首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithology and Mineral Resources - Altered ash tuff and tuffite layers in the Jurassic–Cretaceous boundary rocks (Bazhenovo Formation) were studied in detail. These layers represent an...  相似文献   

2.
Geology of Ore Deposits - The Burgali deposit is located in the Paleozoic Kedon volcanic belt (KVB) within the Omolon cratonic terrane. The orebodies of the Burgali deposit are veined and...  相似文献   

3.
Glass formation takes place under conditions of rapid cooling of a melt at a great temperature difference between the melt and the host rock, which must have high thermal conductivity. The most favorable conditions for glass formation exist when the melt intrudes in the form of thin apophyses. Glass has been found in granite massifs related to the volcanic–plutonic association.  相似文献   

4.
Doklady Earth Sciences - The first results of tephrochronological studies of Late Pleistocene–Holocene volcanic eruptions in the Zhom-Bolok River valley (Eastern Sayan) are reported. Based on...  相似文献   

5.
Doklady Earth Sciences - The metamorphosed differentiated volcanogenic strata of the Aralbai Group have been studied in the eastern part of the Precambrian Ulutau massif of Central Kazakhstan. The...  相似文献   

6.
Vázquez  R.  Macías  J. L.  Alcalá-Reygosa  J.  Arce  J. L.  Jiménez-Haro  A.  Fernández  S.  Carlón  T.  Saucedo  R.  Sánchez-Núñez  J. M. 《Natural Hazards》2022,110(2):1305-1337
Natural Hazards - Both climate and land-use changes can influence drought in different ways. Thus, to predict future drought conditions, hydrological simulations, as an ideal means, can be used to...  相似文献   

7.
8.
We investigate the effects of xenolith–host basalt interaction on lower crustal mafic granulite xenoliths from the Central Pannonian Basin. The xenoliths are devoid of any signs of melting, nevertheless various phenomena are identified, which indicate that the original mineralogy and chemistry of the xenoliths was modified during interaction with the host basalt. The rock-forming silicates are only slightly affected by alteration, but the Fe–Ti-oxides are overprinted to a significant extent. Complex chemical zoning patterns are detected using high-resolution element mapping in ilmenites and in lamellar titanomagnetite–ilmenite intergrowths. The chemical alteration of the Fe–Ti-oxides was diffusion-controlled and, hence, time and temperature dependent. On the basis of diffusion profiles in titanomagnetite we estimate the duration of xenolith–host basalt interaction to be at least 9–20 h. This is comparable to the time necessary for the ascent of the host basalt to the surface. It is too short to reflect alteration during granulite facies metamorphism in the deep crust. The chemical alteration of the titanomagnetite thus reflects the total duration of the xenolith–host basalt interaction.  相似文献   

9.
Kozlov  P. S.  Likhanov  I. I.  Ivanov  K. S.  Nozhkin  A. D.  Zinoviev  S. V. 《Doklady Earth Sciences》2019,488(2):1196-1199
Doklady Earth Sciences - A Late Neoproterozoic U–Pb zircon age is established for the first time for arc metadacites (691 ± 8.8 Ma) and basalts (572 ± 6.5 Ma) from the...  相似文献   

10.
11.
Doklady Earth Sciences - Waters at seventeen mud volcanoes of the Kerch–Taman province in the Northwestern Cis-Caucasus region have been analyzed for Sr isotope composition. The 87Sr/86Sr...  相似文献   

12.
13.
Doklady Earth Sciences - First data on oxygen isotopic composition in phenocrysts in volcanic rocks from Okhotsk–Chukotka volcanic belt (106–78 Ma, North-Eastern Russia) together with...  相似文献   

14.
Whole-rock geochemical and Sr, Nd and Pb isotope data are presented for the Harrat Al-Madinah volcanic field, in the north western part of the Arabian plate, aiming to understand their origin and the composition of their mantle source. This area is an active volcanic field characterized by the occurrence of two historic eruptions approximately in 641 and 1256 A.D. Field investigation of the main volcanic landforms indicates dominantly monogenetic strombolian eruptions, in addition to local phreatomagmatic eruption style. The lavas consist mainly of alkali olivine basalt, olivine transitional basalt, and hawaiite with ocean island basalt (OIB)-like characteristics. Evolved rocks, represented by mugearites, benmoreites, and trachytes, occur mainly as domes, tuff cones and occasionally as lava flows. Chemical variations in the evolved rocks indicated their evolution by low pressure crystal fractionation of olivine, plagioclase, clinopyroxene, and Fe–Ti oxides from the relatively primitive basalts. The isotopic compositions of 143Nd/144Nd (0.512954–0.512995), 87Sr/86Sr (0.702899 to–0.702977) and Pb (206Pb/204Pb = 18.5515–18.7446, 207Pb/204Pb = 15.5120–15.5222, 208Pb/204Pb = 38.1347–38.4468), show restricted variations suggesting only minor crustal contamination. They defined an array consistent with mixing of two geochemically distinct components of depleted MORB-mantle (DMM) and high 238U/204Pb ratio (HIMU). The variations in Tb/Yb, La/Yb and Sm/Yb ratios in the relatively primitive basalts (MgO > 6 wt.%) indicated garnet peridotite source. However, the positive Nb, Sr, Ba and Ti anomalies in the primitive mantle-normalized incompatible element patterns and the significant variation between Zr/Nb vs. Ce/Y and La/Yb vs. Yb suggest contribution of an amphibole-bearing spinel lherzolite source. Moreover, the negative correlations between SiO2 vs. 87Sr/86Sr and Th vs. 143Nd/144Nd are interpreted as an indication of mixing melts derived from two end-members; one is garnet bearing asthenospheric source with OIB characteristic and the other is amphibole-bearing spinel lherzolite. The Harrat Al-Madinah volcanic field occurs near the Red Sea Rift System and its origin reflects a strong lithospheric control on the loci of partial melting. The dominantly NNW alignment patterns of the volcanoes, which is similar to the regional Red Sea trend, may suggest that the magmas were produced by decompression partial melting triggered by lithospheric extension related to the Red Rift.  相似文献   

15.
《International Geology Review》2012,54(16):2065-2066
ABSTRACT

Metasedimentary rocks from the El Triunfo Complex (Jocote Unit) in the southern Chiapas Massif (SE México) are constituted mainly by sillimanite-rich micaschist, locally intercalated with marble and calc-silicate rocks. Mafic rocks (now amphibolite) intruded the sequence prior to deformation and folding. Peak metamorphic conditions are estimated by geothermobaromerty at ~6.0 kbar and ~650ºC. The timing of the metamorphic event is dated by LA-MC-ICPMS analysis on zircon rims at 438+23/–12 Ma. Furthermore, detrital zircon grains yield mainly Stenian–Tonian and minor early Mesoproterozoic ages, indicating provenance from Grenville-type orogens (such as Oaxaquia) and some older cratonic sources. The 87Sr/86Sr values of 0.70775–0.70777 and the δ13C values from +1.9‰ to +2.7‰ in associated calcite marble define the time of deposition between 600 and 580 Ma. Geochemical markers from metapelite samples (such as La/Th > 3.94, La/Sc > 3.72, Th/U > 8.19, Th/Co > 0.42 and CIA = 74 to 83), as well as Sm–Nd isotope data (εNdi = ?8.1 to ?4.0, TDM(Nd) = 1.65–1.32 Ga) suggest weathering of Mesoproterozoic felsic rocks during temperate to warm climate. Furthermore, Zr/Sc values (9.1–21.0), chondrite-normalized REE patterns [La/Yb]N = 10.3–23.3, Eu/Eu* < 0.64), and ΔHf values (1.98–10.02) are indicative of pelagic and zircon-depleted sediments of a passive margin. The results suggest that the Jocote Unit was deposited during the opening of the Eastern Iapetus Ocean in the Ediacaran Period. This is the first evidence for Rodinia breakup in southern México. Besides that, the Ordovician tectonothermal event is probably related to compression during subduction and accretion along the western margin of Gondwana.  相似文献   

16.
17.
18.
19.
20.
Kick em Jenny submarine volcano, ~8 km north of Grenada, has erupted at least 12 times since it was first discovered in 1939, making it the most frequently active volcano in the Lesser Antilles arc. The volcano lies in shallow water close to significant population centres and directly beneath a major shipping route, and as a consequence an understanding of the eruptive behaviour and potential hazards at the volcano is critical. The most recent eruption at Kick em Jenny occurred on December 4 2001, and differed significantly from past eruptions in that it was preceded by an intensive volcanic earthquake swarm. In March 2002 a multi-beam bathymetric survey of the volcano and its surroundings was carried out by the NOAA ship Ronald H Brown. This survey provided detailed three-dimensional images of the volcano, revealing the detailed morphology of the summit area. The volcano is capped by a summit crater which is breached to the northeast and which varies in diameter from 300 to 370 m. The depth to the summit (highest point on the crater rim) is 185 m and the depth to the lowest point inside the crater is 264 m. No dome is present within the crater. The crater and summit region of Kick em Jenny are located at the top of an asymmetrical cone which is about 1300 m from top to bottom on its western side. It lies within what appear to be the remnants of a much larger arcuate collapse structure. An evaluation of the morphology, bathymetry and eruptive history of the volcano indicates that the threat of eruption-generated tsunamis is considerably lower than previously thought, mainly because the volcano is no longer thought to be growing towards the surface. Of more major and immediate concern are the direct hazards associated with the volcano, such as ballistic ejecta, water disturbances and lowered water density due to degassing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号