首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
一般认为青藏高原拉萨地块后碰撞钾质-超钾质岩浆活动由西向东逐渐喷发,然而本文在拉萨地块中部麻江地区识别出一套钾质火山岩,利用单矿物金云母的40Ar-39Ar方法确定其形成于21.3Ma.这套火山岩具有高镁(>3%)和高钾( K2O/Na2O >2)等的超钾质火山岩成分特征,但其高的MgO含量是因岩石中含有后期蚀变矿物白...  相似文献   

2.
青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义   总被引:22,自引:14,他引:22  
对西藏拉萨地块超钾质岩石的研究是近10年来青藏高原研究的重要进展之一。本文对西藏拉萨地块中部当若雍错和许如错地区的超钾质火山岩进行了透长石和黑云母的~(40)Ar/~(39)Ar定年。当若雍错粗面岩的黑云母~(40)Ar/~(39)Ar等时线年龄为13.2±0.3Ma,3个透长石的等时线年龄分别为13.0±0.3Ma、13.7±0.3Ma和13.0±0.3Ma;许如错辉石粗面岩黑云母的~(40)Ar/~(39)Ar等时线年龄为11.2±0.3Ma。结合已有研究结果,探讨了拉萨地块碰撞后钾质和超钾质岩石的分布特征。超钾质岩石产出于大约东经87度以西的地区,岩石年龄介于8~25Ma之间,而钾质岩石则在东部和西部都有产出,时代为9~24Ma。超钾质和钾质岩石在野外产出的构造背景上,显示了与南北向裂谷、新生代盆地、南北延长的湖泊等分布的密切关系。拉萨地块碰撞后岩浆作用的时间与裂谷发育、岩脉侵入、埃达克岩形成等岩浆-构造事件的时间相互重叠不是偶然的,预示着可能存在一个深部岩石圈演化的统一事件,而最为可能的是高原南部岩石圈地幔的减薄作用。超钾质岩浆作用在拉萨地块与羌塘地区同时发育表明拉萨地块与藏北在构造和岩石圈演化方面具有一致性。  相似文献   

3.
通过对青藏高原碰撞后钾质-超钾质火山岩的对比分析,提出青藏高原存在羌塘-芒康-滇西(44~28Ma)和冈底斯(25~12Ma)两条高Mg^#钾质-超钾质火山岩带,而可可西里、西昆仑-东昆仑的新生代火山岩则为低Mg^#钾质火山岩.高Mg^#钾质-超钾质火山岩的化学成分均相对高镁低铁和贫钛,微量元素组成以具有类似岛弧火山岩的K/Nb、K/La、Rb/Nb、Pb/La、Ba/La等比值为特征.低Mg^#钾质-超钾质火山岩相对富铁贫镁和高钛,上述元素比值小于岛弧火山岩,大于和近似于洋岛玄武岩,指示岩浆源区富集组分有软流圈流体的贡献.羌塘-芒康的高Mg^#高钾钙碱性和高Mg^#钾玄岩系列指示高原中部受到陆内俯冲作用的影响;30Ma前俯冲板片断离,软流圈上涌,富集岩石圈地幔熔融形成羌塘低Mg^#过碱性钾质-超钾质系列.综合地球物理资料,提出青藏高原在印度大陆岩石圈的强力楔入下,高原内部软流圈物质沿欧亚岩石圈地幔俯冲板片的顶部向北东和南东挤出,使上覆岩石圈地幔发生剪切破裂,形成一系列串珠状高速体与低速体的相间分布,并随时间不断向北扩展.这也是阿尔金和滇西走滑系的深部动力源.正是软流圈与岩石圈的这种相互作用形成了可可西里和西昆仑-东昆仑低Mg^#钾玄质火山岩的软流圈-岩石圈地幔的混源特征.藏南高Mg^#超钾质岩浆源区的显著幔壳混合特征则可能来自印度大陆岩石圈俯冲作用的影响.  相似文献   

4.
青藏高原拉萨地块是揭示印度与亚洲大陆碰撞的最重要的地区之一,其中广泛发育的碰撞-后碰撞岩浆作用记录了这一地区从特提斯洋俯冲消减到印度大陆陆内俯冲的全过程.本文基于对最新的Sr-Nd同位素资料的分析,从高原岩石圈的三种主要地球化学端元入手,分析了拉萨地块碰撞-后碰撞岩浆作用的类型及其在大陆俯冲与成矿作用方面的意义.青藏高原岩石圈可以分为三种主要的地球化学端元,一是青藏高原北部地球化学省(包括羌塘、可可西里和西昆仑)代表的青藏原始岩石圈地幔地球化学端元,42Ma以来在高原北部广泛分布的钾质岩浆岩的Nd-Sr同位素成分比较均一和稳定,同位素比值的范围较窄,^87Sr/^86Sr=0.707101~0.710536,εNd=-2~-9,tDM=0.7~1.3Ga;二是雅鲁藏布江蛇绿岩代表的新特提斯洋地幔端元,^87Sr/^86Sr=0.703000~0.706205,εNd=+7.8~+10,呈印度洋型MORB特征,属于印度洋型地幔域;三是喜马拉雅带地壳基底和花岗岩类显示的喜马拉雅地壳地球化学端元,εNd=-12~-25,^87Sr/^86Sr=0.733110~0.760000,具相对古老的Nd模式年龄,tDM=1.9~2.9Ga.拉萨地块碰撞-后碰撞岩浆作用可以划分出三种地球化学类型,即拉萨地块原地型、亲特提斯洋型和亲喜马拉雅型.这三种岩浆作用类型受控于上述三种地球化学端元在其源区的比例及相互作用.其中,拉萨地块原地型与青藏高原北部地球化学省特征一致,亲特提斯洋型代表了与新特提斯洋俯冲消减及其后的再循环有关的岩浆作用,亲喜马拉雅型岩浆岩的Sr-Nd同位素特征则可能指示了喜马拉雅大陆地壳端元的参与.超钾质火山岩是揭示印度大陆岩石圈向北俯冲的重要证据,印度大陆岩石圈俯冲作用可能同时控制了超钾质岩石和盐类矿床的产出,古老地壳物质作为源区参与了超钾质岩石和盐类矿床的成岩与成矿作用.拉萨地块中部地区的含矿斑岩属于亲特提斯洋型岩浆作用,因此具亲特提斯洋型特征的火山岩、浅成斑岩和深成侵入岩,是进一步寻找铜、钼、金矿床的重要目标.  相似文献   

5.
青藏高原的新生代火山作用是印度-亚洲大陆碰撞的火山响应,它显示了系统的时、空变化。随着印度-亚洲大陆碰撞从~65 Ma的接触-碰撞(即"软碰撞")转变到~45 Ma的全面碰撞(即"硬碰撞"),火山作用也逐渐从钠质+钾质变为钾质-超钾质+埃达克质。65~40 Ma的钾质和钠质熔岩主要分布于藏南的拉萨地块,少量分布于藏中的羌塘地块。从45~26 Ma,在藏中的羌塘地块中广泛发育钾质-超钾质熔岩和少量埃达克岩。随后的碰撞后火山作用向南迁移,在拉萨地块中产生~26~10 Ma间的同时代超钾质和埃达克质熔岩。尔后,从~18 Ma始,钾质和少量埃达克质火山作用重新向北,在西羌塘和松潘-甘孜地块中呈广泛和半连续状分布。此种时-空变异对形成青藏高原的深部地球动力学过程提供了重要约束。该过程包括:已消减的新特提斯大洋板片的回转、断离及随后增厚拉萨岩石圈根的去根作用,及因此而造成的印度岩石圈向北下插。青藏高原的隆升是自南向北穿时发生的。高原南部被创建于渐新世晚期,并保持至今;直到中新世中期,由于下插印度岩石圈的持续向北推挤,西羌塘和松潘-甘孜岩石圈的下部开始塌陷和拆离,高原北部才达到其现今的高度和规模。  相似文献   

6.
新生代青藏高原钾质火山岩发育,主要集中于藏北地区和拉萨地块内,仲巴地块中鲜见报道。对仲巴地块中发现的加达钾质火山岩进行研究,其岩石类型以粗面质为主,岩浆以溢流相-喷发相不间断喷发。样品普遍显示高钾高铝,低碱,偏酸性,富集轻稀土元素和大离子亲石元素,亏损高场强元素,具弱负Eu异常,贫Y和Yb,Sr含量较高,类似于典型的埃达克质岩的地球化学特征。粗面玄武安山岩样品LA-ICP-MS锆石U-Pb年龄为17.03±0.32Ma,形成时代为中新世。加达钾质火山岩浆来源于挤压增厚的下地壳部分熔融,其产出的构造背景是后碰撞伸展环境。  相似文献   

7.
青藏高原拉萨地块南北向裂谷中发育少量中新世高镁超钾质火山岩,岩石具有较高的SiO2含量(53%~50%),同时具有极高的K2O(7%~6%)、MgO(11%~8%)、Cr(500×10-6~400×10-6)、Ni(400×10-6~260×10-6)含量,较高的放射性成因87Sr/86Sr(0.7265~0.7199)、非放射性成因143Nd/144Nd(0.511844~0.511769)比值,δ18OVSMOW值较高,变化范围很大(10.4‰~6.4‰),其源区为加入了大量俯冲印度地壳的富集地幔。40Ar/39Ar同位素年龄指示他们喷发时代为17~13Ma。结合正断层与火山岩的切割与覆盖关系,指出高原正断层强烈活动时间为23~13Ma,持续了~10Ma,伸展速率为5.6±3.0mm/a。高镁超钾质火山岩与裂谷在时间上的一致和空间上的重合,指示高镁超钾质火山岩与裂谷的形成演化密切相关,高原裂谷系统的建立是由于俯冲印度地壳的断离造成的高原岩石圈的伸展破裂,其活动时期分为2个阶段,首先伴随高原隆升(23~13Ma),随后在重力作用下,促使高原垮塌(13Ma~现在)。  相似文献   

8.
通常认为青藏高原的钾质-超钾质火山岩的形成多与地幔有着紧密的联系,然而最近对青藏高原的一些钾质-超钾质火山岩的研究显示一些钾质火山岩也可以起源于下地壳.青藏高原西南部查孜地区中新世火山岩是形成于13~11 Ma左右的一套钾质-超钾质岩石,根据岩石化学组成将其分为中基性火山岩组、中性火山岩组和流纹质火山岩.其中中基性火山岩组可能源于一个富含金云母的富集地幔源区;中性火山岩组可能是富钾的镁铁质下地壳部分熔融的产物;流纹质火山岩可能是拉萨地块在中新世时期的伸展构造运动而导致中上地壳因减压而发生部分熔融的产物.结合查孜地区及其邻近火山岩的年龄、化学组成以及岩浆组合,初步认为查孜地区火山岩可能与高原在中新世发生伸展活动而产生的南北向地堑系统有关.  相似文献   

9.
西藏措勤地区发现第三纪富钾岩浆岩   总被引:21,自引:6,他引:21  
马润则  刘登忠等 《地质通报》2002,21(11):728-731
西藏措勤地区发现了第三纪富钾火山岩及正长岩,其同位素年龄分别为15.8~15.9Ma和27.15Ma。火山岩主要岩石类型为粗安岩,少量粗面岩、玄武粗安岩、白榴石玄武粗安岩;正长岩主要岩性为中—中粗粒或似斑状霓辉正长岩。岩石学、岩石化学初步研究表明其属于钾玄质-超钾质火山岩和碱性正长岩。这一发现填补了冈底斯北部新生代富钾质岩浆活动的空白,为进一步研究青藏高原形成和演化提供了重要资料。  相似文献   

10.
青藏高原拉萨地块后碰撞钾质和超钾质岩浆活动广泛分布且已有不少研究成果,但是它们的年龄主要是17~8Ma,而对于拉萨地块西部雄巴地区时代为24~23Ma的岩浆作用则研究较少。本文对雄巴盆地新识别出的三种类型火山岩的锆石LA-ICP-MS U-Pb定年和岩石地球化学研究表明,它们分别是超钾质安粗岩(23.9±0.6Ma)、粗面英安岩(23.3±0.4Ma)和钾质流纹岩(24.1±0.3Ma),这三种岩石近于同时产出。三类岩石的源区明显不同,其中钾质流纹岩是中、上地壳部分熔融产物;具有埃达克质特征的钾质粗面英安岩可能为加厚下地壳部分熔融;而超钾质安粗岩可能富集地幔部分熔融的产物。雄巴三种火山岩均含数量不等的继承锆石,钾质流纹岩具有~150Ma、~90Ma和~50Ma的继承锆石年龄群;钾质粗面英安岩突出显示了~90Ma左右岩浆活动记录和两个新元古代继承锆石年龄;幔源超钾质安粗岩的继承锆石则绝大多数继承锆石为晚白垩纪以来的岩浆活动记录,突出显示110~80Ma和62~30Ma两个峰值。  相似文献   

11.
通常认为,青藏高原碰撞后钾质超钾质岩是交代富集上地幔低度部分熔融的产物,而最近的研究则表明,钾质火山岩也可以起源于下地壳源区.文章对青藏高原拉萨地块西段新识别出的查加寺火山岩进行了岩石地球化学、锆石SIMS U-Pb定年和Sr-Nd同位素研究,结果表明其岩石类型为碱性系列钾质粗面岩,锆石SIMS U Pb 年龄为(23.97±0.28) Ma,说明火山活动为中新世.钾质粗面岩显示出富集LREE及LILE(K、Rb、Ba、Th、U、Pb)、亏损HFSE(Ti、Nb、Ta、P),具有类似于埃达克质岩的稀土元素分布模式和微量元素蛛网图分布模式的特征;具有高的La/Yb比值(81~105)、较高的ω(Sr)(409×10-6~472×10-6)、较高的Sr/Y比值(28-37)、较低的ω(Y)(11.5×10-6~15.7×10-6)、明显亏损重稀土元素Yb(0.78×10-6~1.08×1)-6)、较高的w(Al2O3)(15.47%~16.7%)、较低的w(MgO)(0.63%~2.12%),无明显的Eu、Sr负异常,类似于典型的埃达克岩成分特征;具有高的w(K2O)(6.28%~6.97%)、高的Rb/Sr比值(0.94~1.03)和低的Ba/Rb比值(2.21~2.51),以及Na2O、K2O与SiO2无明显的相关关系,表明源区的富钾矿物是以金云母为主;具有较低的ω(Cr) 、ω(Ni)(分别为53.4×10-6~69.4×10-6,11.4×10-6~23.5×10-6),以及较低的εNd值(-12.6~-11.8)和较高的87Sr/86Sr比值(0.73207~0.73249).所有这些特征都表明,查加寺钾质粗面岩起源于拉萨地块增厚下地壳富钾物质的部分熔融.查加寺钾质粗面岩具有约145Ma、75 Ma和30 Ma等3组继承锆石年龄群.  相似文献   

12.
报道的高钾-钾玄质火山岩位于狮泉河镇南东方向约20km处,向东延伸。高钾-钾玄质火山岩Si O2变化于60.35%~68.68%之间,属中酸性岩范畴;具有高的K2O+Na2O含量(8.8%~10.66%),K2O/Na2O值在1.92~2.49之间,Mg O含量较低,介于0.88%~3.47%之间,Al2O3含量为14.02%~14.91%,属于高钾-钾玄质系列。岩石强烈富集大离子亲石元素(LILE)Rb、Ba、Th、U和轻稀土元素(LREE),高场强元素(HFSE)Nb、Ta、Ti具有明显负异常,Cr、Ni、Co相容元素含量低于或接近地壳的平均含量,结合Th/Yb-Ta/Yb、(Th×100)/Zr-(Nb×100)/Zr判别图及La-La/Yb图解,暗示岩浆源区可能为下地壳。在左左乡南东约2km处和狮泉河水泥厂北东约1km处各采集1个高钾-钾玄质火山岩样品,对其中的锆石进行LA-ICP-MS U-Pb同位素测定,得到的206Pb/238U年龄加权平均值分别为22.04±0.42Ma和22.29±0.31Ma,此年龄被解释为狮泉河一带高钾-钾玄质火山岩的喷发时代,即中新世阿启塔期。由此表明,该火山岩是印度板片向北俯冲时在狮泉河一带俯冲板片断离,岩浆发生部分熔融的产物。  相似文献   

13.
The widespread late Carboniferous calc-alkaline and shoshonitic magmatic rocks in the Awulale mountain provide crucial constraints on the tectonic evolution of the western Tianshan. Here, we perform detailed petrological investigations as well as zircon U-Pb chronological, whole-rock geochemical and Sr-Nd isotopic analyses on these magmatic rocks from two geological sections along the Duku road. Magmatic rocks in the section I with zircon SHRIMP U-Pb ages of 306.8 Ma and 306.4 Ma are composed of medium-K calc-alkaline to shoshonitic basalt, trachy-andesite and trachyte, while those in the section II consist of shoshonitic trachy-andesite, trachyte with a U-Pb age of 308.1 Ma, and monzonite with a U-Pb age of 309.6 Ma. All these magmatic rocks are characterized by strong enrichments in large iron lithophile elements with depletions of Nb, Ta and Ti, indicating the origination from subduction-modified lithospheric mantle. The εNd(t) values of the rock samples collected from the section I (2.80–5.45) and section II (3.34–5.37) are generally higher than those of the Devonian to early Carboniferous arc-type magmatic rocks in the Yili-central Tianshan, suggesting that depleted asthenosphere might also be involved in their generation. Based on these geochemical data and petrological observations, we suggest that the early-stage (308.1–309.6 Ma) shoshonitic monzonite, trachy-andesite and trachyte in the section II were generated by mixing between mafic magmas and trachytic melts, while the late-stage (306.4–306.8 Ma) medium-K calc-alkaline to shoshonitic basalt, trachy-andesite and trachyte in the section I were produced by partial melting of depleted asthenospheric and metasomatized lithospheric mantle, followed by the processes of fractional crystallization and crustal contamination. Taking into account the available regional geological data, the subduction of south Tianshan ocean was probably ceased at ∼310 Ma, and these calc-alkaline and shoshonitic magmatic rocks in the Awulale mountain formed in a post-collisional setting subsequent to slab break-off.  相似文献   

14.
GEOCHEMISTRY OF THE PLIOCENE SHOSHONITIC ROCKS FROM OIYUG BASIN, CENTRAL TIBET  相似文献   

15.
青藏高原拉萨地块新生代超钾质岩与南北向地堑成因关系   总被引:3,自引:0,他引:3  
青藏高原拉萨地块广泛分布有新生代超钾质岩,岩石地球化学和Sr-Nd-Pb同位素特征表明这些超钾质岩来源于与古俯冲环境有着密切联系的含金云母的富集地幔源区,它们主要喷发于25~10 Ma。同时在拉萨地块分布有多条南北向地堑(裂谷),且它们的切割深度可能到达下地壳的深部甚至岩石圈地幔,它们主要形成于23~8 Ma。拉萨地块大多数超钾质岩沿着新生代的南北向地堑(裂谷)分布,并且它们在形成时代和空间分布上存在着明显的耦合性,结合沿着印度-雅鲁藏布江缝合带分布的中新世埃达克质岩,笔者认为这些超钾质岩很可能与中新世早期北向俯冲的印度岩石圈沿着印度-雅鲁藏布江缝合带附近发生断离,以及由此而引起拉萨地块东西向伸展构造活动产生的南北向地堑(裂谷)系统有关。  相似文献   

16.
卢成忠 《中国地质》2007,34(6):1055-1061
江山—龙游南部地区晚中生代侵入岩分布广泛,以往被认为是钙碱性系列岩石,笔者通过野外地质、岩石学和元素地球化学研究表明,石英二长岩、二长岩、正长岩以及与之伴生的花岗岩与花岗斑岩属钾玄质系列岩石。这套岩石高碱(Na2O K2O=7.80%~10.47%)、富钾(K2O/Na2O=0.92~1.91)、贫钛(TiO2=0.2%~0.88%)、Al2O3含量较高且变化范围大(11.08%~17.77%),富集大离子亲石元素(LILE)和轻稀土元素(LREE),且Ce/Yb(27.29~85.64)、Ta/Yb(0.42~0.73)和Th/Yb(3.44~14.44)比值高,具有钾玄质系列的岩石地球化学特征。该区矿产资源较为丰富,矿床在时间与空间上多与钾玄质侵入岩密切共生,钾玄质侵入岩为成矿母岩,是重要的找矿岩石学标志。  相似文献   

17.
Abstract

A newly discovered, shoshonitic lava-hosted Pb deposit at Nariniya in central Tibet provides an excellent example to help improve our understanding of the linkage between post-collisional potassic magmatism and ore formation in Tibet. The Pb ores exist as veins or veinlets in NWW-striking fracture zones within the potassic lava (trachyte). The veins contain quartz, galena, pyrite, and sericite (muscovite) as well as minor chalcopyrite, sphalerite, calcite, and dolomite with sericitization, pyritization, and minor silicification. The 40Ar–39Ar plateau age of the hydrothermal muscovite is 37.95 ± 0.30 Ma, which represents the Pb mineralization age. This obtained age is indistinguishable, within analytical error, from the zircon U–Pb age of 37.88 ± 0.22 Ma for potassic lava. Therefore, the ore formation can be genetically linked to potassic magmatism. Galena has similar Pb isotopic composition to magmatic feldspar from the host lava, suggesting the derivation of Pb from the magmatic system. Previous studies have suggested that S- and ore-forming fluids are of magmatic origin. Published data show that the Nariniya volcanic rocks are acidic, shoshonitic, akakitic, peraluminous, and enriched in Sr–Nd–Pb isotopes. Thus, they are geochemically different from other potassic volcanic rocks (no adakitic affinity) in the North Qiangtang terrane, but similar to the 46–38 Ma high-K calc-alkaline peraluminous adakitic rocks in this terrane and the late Eocene Cu-generating potassic porphyries from the Sanjiang region of eastern Tibet. As such, the Nariniya potassic magma likely originated from melting of subducted continental crust, with or without interaction with the overlying enriched mantle. Such post-collisional potassic rocks in Tibet are thought to be potential targets for prospecting of both Pb–Zn and porphyry Cu ores. Note that other ore styles (in addition to the Nariniya ore style) may exist in the potassic volcanic districts of Tibet.  相似文献   

18.
西藏羌塘地区火山岩主要见于第三系石坪顶组,主要岩石类型是呈熔岩被产出的火山熔岩,包括辉石粗安岩、角闪粗面岩、角闪英安岩、黑云母英安岩等,其次可见次火山岩相的黑云母英安质碎斑熔岩和黑云母粗面质碎斑熔岩,以及辉石黑云母花斑岩.它们均为陆相中心式喷发的产物.岩石化学上属钾玄岩组合,可进一步分为钾玄岩系列和高硅钾玄岩系列,具非常典型的二元岩浆混合成因火山岩的岩石化学特征.其REE及微量元素特点表明二元岩浆混合前两个端元岩浆分别来自幔源和壳源.这些火山岩岩浆热事件对盆地有机烃类转化为石油和天然气是有利的,而破坏作用仅仅发生在火山机构附近  相似文献   

19.
In the Yangbajing area, southern Tibet, several monogenic volcanoes were conformably superimposed on the Linzizong calc-alkaline volcanic successions. According to their petrologic and geochemical characteristics, these monogenic volcanoes are composed of three rock varieties: tephritic phonolitic plugs and shoshonitic and trachytic lavas. Their geochemical systematics reveals that low-pressure evolutionary processes in the large voluminous Linzizong calc-alkaline magmas were not responsible for the generation of these potassic–ultrapotassic rocks, but the significant change in petrologic and geochemical characteristics from the Linzizong calc-alkaline to potassic–ultrapotassic magma is likely accounted for the change of metasomatic agents in the southern Tibetan lithospheric mantle source during the Paleocene to Eocene. The tephritic phonolites containing both leucite and plagioclase show primary ultrapotassic character similar to that of Mediterranean plagioleucititic magmas. Radiogenic Sr increases with SiO2 in the xenolith-bearing trachytes strongly suggesting significant crustal assimilation in the shoshonitic magmas. The Yangbajing ultrapotassic rocks have high K2O and Al2O3, and show depletion of high field strength elements (HFSEs) with respect to large ion lithophile elements. In primitive mantle-normalized element diagrams, all samples are characterized by positive spikes at Th (U) and Pb with negative anomalies at Ba, Nb–Ta and Ti, reflecting the orogenic nature of the ultrapotassic rocks. They are characterized by highly radiogenic 87Sr/86Sr(i) ratios (0.7061–0.7063) and unradiogenic 143Nd/144Nd(i) (0.5125), and Pb isotopic compositions (206Pb/204Pb = 18.688–18.733, 207Pb/204Pb = 15.613–15.637, and 208Pb/204Pb = 38.861–38.930) similar to the global subducting sediment. Strong enrichment of incompatible trace elements and high Th fractionation from the other HFSEs (such as Nb and U) clearly indicate that the Th-enriched sedimentary component in a network veined mantle source was mainly introduced by sediment-derived melts. In addition, the ultrapotassic rocks have significant Ce (Ce/Ce* = 0.77–0.84) and Eu (Eu/Eu* = 0.72–0.75) anomalies, suggesting a subduction sediment input into the southern Tibetan lithospheric mantle source. In contrast, high U/Th (> 0.20) and Ba/Th (> 32) and low Th/La (< 0.3) in the shoshonites indicate that the Eocene potassic magma originated from partial melting of the surrounding peridotite mantle pervasively affected by slab-related fluid addition from the dehydration of either the subducting oceanic crust or the sediment. Thus, at least two different subduction-related metasomatic agents re-fertilized the upper mantle. According to the radiometric ages and spatial distribution, the Gangdese magmatic association shows a temporal succession from the Linzizong calc-alkaline to ultrapotassic magmas. This indicates a late arrival of recycled sediments within the Tibetan lithospheric mantle wedge. The most diagnostic signatures for the involvement of continent-derived materials are the super-chondritic Zr/Hf (45.5–49.2) and elevated Hf/Sm values (0.81–0.91) in the ultrapotassic rocks. Therefore, the occurrence of orogenic magmatism in the Gangdese belt likely represents the volcanic expression of the onset of the India–Asia collision, preceding the 10 Ma Neo-Tethyan slab break-off process at 42–40 Ma. The absence of residual garnet in the mantle source for the ultrapotassic volcanism seems to imply that the southern Tibetan lithosphere was not been remarkably thickened until the Eocene (~ 50 Ma).  相似文献   

20.
THE LITHOSPHERIC EVOLUTION IN THE QIANGTANG BLOCK OF NORTHERN TIBET PLATEAU: EVIDENCE FROM CENOZOIC VOLCANISM  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号