首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 697 毫秒
1.
The results described relate to an investigation into the nature of Au dispersion in glacial till, undertaken to identify optimum search techniques for use in exploration for Au mineralization.The diversity of Au mineralization, in terms of the host rock lithologies, mineralogy and grain size of the Au, would be expected to give rise to differences in the secondary response in the associated overburden. Common exploration procedures involve the analyses of the heavy-mineral fraction or a particular size fraction of the tills. However, having regard to the expected variable response of Au in associated glacial till, attributed to variations in primary mineralization, effective exploration requires that the methodology employed is capable of locating all types of Au mineralization.Bulk till samples were collected from various sites associated with the Owl Creek deposit near Timmins and the Hemlo deposits. Grain size analyses were carried out on the till samples and on the heavy-mineral concentrates. The concentration of the Au in the various fractions was determined by Instrumental Neutron Activation Analysis.Preliminary results allow a number of provisional conclusions to be drawn:
1. (1) Grain size analysis of the −2 mm fraction of tills indicates that the silt and clay fraction constitutes 20–50%, whereas, in contrast, the equivalent heavy-mineral concentrates are dominantly composed of the coarser −500 + 63 μm material.
2. (2) The amount of Au present in the heavy-mineral concentrates of tills represents only a minor proportion of the total Au in the original till samples. In addition, the proportion of the total Au recovered in the heavy-mineral concentrate varies from 4 to 15%. Both factors indicate that caution is necessary in interpreting the significance of heavy-mineral Au data.
3. (3) Examination of the size distribution of Au within the heavy-mineral concentrate indicates that the majority of the Au is contained in the −125 μm fraction.
4. (4) The concentration factor (the original sample weight divided by the heavy-mineral concentrate weight) varies up to 7-fold between samples due presumably to the differing proportions of heavy minerals. Hence, in Au deposits of equivalent economic significance this gives rise to varying Au concentrations in heavy-mineral concentrates according to the quantity of heavy minerals present. Significant interpretation can only be achieved by re-expressing the Au contents of heavy-mineral concentrates in terms of the absolute amount of Au in heavy-mineral concentrates.
5. (5) A comparison of the heavy-mineral concentrates produced by different laboratories indicates marked differences in the weight of the heavy-mineral concentrate, the Au concentration of the heavy-mineral concentrate, the total weight of Au in the heavy-mineral concentrate and the size distribution of the Au in the heavy-mineral concentrate.
6. (6) Analysis of the −63 μm silt and clay size fraction indicates anomalous Au contents within this fraction of the tills collected from Owl Creek and Hemlo, extending over 500 m down-ice from mineralization at Hemlo.
7. (7) Analysis of the −63 μm silt and clay size fraction is suitable for the detection of fine-grained Au deposits that are not amenable to detection on the basis of heavy-mineral concentrate analyses.
8. (8) The analysis of the silt and clay fraction reduces the sample representativity problems associated with analyzing coarser fractions.
9. (9) A comparison of the Au distribution in heavy-mineral concentrates and the −63 μm fraction of till down-ice from the Owl Creek deposit indicates broadly similar dispersion patterns.
In conclusion, although the results are based on relatively few samples, their consistency permits some general conclusions to be drawn. The silt and the heavy-mineral concentrate analyses provide different information and in view of the diversity of exploration targets and surface environments exploration reliability can be increased by analyzing both the −63 μm silt and clay fraction and the heavy-mineral concentrate.  相似文献   

2.
All platinum-group metals (PGM) in ashed plant tissues, from an area of platinum mineralization in Saskatchewan, have been measured by neutron activation analysis of a NiS fire assay bead. Concentrations of up to 1350 ppb (ng/g) Pd, 880 ppb Pt, 49 ppb Rh, 37 ppb Ru, 24 ppb Ir, and 15 ppb Os occur in ashed twigs of black spruce (Picea mariana), indicating that the ratios of PGM uptake are about the same as those occurring in the bedrock. Plants growing on drift-covered diabase, known to have about 100 ppb PGM, contain up to 77 ppb Pt in ash, demonstrating the potential value of biogeochemical methods in helping to delineate platiniferous zones. Twigs of black spruce, jack pine, and labrador tea appear to be the optimum sample media in this environment.A rapid multi-element neutron activation analysis by direct irradiation of tissue permits measurement of 0.05 ppb Ir in dry material, or 2 ppb Ir in ashed samples. In view of the normally very low concentrations of Ir in plants, any detectable Ir probably indicates enrichment of PGM in the substrate.Comparison of several wet-chemical analytical methods indicates that the optimum (cost-effective) technique for detecting 1–2 ppb Pt, Pd, or Rh in 2-g samples of ash is by Te co-precipitation (following fusion and dissolution), and analysis by ICP-MS with sample introduction by electrothermal vaporization. However, care must be taken to ensure complete dissolution of all PGMs in the ash.  相似文献   

3.
We studied primary ore samples from Kalmakyr, a giant Cu–Au–Mo porphyry deposit in eastern Uzbekistan. Disseminated and stockwork-type high-grade Cu–Au–Mo mineralization showed average concentrations of 55 ppb Pd, 5.5 ppb Pt, 0.95 ppb Rh, 0.49 ppb Ir, and 4.1 ppm Au (n = 8). This type of mineralization is characterized by the presence of pyrite, chalcopyrite, molybdenite, and gold. A peak Pd content of 292 ppb was determined in a base-metal-rich quartz vein in granodiorite porphyry, which contains galena, sphalerite, chalcopyrite, tetrahedrite, and gold. Palladium correlates with Cu, Ag, Se, and S. Mineralogical and laser ablation ICP-MS study confirmed that Pd is homogeneously distributed in chalcopyrite, which contains up to 110 ppm Pd, and tetrahedrite, containing up to 20 ppm Pd. An assessment of the Pd and Pt budget at Kalmakyr showed the potential of approximately 17 t of Pd and 1.7 t of Pt.  相似文献   

4.
Several pilot studies were made in a PGE-mineralized area of central Madagascar in order to compare Pt,Pd halos in heavy mineral concentrates and to select the most suitable stream-sediment fractions, sampling densities and anomaly thresholds for regional PGE surveys. Results show low anomaly thresholds for Pt (30 ppb) and Pd (20 ppb) in the −63 μm fractions of the active sediment, with restricted halos of nearly 300 m for Pt and nearly 500 m for Pd. Using a slightly coarser fraction (−125 μm) increases the anomaly contrast. The Pt anomalies in heavy mineral pan concentrates are considerably enhanced (400–1,000 ppb) but occur further downstream in residual terraces. A regular increase in the weight of the heavy mineral concentrate for a given volume of sediment is noticed downstream. A simple weight correction of the raw Pt grade in the heavy mineral concentrate gives a better definition of the mineralized source upstream. Assessment of the corrected heavy mineral concentrate Pt anomalies together with Pt,Pd anomalies in the finest stream-sediment fraction produces the optimum definition of the target. Optical determination and scanning electron microscope studies of the PGM show sperrylite to be the major Pt-bearing mineral in the stream sediment, whereas the Pd mineralogy remains unresolved. Pt dispersion appears to be a predominantly mechanical process and Pd dispersion a chemical process with deposition controlled mainly by MnO scavenging.  相似文献   

5.
The Owl Creek Gold Mine is located in Hoyle Township, approximately 18 km northeast of Timmins, Ontario, Canada. The open-pit mine exposes a sequence of altered and mineralized mafic tholeiitic volcanics bounded to the north and south by greywacke and argillite. Gold occurs in the free state in quartz veins, often with graphite, and as fine gold on surfaces of, and within fractures in, pyrite.The study was designed to determine the distribution and distance of transport of Au in overburden down-ice from subcropping Au mineralization. This required an understanding of the glacial history of the area.The Quaternary stratigraphy at Owl Creek was studied and sampled by means of 17 sonic and 15 reverse-circulation overburden drill holes near the open pit, and several overburden exposures in the open-pit walls. Nonmagnetic heavy-mineral concentrates (specific gravity >3.3) were made from the <2000 μm (−10 mesh) fraction of all overburden samples from the drill hole and section sampling. The heavy-mineral concentrates were analyzed for Au by neutron activation. A till pebble lithology study was done on the >2000 μm (−10 mesh) fraction of the sonic drill core.Our stratigraphic studies indicate that there were three major Wisconsinan (Weichselian) ice advances and one minor, late readvance in the Timmins area. The transport and deposition of sediments comprising the “Oldest”, “Older”, Matheson and Cochrane stratigraphic “packages” (oldest to youngest) are related to three ice advances and one readvance which moved towards 240° ± 10°, 150° ± 5°, 170° ± 5° and 130° ± 5°, respectively.Geochemically anomalous levels of Au in the overburden define two dispersal trains down-ice of the Owl Creek Gold Mine. One, in the “Older” lodgement till, is 400–500 m long. The other in Matheson ablation and waterlain tills, is approximately 700 m long.The till pebble lithology study showed that pebble counting can be used to approximate bedrock contacts, but may not necessarily identify the source rock type of the matrix.  相似文献   

6.
The structurally controlled Au–Pd mineralization at Bleïda Far West occurs in a volcano-sedimentary rock sequence in altered amphibolites and chlorite schists of the Neoproterozoic Bou Azzer–El Graara inlier. The Au–Pd mineralization is virtually sulfide-free; instead, gold is associated with hematite, barite, quartz, and calcite. The gold grains are silver- and palladium-bearing (up to 19 wt% Ag and 6.3 wt% Pd) and are intergrown with a distinct suite of mainly Pd-dominated platinum group minerals, namely mertieite-I/isomertieite, merenskyite, keithconnite, kotulskite, palladseite, and sperrylite, defining a Au–Pd–As–Sb–Se–Te chemical signature. Stable isotope and fluid inclusion studies indicate a wide range of fluid compositions with a prominent saline component. In conjunction with the mineral association, oxidizing fluids are indicated, and Au and PGE transport and deposition likely took place by chloride complexes in the epithermal range, at elevated f O2 and/or low pH. It is still speculative whether the mineralization is late Pan-African (~600–550 Ma) in age, or connected with the Variscan orogeny (~330–300 Ma), or related to some other hydrothermal event. Common to all Au–Pd mineralizations worldwide (Brazil, Australia, UK), including Bleïda Far West, is their formation in the epithermal (<300°C) range; deposition mainly in brittle structures; sulfide-poor mineral assemblages comprising hematite, sulfate minerals, and selenides; and metal transport by, and deposition from, oxidized, chloride-rich fluids. These deposits are further characterized by noble metal abundances in the order Au>Pd>Pt and the chemical signature Au–Pd–Se–Te (±As, Sb, Bi). As such, the Au–Pd association represents a discrete style of gold mineralization distinct from other classes of gold deposits.  相似文献   

7.
Relationships between noble-metal and oxide-sulfide mineralization during the origin of the Volkovsky gabbroic pluton are discussed on the basis of geochemical data and thermodynamic calculations. The basaltic magma initially enriched in noble metals (NM) relative to their average contents in mafic rocks, except for Pt, is considered to be a source of Pd, Pt, Au, and Ag in the gabbroic rocks of the Volkovsky pluton. The ores were formed with a progressive gain of NM in the minerals during the fractionation of the basaltic magma. The active segregation of NM in the form of individual minerals (palladium tellurides and native gold) hosted in titanomagnetite and copper sulfide ore occurred during the final stage of gabbro crystallization, when the residual fluid-bearing melt acquired high concentrations of Cu, Fe, Ti, and V, along with volatile P and S. Copper sulfides—bornite and chalcopyrite—are the major minerals concentrating NM; they contain as much as 22.65–25.20 ppm Pd and 0.74–1.56 ppm Pt; 4.39–8.0 ppm Au, and 127.2–142.6 ppm Ag, respectively. The copper ore and associated NM mineralization were formed at a relatively low sulfur fugacity, which was a few orders of magnitude (attaining 5 log units) lower than that of the pyrite-pyrrhotite equilibrium. The low sulfur fugacity and the close chemical affinity of Pd and Pt to Te precluded the formation of pyrrhotite, pyrite, and PGE disulfides. The major ore minerals and NM mineralization were formed within a wide temperature range (800–570°C), under nearly equilibrium conditions. Foreign elements (Ni, Co, and Fe) affected the thermodynamic stability of Pd and Pt compounds owing to the difference in their affinity to Te and to elements of the sulfur group (S, Se, and As). The replacement of Pd with Ni and Co and, to a lesser extent, with Pt and the replacement of Te with S, As, and Se diminish the stability field of palladium telluride. Comparison of Pd tellurides from copper sulfide ores at the Volkovsky and Baronsky deposits showed the enrichment of the former in Au, Sb, and Bi, while the latter are enriched in Pt, Ni, and Ag. The enrichment of Pd tellurides at the Baronsky deposit in Ni is correlated with the analogous enrichment of the host gabbroic rocks.  相似文献   

8.
We have performed experiments to constrain the effect of sulfur fugacity (fS2) and sulfide saturation on the fractionation and partitioning behavior of Pt, Pd and Au in a silicate melt–sulfide crystal/melt–oxide–supercritical aqueous fluid phase–Pt–Pd–Au system. Experiments were performed at 800 °C, 150 MPa, with oxygen fugacity (fO2) fixed at approximately the nickel–nickel oxide buffer (NNO). Sulfur fugacity in the experiments was varied five orders of magnitude from approximately log fS2 = 0 to log fS2 = −5 by using two different sulfide phase assemblages. Assemblage one consisted initially of chalcopyrite plus pyrrhotite and assemblage two was loaded with chalcopyrite plus bornite. At run conditions pyrrhotite transformed compositionally to monosulfide solid solution (mss), chalcopyrite to intermediate solid solution (iss), and in assemblage two chalcopyrite and bornite formed a sulfide melt. Run-product silicate glass (i.e., quenched silicate melt) and crystalline materials were analyzed by using both electron probe microanalysis and laser ablation inductively coupled plasma mass spectrometry. The measured concentrations of Pt, Pd and Au in quenched silicate melt in runs with log fS2 values ranging from approximately 0.0 to −5.0 do not exhibit any apparent dependence on fS2. The measured Pt, Pd and Au concentrations in mss do vary as a function of fS2. The measured Pt, Pd and Au concentrations in iss do not appear dependent on fS2. The data suggest that fS2, working in concert with fO2, via the determinant role that these variables play in controlling the magmatic sulfide phase assemblage and the solubility of Pt, Pd and Au as lattice bound components in magmatic sulfide phases, is a controlling factor on the budgets of Pt, Pd and Au during the evolution of magmatic systems.  相似文献   

9.
The economic mineralization of Pd at the Lac des Iles mine occurs in the gabbroic rocks of the Mine Block Intrusion in the 2.69 Ga Lac des Iles Intrusive Complex. The complex intruded the tonalitic rocks of the Lac des Iles greenstone belt in the Wabigoon Subprovince of the Superior Province of Canada. We conducted a detailed study on the Pd mineralization in the southern Roby Zone and the Twilight Zone. Sulphide minerals commonly display exsolution textures where pentlandite and chalcopyrite are exsolved from pyrrhotite. Sulphur contents from these zones display positive correlations with the contents of platinum group elements (PGE), Se, and Te, suggesting a magmatic origin of the mineralization where PGE were concentrated in immiscible sulphide melt in the parental magmas. The average ratios of Se/S (703±192×10–6) and Te/S (192±104×10–6) in the two zones are higher than the primitive mantle values of ~300×10–6 and ~48×10–6, respectively. The high ratios are consistent with the derivation of their parental magmas from a depleted mantle source. The High Grade Zone forms a narrow northwest-trending zone in the margin of the Roby Zone, and is hosted by an intensely altered clinopyroxenite/melanogabbroic unit. It contains two mineral assemblages; millerite + siegenite ± chalcopyrite ± pyrite co-existing with hornblende + plagioclase ± quartz ± carbonate, and pyrite ± chalcopyrite with chlorite + actinolite ± albite ± quartz ± carbonate. The ore is high in Pd (mean Pd/Pt ratio of 16.5; up to 25) compared to the southern Roby Zone and Twilight Zone where the Pd/Pt ratios are ~8. It shows positive correlations between Se and Te and between Se and immobile metals, such as Ni and Co. The data suggest a primary magmatic origin of mineralization of the High Grade Zone, but there is substantial scatter on diagrams involving S, such as the plot between S and Se. The evidence suggests that the primary magmatic mineralization was followed by hydrothermal transport of mobile elements. Using the relationships between Se and metals, the ore most likely had 0.8–2 ppm Pt and 8–21 ppm Pd during the primary mineralization. The subsequent hydrothermal activity resulted in the enrichment of Pd by up to 40 ppm. The lack of fluid pathways in the High Grade Zone and the distribution of the zone are consistent with magmatic-hydrothermal activity by aqueous fluids exsolved from the parental magmas of the Roby Zone and High Grade Zone. Sulphide minerals from the southern Roby Zone, Twilight Zone, and High Grade Zone have similar 34S values, ranging from 0.0 to +1.5. The data are consistent with the derivation of S from the mantle. In individual samples from the southern Roby Zone and High Grade Zone, pyrite shows lower 34S than chalcopyrite, suggesting isotopic disequilibrium of S. This likely reflects the crystallization and re-crystallization of sulphide minerals over a wide range of temperatures.Editorial handling: B. Lehmann  相似文献   

10.
PGE-rich disseminated zones with discrete platinum-group minerals (Pd, Pt and Rh mineral phases) have been discovered in three thick (80–130 m), differentiated (peridotite-gabbro) mafic-ultramafic flows of the Archean Abitibi greenstone belt, Ontario. Three mineralization zones (whole-rock ∑PGE + Au = up to 1000 ppb) occur along four stratigraphic cross sections through a 2 km strike-length of the Boston Creek Flow ferropicritic basalt. Their occurrence most strikingly correlates with lenticular-podiform concentrations of disseminated chalcopyrite (1 %) and clinopyroxene + interstitial magnetite-ilmenite intergrowths (15–20% oxide), high concentrations of related metals (3000 ppm Cu, 3000 ppm S, 1200 ppb Ag, and 1000 ppm V), strong PGE depletion in adjacent rocks and along strike, and lithological and textural complexity in the margins of the central gabbro-diorite layer. The mineralization zone (whole-rock Ir + Pt + Pd + Au = 110 ppb) within Theo's Flow tholeiitic basalt is somewhat similar in occurrence, style, and composition to those within the Boston Creek Flow. In contrast, the mineralization zone (whole-rock Ir + Pt + Pd + Au = 340 ppb) in Fred's Flow komatiitic basalt most strikingly correlates with vesicle-filling intergrowths of pyrrhotite + pentlandite ± chalcopyrite (2 modal %) and high whole-rock concentrations of Ni (2500 ppm), Cu (700 ppm), and S (1.1%) in the upper chilled margin of the flow.Although apparently uneconomic, these flow-hosted PGE mineralization zones are of interest in exploration, because they are more similar in stratigraphie setting, style, and composition to PGE-rich disseminated Fe-Cu sulfide mineralization zones within thick differentiated intrusions than to mineralization zones in other Archean volcanic rocks. The characteristics of the mineralization zones and their host rocks, especially high degrees of PGE enrichment, vertical and horizontal patterns of PGE depletion, and accumulation of clinopyroxene + magnetite-ilmenite intergrowths, indicate a critical genetic role for variations in the regime of melt flowage. The mineralization zones in the Boston Creek and Theo's Flows are interpreted to have formed by simultaneous in situ formation of PGE-rich Fe-Cu sulfide and Fe-Ti oxide from flowing silicate liquid in the margins of internal lava channels. The mineralization zone in Fred's Flow is interpreted to have formed by ponding and coalescence of PGE-enriched sulfurous vapor bubbles in the upper chilled margin during olivine accumulation on the base of a dynamic lava channel. The relative abundance of PGE mineralization zones and high degree of PGE enrichment in the Boston Creek Flow suggest that the most favorable exploration targets are rocks crystallized from late-stage, highly fractionated derivative liquids in large differentiated terropicritic units.  相似文献   

11.
Foliage from Douglas-fir (Pseudotsuga menziesii) tops was collected from 94 sites around the poorly exposed QR Au deposit in central British Columbia. Locally high concentrations of gold in ashed stems suggest a northwestward (down-ice) dispersion train of Au extending uphill for at least 500 m from the deposit. In addition, a down-slope, hydromorphic dispersion train is evident. All trees sampled are extremely rich in As, but the patterns of As distribution are less clearly related to the mineralization than those of Au enrichment. Summary statistics of analytical data for 35 elements are provided to serve as baseline information for any future studies.The sampling method, which is described in detail, is simple and cost-effective. In one hour the foliage of tree tops from about 50 sites, spaced at intervals of 200 m or more, can be collected by a three-person helicopter crew. The technique is particularly appropriate for rapidly screening rugged or heavily forested terrain, regardless of snow-cover, in order to establish priorities for ground follow-up exploration targets.  相似文献   

12.
To be an effective indicator of mineralization in lake sediment surveys within the Canadian Shield, it is desirable that an element migrate in solution or adsorbed on suspensates. Given the low relief and disorganized drainage patterns of this region, dispersal in clastic form in drainage systems is limited and gives rise to erratic distributions. The purpose of this study was to discover whether Au shows significant hydromorphic mobility, which would justify the increasing use that is being made of this element in lake sediments as an indicator for gold mineralization.Waters and lake sediments were collected from Napier Lake, Ontario; PAP Lake, Saskatchewan; and Foster Lake, Manitoba, all of which contain Au-quartz vein mineralization and lie within the glaciated boreal forest zone of the Canadian Shield. In all three areas, profundal lake sediments down-drainage of mineralization contain Au concentrations higher than regional mean concentrations. Significant dissolution and transport of Au was found under oxidizing conditions associated with waters with pH that varied from acid to alkaline. Waters from drill holes penetrating mineralization contain up to 401 ng L−1 Au (note; 1 ng L−1 is equivalent to 1 part per trillion, 10−12). Surface waters overlying or near mineralization collected from bogs, seeps, ponds and streams contain up to 13 ng L−1. The content of Au in lake waters is lower, with a maximum of 1.1 ng L−1. There is also a detectable quantity of Au present in suspensates. Two samples of particulates (> 1 μm) filtered from lake water have Au equivalent to 0.17 ng L−1 and 0.039 ng L−1. While the contents of Au present in solution or as suspensates in lake and stream water are relatively small, they are sufficient, if precipitated, to generate anomalies in lake sediments. Thus for Reservoir Lake, in the Foster Lake area, water from the principal stream entering the lake carries 0.3 ng L−1 Au. This provides an annual flux which far exceeds that required to generate the 7.3 ppb Au contained in profundal sediments of this lake; a content that is anomalous relative to the regional median content of < 1 ppb Au for lake sediments.Hydrogeochemical prospecting involving analysis for Au is one method for tracing the source of anomalous Au in lake sediments. Collection of 1 L samples without field treatment, followed by extraction of Au into MIBK, then analysis by graphite-furnace atomic absorption spectrophotometry, permits detection levels for Au of 0.5 ng L−1. This is below the contents of Au found in some waters from mineralized areas. A detection limit of 0.3 ng L−1 was obtained using larger water samples.  相似文献   

13.
An orientation survey was conducted over the Quartz Mountain, Oregon, hot-spring type disseminated gold deposit to address three questions critical to successful exploration of the area: What is the relationship between bedrock geology and the trace-element content of trees and soils; do these relationships change seasonally; are these relationships similar in the two tree species which discontinuously blanket the area?Twig, needle and wood samples were collected four times during the year from both ponderosa pine (Pinus ponderosa) and white fir (Abies concolor). Soils were collected once. All samples were analyzed for Au and As and the wood samples were analyzed also for Sb.Arsenic was the best pathfinder element, having little analytical, spatial, or seasonal variation in the twig and needle samples. Anomalous levels were 150 μg/g (ppm) As in pine and 30 μg/g in fir. Gold showed analytical variation of 20–30%, sample duplicate variation up to 90%, spatial changes, and seasonal variation ranging from winter-summer background [10–20 ng/g (ppb) Au] to anomalies of 300–400 ng/g (ppb) Au in pine and 100 μg/g (ppb) Au in fir in the spring and fall. Antimony could not be completely evaluated as a pathfinder element because it was only determined in wood samples.Needles and twigs from both species proved to be viable sample media for exploration of the area. Wood was not a suitable medium because of low, erratic values, perhaps due in part to analytical technique. Needles had 2 to 20 times higher As concentrations than did twigs. Twigs had a slightly higher Au content [25 ng/g (ppb)] than did needles. The pine samples were higher in both elements than were the fir samples. The data, normalized by species, could be treated as one homogeneous data base.The soil Au and As data outlined the mineralization clearly with a central Au anomaly [100 ng/g (ppb) and greater] surrounded by As anomalies [100 μg/g (ppm) and greater] over a distance of 594 m. Neither spring nor fall tree Au anomalies were coincident with the soil Au anomaly. Consistent throughout the year, tree As anomalies coincided with the soil As anomalies, but covered a smaller area. Both the Au and As anomalies in trees appeared to be related to bedrock contact zones rather than to the soil the trees were growing in.  相似文献   

14.
Lake sediments were collected from four glaciated areas, three of which include significant Au mineralization. Neutron activation analyses for Au successfully delineate known mineralization and suggest areas for further follow-up. Gold is the only universal indicator although Sb gives a broader dispersion pattern at the Hope Brook deposit. Copper, Pb and Zn have above-background content down-ice from some mineralized zones. Gold values above 8.0 ppb in these study areas indicate the presence of Au mineralization. Gold analyses of site duplicates and analytical splits reproduce satisfactorily above 3.0 ppb.  相似文献   

15.
Ashed twigs of Picea rubens (red spruce) collected over an area of uranium mineralization in central Nova Scotia were analyzed for uranium in the course of biogeochemical prospecting for this element. Uranium levels in background samples were significantly lower than in those collected from areas with mineralization either at depth or on the surface. Scintillometric data were useful only to differentiate background and surface mineralization. Uranium levels in soils showed no correlation whatsoever with mineralization or with radiometry. There was a very high degree of correlation between the scintillometric data and uranium concentrations in ashed twigs and it is considered that twigs of Picea rubens might be successfully used for biogeochemical prospecting for uranium in this area.  相似文献   

16.
Abstract: The Fengshan porphyry-skarn copper–molybdenum (Cu–Mo) deposit is located in the south-eastern Hubei Province in east China. Cu–Mo mineralization is hosted in the Fengshan granodiorite porphyry stock that intruded the Triassic Daye Formation carbonate rocks in the early Cretaceous (~140 Ma), as well as the contact zone between granodiorite porphyry stock and carbonate rocks, forming the porphyry-type and skarn-type association. The Fengshan granodiorite stock and the immediate country rocks are strongly fractured and intensely altered by hydrothermal fluids. In addition to intense skarn alteration, the prominent alteration types are potassic, phyllic, and propylitic, whereas argillation is less common. Mineralization occurs as veins, stock works, and disseminations, and the main ore minerals are chalcopyrite, pyrite, molybdenite, bornite, and magnetite. The contents of palladium, platinum and gold (Pd, Pt and Au) are determined in nine samples from fresh and mineralized granodiorite and different types of altered rocks. The results show that the Pd content is systematically higher than Pt, which is typical for porphyry ore deposits worldwide. The Pt content ranges from 0.037 to1.765 ppb, and the Pd content ranges between 0.165 and 17.979 ppb. Pd and Pt are more concentrated in porphyry mineralization than skarn mineralization, and have negative correlations with Au. The reconnaissance study presented here confirms the existence of Pd and Pt in the Fengshan porphyry-skarn Cu–Mo deposit. When compared with intracontinent and island arc geotectonic settings, the Pd, Pt, and Au contents in the Fengshan porphyry Cu–Mo deposit in the intracontinent is lower than the continental margin types and island are types. A combination of available data indicates that Pd and Pt were derived from oxidized alkaline magmas generated by the partial melting of an enriched mantle source.  相似文献   

17.
In 1982 and 1983 a surficial geology and overburden geochemistry survey was carried out on the Sisson Brook Mining Licence in York County, about 55 km northwest of Fredericton, New Brunswick, Canada.On the Sisson Brook Mining Licence three zones of W-Mo-Cu mineralization have been outlined; Zones I and II contain mainly wolframite with chalcopyrite and pyrrhotite, whereas Zone III has mainly scheelite and molybdenite.The glacial history of the area was studied during 1982 and 1983 to provide a framework for interpreting the geochemical results. Ice movement varied from 160° ± 10° towards the south during the Main Bantalor phase (maximum ≈ 13,500 y.B.P.) to 130° ± 10° toward the southeast during the Late Bantalor phase. Rapid changes in dominant pebble lithologies occur immediately upon crossing bedrock contacts. This suggests a very short distance of transport on the property. The glacier, butted against the Nashwaak Ridge, quickly sheared bedrock debris up into the body of the ice by compressive flow. Upon melting, some of this debris was deposited a short distance from source. Some debris appears to have been sheared up higher into the ice sheet, transported over the Nashwaak Ridge, and deposited approximately 8 km down-ice with no interconnecting dispersal train.In 1982, a geochemical orientation survey was carried out to determine which element(s) and sample medium could best and most economically be used in the search for W-Mo-Cu mineralization. Within the property area, both whole till <2000 μm (−10 mesh) samples and heavy mineral concentrates clearly defined the zones of mineralization (W, Mo, Cu) and associated geochemical dispersal trains (W, Mo, Cu, As, F). In later work, samples were not analyzed for As and F because this provided no additional information. The geochemical contrast between values in whole till samples derived from subcropping mineralization and those derived from barren bedrock is adequate to outline mineralization. Geochemical analysis of the whole till was used in later work because the sample preparation costs are considerably lower than those for heavy-mineral concentrates. Soils were not used because trace element patterns were diffuse, with the highest values occurring at variable distances down-ice from mineralization.In 1983, the objective was to better define glacial dispersal from the known mineralization and to explore for additional mineralization. Data from this program indicates a W dispersal train in whole till samples 300–400 m long. Tungsten values up to 1400 ppm and Mo values up to 260 ppm in whole till occur immediately down-ice from the main subcropping W-Mo mineralization. The element associations (i.e. W-Mo-Cu and W-Mo) in the till reflect the elemental composition of the source mineralization (i.e. Zones I and II and Zone III).Backhoe trenching is a useful and cost-effective technique to expose Quaternary sediments. Examination of the overburden sections provides an understanding of the glacial history which aids in tracing geochemical dispersal trains up-ice to bedrock source.  相似文献   

18.
This paper describes the influence of siliceous and iron-rich calcic low-temperature hydrothermal fluids (LTHF) on the mineralogy and geochemistry of the Late Permian No. 11 Coal (anthracitic, Rr=2.85%) in the Dafang Coalfield in northwestern Guizhou Province, China. The No. 11 Coal has high contents of vein ankerite (10.2 vol.%) and vein quartz (11.4 vol.%), with formation temperatures of 85 and 180 °C, respectively, indicating that vein ankerite and vein quartz were derived from low-temperature calcic and siliceous hydrothermal fluids in two epigenetic episodes. The vein quartz appears to have formed earlier than vein ankerite did, and at least three distinct stages of ankerite formation with different Ca/Sr and Fe/Mn ratios were observed.The two types of mineral veins are sources of different suites of major and trace metals. Scanning electron microscope and sequential extraction studies show that, in addition to Fe, Mg, and Ca, vein ankerite is the dominant source of Mn, Cu, Ni, Pb, and Zn in the coal, and the contents of these five elements are as high as 0.09% and 74.0, 33.6, 185, and 289 μg/g, respectively. In contrast, vein quartz is the main carrier mineral for platinum-group elements (PGEs) Pd, Pt, and Ir in the coal, and the contents of Pd, Pt, and Ir are 1.57, 0.15, and 0.007 μg/g, respectively. Sequential extraction showed a high PGE content in the silicate fraction, up to 10.4 μg/g Pd, 1.23 μg/g Pt, and 0.05 μg/g Ir, respectively. It is concluded that the formation of ankerite and quartz and the anomalous enrichment of trace elements in the No. 11 Coal in the Dafang Coalfield, Guizhou, result from the influx of calcic and siliceous low-temperature hydrothermal fluids.  相似文献   

19.
Primary sulfides from cores of holes 957M, 957C, and 957H drilled during the ODP Leg 158 on the active hydrothermal TAG mound (Mid-Atlantic Ridge, 26°08′ N) were examined for the concentration of several elements. Based on 262 microprobe analyses, it has been established that the sulfides are characterized by an extremely heterogeneous distribution of noble metals (Au, Ag, Pt, and Pd) and several associated elements (Hg, Co, and Se). Noble metals are arranged in the following order in terms of decreasing abundance, i.e., concentration level above the detection limit (the number of analyses containing the specific element is given in parentheses): Au (65), Ag (46), Pt (21), and Pd (traces). The associated trace elements make up the following series: Co (202), Hg (132), and Se (49). Main carriers of the “invisible” portion of noble metals are represented by pyrite (Au, Hg), marcasite and pyrite (Ag, Co), sphalerite and chalcopyrite (Pt, Pd), and chalcopyrite (Se). The noble metal distribution in sulfides reveals a lateral zonality: the maximal concentration and abundance of Au in chalcopyrite (or Pt and Ag in chalcopyrite and pyrite) increase from the periphery (Hole 957H) to the center (holes 957C and 957M) of the hydrothermal mound, while the Au distribution in pyrite displays a reversed pattern. The Co distribution increases with depth. This work discusses the vertical zonality in the distribution of elements mentioned above and their response to the evolution of ore genesis.  相似文献   

20.
Platinum-Group Minerals from the Durance River Alluvium,France   总被引:2,自引:2,他引:0  
Summary Platinum-group minerals were discovered, during gold recovery, in the Durance river alluvium, near Peyrolles (Bouches-du-Rhône). The PGM grains (average size 130 microns) are strongly flattened (average thickness 64 microns). The PGM concentrate consists primarily of (Pt, Fe) alloys (92%), (Os, Ir, Ru) alloys (3.5%), and native gold and (Au, Cu, Ag) alloys (4.5%). The following minerals were observed: isoferroplatinum, ferroan platinum, native osmium, native iridium, iridosmine, rutheniridosmine, osmiridium, ruthenian osmium, osmian ruthenium, cuprorhodsite, guanglinite, shandite, tetrauricupride, native gold, bornite, heazlewoodite, (Pt, Pd)2Cu3, Pt(Cu, Au), (Ni, Pt)Sn, (Cu, Fe)1–x (Pd, Rh, Pt)2+xS2, (Pt, Pd)4–xCu2As1–x. Isoferroplatinum contains numerous inclusions of alloys, sulphides, arsenides, Pd-tellurides, and partly devitrified silicate glass droplets. Most of the non-silicate inclusions also exhibit a drop-like shape indicating their original entrapment in a liquid state.Cuprorhodsite crystals (up to 20 microns) are associated with bornite included in Pt3Fe. Rarely, Pd- and Cu-sulphides, and Pd-tellurides appear in this association. Complex droplet-like arsenide inclusions in isoferroplatinum are composed of Pt bearing guanglinite and (Pt,Pd)4+xCu2As1–x. Native iridium shows exsolutions of Ir-bearing isoferroplatinum and (Pt,Pd)2Cu3. In places, concentrations of Sn (up to 3 wt.%) were observed in (Au, Cu) alloys. Shandite and (Ni, Pt)Sn inclusions occur in (Au, Cu, Ag) alloys. Silicate-glass inclusions are TiO2-poor and occasionally K-rich (plotting in the shoshonitic field). Taking into account mineralogical and chemical pecularities of the PGM association occurring in the studied concentrate, it seems highly probable that its primary source should be an Alaskan-type intrusion.
Platingruppen Minerale aus dem Alluvium der Durance, Frankreich
Zusammenfassung Minerale der Platingruppe wurden im Zuge von Goldgewinnung im Alluvium der Durance in der Nähe von Peyrolles (Bouches-du-Rhône) entdeckt. Die PGM Körner (durchschnittliche Korngröße 130m) sind flach gepreßt (durchschnittliche Dicke 64m). Die PGM Konzentrate bestehen vorwiegend aus (Pt, Fe) Legierungen (92%); (Os, Ir, Ru) Legierungen (3,5%), sowie gediegen Gold und (Au, Cu, Ag) Legierungen (4,5%). Folgende Minerale wurden beobachtet:Isoferro-Platin, Fe-Platin, gediegen Osmium, gediegen Iridium, Iridosmium, Rutheniridosmium, Osmiridium, Ru-Osmium, Os-Ruthenium, Cuprorhodsit, Guanglinit, Shandit, Tetrauricuprit, gediegen Gold, Bornit, HeazIewoodit, (Pt, Pd)2 Cu3, Pt(Cu, Au), (Ni, Pt)Sn, (Cu, Fe), (Pd, Rh, Pt)2+xS2, (Pt, Pd)4+xCu2As1–x.Isoferro-Platin enthält zahlreiche Einschlüsse von Legierungen, Sulfiden, Arseniden, Pd-Telluriden und teilweise devitrifzierte Silikatglaströpfchen. Die meisten nichtsili katischen Einschlüsse sind ebenfalls tröpfchenförmig. Dies weist darauf hin, daß sie in flüssigem Zustand eingeschlossen wurden.Cuprorhodsitkristalle (bis zu 20m) sind gemeinsam mit Bornit in Pt3 Fe einge schlossen. Selten sind Pd- und Cu-Sulfide, sowie Pd-Telluride mit diesen vergesellschaftet. Bei den komplexen tröpfehenförmigen Arsenideinschlüssen im Isoferro-Platin handelt es sich um Pt-führenden Guanglinit und (Pt, Pd)4+xCu2 As1–x. Gediegen Iridium zeigt Entmischung von Ir-führendem Isoferro-Platin und (Pt, Pd)2Cu3. Stellenweise wurden Konzentrationen von Sn (bis zu 3%) in den (Au, Cu) Legierungen beobachtet. Shandit und (Ni, Pt) Sn Einschlüsse kommen in (Au, Cu, Ag) Legierungen vor. Silikatische Glaseinschlüsse sind TiO2-arm und manchmal K-reich (im Shoshonitfeld liegend).Auf Grund der mineralogischen und chemischen Eigenheiten der untersuchten PGM Konzentrate ist eine Intrusion des Alaska-Typs als primäre Quelle sehr wahrscheinlich.


With 4 Figures and 2 Plates  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号