused by the thermo-electric effect of magnetite.  相似文献   

15.
http://www.sciencedirect.com/science/article/pii/S1674987110000113   总被引:3,自引:0,他引:3  
<正>Against the current background of global climate change,the study of variations in the soil carbon pool and its controlling factors may aid in the evaluation of soil's role in the mitigation or enhancement of greenhouse gas.This paper studies spatial and temporal variation in the soil carbon pool and their controlling factors in the southern Song-nen Plain in Heilongjiang Province,using soil data collected over two distinct periods by the Multi-purpose Regional Geochemical Survey in 2005—2007, and another soil survey conducted in 1982—1990.The study area is a carbon source of 1479 t/km~2 and in the past 20 years,from the 1980s until 2005.the practical carbon emission from the soil was 0.12 Gt.Temperature,which has been found to be linearly correlated to soil organic carbon,is the dominant climatologic factor controlling soil organic carbon contents.Our study shows that in the relevant area and time period the potential loss of soil organic carbon caused by rising temperatures was 0.10 Gt,the potential soil carbon emission resulting from land-use change was 0.09 Gt,and the combined potential loss of soil carbon(0.19 Gt) caused by warming and land-use change is comparable to that of fossil fuel combustion(0.21 Gt).Due to the time delay in soil carbon pool variation,there is still 0.07 Gt in the potential emission caused by warming and land-use change that will be gradually released in the future.  相似文献   

16.
How ophiolitic mèlanges can be defined as sutures is controversial with regard to accretionary orogenesis and continental growth.The Chinese Altay,East junggar,Tianshan,and Beishan belts of the southern Central Asian Orogenic Belt(CAOB) in Northwest China,offer a special natural laboratory to resolve this puzzle.In the Chinese Altay,the Erqis unit consists of ophiolitic melanges and coherent assemblages,forming a Paleozoic accretionary complex.At least two ophiolitic melanges(Armantai,and Kelameili) in East Junggar,characterized by imbricated ophiolitic melanges,Nb-enriched basalts,adakitic rocks and volcanic rocks,belong to a Devonian-Carboniferous intra-oceanic island arc with some Paleozoic ophiolites,superimposed by Permian arc volcanism.In the Tianshan,ophiolitic melanges like Kanggurtag,North Tianshan,and South Tianshan occur as part of some Paleozoic accretionary complexes related to amalgamation of arc terranes.In the Beishan there are also several ophiolitic melanges,including the Hongshishan,Xingxingxia-Shibangjing,Hongliuhe-Xichangjing,and Liuyuan ophiolitic units.Most ophiolitic melanges in the study area are characterized by ultramafic,mafic and other components,which are juxtaposed,or even emplaced as lenses and knockers in a matrix of some coherent units.The tectonic settings of various components are different,and some adjacent units in the same melange show contrasting different tectonic settings.The formation ages of these various components are in a wide spectrum,varying from Neoproterozoic to Permian.Therefore we cannot assume that these ophiolitic melanges always form in linear sutures as a result of the closure of specific oceans.Often the ophiolitic components formed either as the substrate of intra-oceanic arcs,or were accreted as lenses or knockers in subduction-accretion complexes.Using published age and paleogeographic constraints,we propose the presence of (1) a major early Paleozoic tectonic boundary that separates the Chinese Altay-East Junggar multiple subduction system  相似文献   

17.
The paper reviews previous and recently obtained geological, stratigraphic and geochronological data on the Russian-Kazakh Altai orogen, which is located in the western Central Asian Orogenic Belt (CAOB), between the Kazakhstan and Siberian continental blocks. The Russian-Kazakh Altai is a typical Pacific-type orogen, which represents a collage of oceanic, accretionary, fore-arc, island-arc and continental margin terranes of different ages separated by strike-slip faults and thrusts. Evidence for this comes from key indicative rock associations, such as boninite- and turbidite (graywacke)-bearing volcanogenic-sedimentary units, accreted pelagic chert, oceanic islands and plateaus, MORB-OIB-protolith blueschists. The three major tectonic domains of the Russian-Kazakh Altai are: (1) Altai-Mongolian terrane (AMT); (2) subduction-accretionary (Rudny Altai, Gorny Altai) and collisional (Kalba-Narym) terranes; (3) Kurai, Charysh-Terekta, North-East, Irtysh and Char suture-shear zones (SSZ). The evolution of this orogen proceeded in five major stages: (i) late Neoproterozoic-early Paleozoic subduction-accretion in the Paleo-Asian Ocean; (ii) Ordovician-Silurian passive margin; (iii) Devonian-Carboniferous active margin and collision of AMT with the Siberian conti- nent; (iv) late Paleozoic closure of the PAO and coeval collisional magmatism; (v) Mesozoic post-collisional deformation and anarogenic magmatism, which created the modern structural collage of the Russian- Kazakh Altai orogen. The major still unsolved problem of Altai geology is origin of the Altai-Mongolian terrane (continental versus active margin), age of Altai basement, proportion of juvenile and recycled crust and origin of the middle Paleozoic units of the Gorny Altai and Rudny Altai terranes.  相似文献   

18.
The basement of the Romanian Carpathians is made of Neoproterozoic to early Paleozoic periGondwanan terranes variably involved in the Variscan orogeny,similarly to other basement terrains of Europe.They were hardly dismembered during the Alpine orogeny and traditionally have their own names in the three Carpathian areas.The Danubian domain of the South Carpathians comprises the Dragsan and Lainici-Paius peri-Amazonian terranes.The Dragsan terrane originated within the ocean surrounding Rodinia and docked with Rodinia at ~800 Ma.It does not contain Cadomian magmatism and consequently it is classified as an Avalonian extra-Cadomian terrane.The Lainici-Paius terrane is a Ganderian fragment strongly modified by Cadomian subduction-related magmatism.It is attached to the Moesia platform.The Tisovita terrane is an ophiolite that marks the boundary between Dragsan and Lainici-Paius terranes.The other basement terranes of the Romanian Carpathians originated close to the Ordovician NorthAfrican orogen,as a result of the eastern Rheic Ocean opening and closure.Except for the Sebes-Lotru terrane that includes a lower metamorphic unit of Cadomian age,all the other terranes(Bretila,Tulghes,Negrisoara and Rebra in the East Carpathians,Somes,Biharia and Baia de Aries in the Apuseni mountains,Fagaras,Leaota,Caras and Pades in the South Carpathians) represent late Cambrian—Ordovician rock assemblages.Their provenance,is probably within paleo-northeast Africa,close to the Arabian-Nubian shield.The late Cambrian-Ordovician terranes are defined here as Carpathian-type terranes.According to their lithostratigraphy and origin,some are of continental margin magmatic arc setting,whereas others formed in rift and back-arc environment and closed to passive continental margin settings.In a paleogeographic reconstruction,the continental margin magmatic arc terranes were first that drifted out,followed by the passive continental margin terranes with the back-arc terranes in their front.They accreted to Laurussia during the Variscan orogeny.Some of them(Sebes-Lotru in South Carpathians and Baia de Aries in Apuseni mountains) underwent eclogite-grade metamorphism.The Danubian terranes,the Bretila terrane and the Somes terrane were intruded by Variscan granitoids.  相似文献   

19.
The study of fluid inclusions in high-grade rocks is especially challenging as the host minerals have been normally subjected to deformation, recrystallization and fluid-rock interaction so that primary in- clusions, formed at the peak of metamorphism are rare. The larger part of the fluid inclusions found in metamorphic minerals is typically modified during uplift. These late processes may strongly disguise the characteristics of the "original" peak metamorphic fluid. A detailed microstructural analysis of the host minerals, notably quartz, is therefore indispensable for a proper interpretation of fluid inclusions. Cathodoluminescence (CL) techniques combined with trace element analysis of quartz (EPMA, LA- [CPMS) have shown to be very helpful in deciphering the rock-fluid evolution. Whereas high-grade metamorphic quartz may have relatively high contents of trace elements like Ti and A1, low- temperature re-equilibrated quartz typically shows reduced trace element concentrations. The result- ing microstructures in CL can be basically distinguished in diffusion patterns (along microfractures and grain boundaries), and secondary quartz formed by dissolution-reprecipitation. Most of these textures are formed during retrograde fluid-controlled processes between ca. 220 and 500 ℃, i.e. the range of semi-brittle deformation (greenschist-facies) and can be correlated with the fluid inclusions. In this way modified and re-trapped fluids can be identified, even when there are no optical features observed under the microscope.  相似文献   

20.
Tourmaline occurs as a minor but important mineral in the alteration zc,ne of the Archean orogenic gold deposit of Guddadarangavanahalli (G.R.Halli) in the Chitradurga greenst~ne belt of the western Dharwar craton, southern India. It occurs in the distal alteration halo of the G.R.Halli golcl deposit as (a) clusters of very fine grained aggregates which form a minor constituent in the natrix of the altered metabasalt (AMB tourmaline) and (b) in quartz-carbonate veins (vein tourmaline). ~['he vein tourmaline, based upon the association of specific carbonate minerals, is further grouped as (i) albite-tourmaline-ankerite-quartz veins (vein-1 tourmaline) and (ii) albite-tourmaline-calcite-quartz veins (vein-2 tourmaline). Both the AMB tourmaline and the vein tourmalines (vein-I and vein-2) belong to the alkali group and are clas- sified under schorl-dravite series. Tourmalines occurring in the veins are zoned while the AMB tour- malines are unzoned. Mineral chemistry and discrimination diagrams 1eveal that cores and rims of the vein tourmalines are distinctly different. Core composition of the ve:n tourmalines is similar to the composition of the AMB tourmaline. The formation of the AMB tourmaline and cores of the vein tour- malines are proposed to be related to the regional D1 deformational event associated with the emplacement of the adjoining ca. 2.61 Ga Chitradurga granite whilst rims of the vein tourmalines vis-a- vis gold mineralization is spatially linked to the juvenile magmatic accretion (2.56-2.50 Ga) east of the studied area in the western part of the eastern Dharwar craton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号