首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents results of the study on oil shale mining (Estonia underground mine) possibilities under the Selisoo mire. The Selisoo area is 2,051 ha in extent, and most of the mire is in natural state. Peat layer consists of thick (4.4–6.5 m) oligotrophic peat. Mining under Selisoo will go at depths 65–70 m under the surface. The mining field of the Estonia mine was planned between Ahtme and Viivikonna fault zones. The lowest hydraulic conductivity of carbonate rocks 0.11 l/day per m2 is found in the Oandu layer and for peat it is 0.35–0.0002 m/day. Therefore, together they form a good aquitard. When the annual rainfall amount is the highest, the difference between horizontal water inflow and runoff is positive with 127,000 m3. Positive water balance is guaranteed in case of precipitation being at least 540 mm/year. The positive water balance is important for preserving the ecological system of Selisoo mire. For guaranteeing long-term stability of mine pillars, a new calculation method has been elaborated, based on the conventional calculation scheme, where the factor of safety is more than 2.3. Rheological processes are out of question, collapse of the pillars is impossible. Stability of the underground constructions and overburden rocks must be “eternal”. The criteria were elaborated for oil shale mining and will guarantee preservation of mires in natural or close to natural state.  相似文献   

2.
Thirlmere Lakes is a group of five freshwater wetlands in the southwest fringe of Sydney, Australia, that is subject to cyclic wetting and drying. The lakes are surrounded by activities that have led to increasing pressure on the local surface and groundwater supply including farming and mining. The mine has been operating for more than 30 years, and in recent times, there has been speculation that the surface subsidence and underground pumping may have some impact on surface water and groundwater hydrology. A study was undertaken using satellite imagery to examine the relation between water area changes and rainfall variability. The study utilised Landsat time-series data during the period 1982–2014 to calculate changes in the lake water area (LA), through the normalised difference water index (NDWI) threshold. High classification accuracy was achieved using NDWI against high-resolution data that are available for the years 2008 (88.4 %), 2010 (92.8 %), and 2013 (96.9 %). The LA measurement was correlated against 11 historic observations that occurred in 2009, 2010, and 2011 during drier wetland conditions. Correlation analysis of the LA with the residual rainfall mass spread across the past 30 years has found that rainfall variability is a major dominant factor associated with the wetland changes. The underground mining operations, if verified by independent investigations, probably play a minor or negligible contributor to variations in total wetland area during the study period. This study has demonstrated that remote sensing is a technique that can be used to augment limited historic data.  相似文献   

3.
The prairie wetlands of northern USA and Canada exist in numerous topographical depressions within the glaciated landscape. The wetlands are disconnected from each other most of the time with respect to surface-water drainage. The wetland water balance is controlled by snowmelt runoff and snowdrift from the surrounding uplands, precipitation, evapotranspiration, groundwater exchange, and occasional “fill-spill” connections to other wetlands. Salinity of water and the seasonal variability of water level in these wetlands have a strong influence on the ecosystem. Clay-rich glacial tills, covering much of the region, have very low (0.001–0.01 m/yr) hydraulic conductivity, except for the top several meters where the factures and macropores increase conductivity up to 1,000 m/yr. Transpiration in the wetland margin induces infiltration and lateral flow of shallow groundwater from wetland ponds through the high-conductivity zone, which strongly affects the water balance of wetlands. In contrast, groundwater flow in the deeper low-conductivity till has minor effects on water balance, but has a strong influence on salinity because the flow direction determines if the salts accumulate in wetlands (upward flow) or are leached out (downward flow) under wetlands. Understanding of the roles of shallow and deep groundwater systems will improve the hydrological conceptual framework for the management of wetland ecosystems.  相似文献   

4.
With the development of mining of iron deposits in China, groundwater invasion and the impacts of groundwater drainage, such as regional groundwater table lowering, overlapping cones of depression, subsidence, and water quality deterioration are environmental problems which endanger mining production and human life. Effective prevention of water invasion or timely determination of the mechanism of water bursting and rational design of drainage plans are the most urgent mining challenges. The mechanism of water invasion and the environment impacts on the groundwater system of the Gaoyang Iron Mine, China were dealt with in this paper. A systematical investigation of the hydrogeological conditions and monitoring of groundwater dynamics of the mine were completed. Results show that the limestone of the middle Ordovician System constitutes the under floor of the iron deposit. This limestone is the main source of water invasion into the mine. Groundwater dynamic equilibrium conditions are broken due to mine drainage. Water invasion and drainage have caused a serious impact on the groundwater environment of the area.  相似文献   

5.
山东省是一个矿业大省、经济大省,是我国重要的能源和黄金生产基地,同时也是水质型缺水省份之一。矿产资源开采过程中,每年都有大量的井下矿坑水向外部环境排放,不但造成了地表水和浅层地下水污染,而且还引发了岩溶塌陷、海水入侵等次生地质灾害。本文重点对山东省煤矿、铁矿、金矿等主要的矿产资源开发引发的地下水系统影响进行了研究,分析了主要开采矿山导致产生地下水疏干漏斗、引起区域地下水位持续下降,降低了地下水的调蓄能力,改变含水层的地球化学环境,地下水水质进一步恶化,致使地下水可利用资源量逐渐减少,该研究为有关政府部门督促矿山企业对矿坑水资源化综合利用及水资源保护、减少矿山开采对地下水环境的影响提供参考。  相似文献   

6.
煤矿开采不当会对水资源与水环境造成破坏,尤其在生态环境相对脆弱地区更是如此。针对目前矿井涌水量预测大多以单一工作面或煤矿为评价单元,对沟域内煤矿群同时长期开采的地下水环境影响重视不够。选择头道河则沟域为研究区,以地下水勘查、井田勘探资料为依据,构建了头道河则完整沟域的地下水三维非稳定流数值模型,根据地下水、地表水监测数据和煤矿群开采涌水量的长观资料进行模型的识别与验证,以9#煤矿为典型矿区,分析综采和条带充填2种不同开采方式下矿井涌水量及其对水环境的影响。研究结果表明:(1)综采状态下,矿井涌水量增加0.70×104 m3/d,导致地下水溢出量减少0.20×104 m3/d,引发矿区及区域地下水水位下降0.21~17.92 m;条带充填开采状态下,矿井涌水量增加0.11×104 m3/d,导致地下水溢出量减少0.04×104 m3/d,引发矿区及区域地下水水位下降0.01~0.44 m。(2)煤矿按综采方式开采,...  相似文献   

7.
大面积采动矿区水环境灾害特征及防治措施   总被引:1,自引:0,他引:1  
矿山采动前后,相应伴生水系调整和水体污染,产生水环境灾害。以阜新新邱矿区为研究对象,在对环境地质情况调查分析基础上,主要从水资源流失、废旧地下采场和露天矿坑积水、矿区地表和地下水质污染等方面探讨了矿区水环境灾害的形成及特征。大面积的开采,造成矿区水资源流失严重,矿山停采后,地下水位逐渐恢复;废旧地下采场和露天矿坑形成的积水,在入渗过程中,通过运移累积、吸附转化、溶解解析和离子交换等水岩作用对地下水产生污染;矿区矿井抽排水和河流水质污染物不同程度超标。针对矿山水环境灾害,建议采用矿山地质环境治理、修建防排水及净水设施、水环境监测等手段进行防治,以使矿区环境得到根本改善。  相似文献   

8.
With depleted coal resources or deteriorating mining geological conditions, some coal mines have been abandoned in the Fengfeng mining district, China. Water that accumulates in an abandoned underground mine (goaf water) may be a hazard to neighboring mines and impact the groundwater environment. Groundwater samples at three abandoned mines (Yi, Er and Quantou mines) in the Fengfeng mining district and the underlying Ordovician limestone aquifer were collected to characterize their chemical and isotopic compositions and identify the sources of the mine water. The water was HCO3·SO4-Ca·Mg type in Er mine and the auxiliary shaft of Yi mine, and HCO3·SO4-Na type in the main shaft of Quantou mine. The isotopic compositions (δD and δ18O) of water in the three abandoned mines were close to that of Ordovician limestone groundwater. Faults in the abandoned mines were developmental, possibly facilitating inflows of groundwater from the underlying Ordovician limestone aquifers into the coal mines. Although the Sr2+ concentrations differed considerably, the ratios of Sr2+/Ca2+ and 87Sr/86Sr and the 34S content of SO42? were similar for all three mine waters and Ordovician limestone groundwater, indicating that a close hydraulic connection may exist. Geochemical and isotopic indicators suggest that (1) the mine waters may originate mainly from the Ordovician limestone groundwater inflows, and (2) the upward hydraulic gradient in the limestone aquifer may prevent its contamination by the overlying abandoned mine water. The results of this study could be useful for water resources management in this area and other similar mining areas.  相似文献   

9.
Few studies exist that investigate the potential impact of groundwater mounding due to mining near an environmentally sensitive area in a real world scenario. This paper presents a case study in which the development and extent of groundwater mounding due to mining near the Shark Bay World Heritage Property (SBWHP) in Western Australia (WA) has been simulated. A numerical model was developed that enabled a detailed simulation of groundwater level response to the discharge of a water saturated sand slurry during mining at the project site near Coburn in WA. The simulations showed that after a mining period of around two and a half years, a groundwater mound of around 2.5 m would develop along the margins of the open pit at the SBWHP boundary. 500 m further into the SBWHP, the groundwater mound is predicted to be around 1 m high. A depth to water analysis showed that the groundwater may come within 4 m of the surface in the area of a sand dune swale that traverses from SW to NE near the SBWHP boundary. The results of these analyses provide a perspective of mine-related impacts in a unique environment. The results have been included in an environmental impact assessment (EIA) and used for mine water balance predictions.  相似文献   

10.
《China Geology》2021,4(3):455-462
The Luanhe River Delta is located in the center of the Circum-Bohai Sea Economic Zone. It enjoys rapid economic and social development while suffering relatively water scarcity. The overexploitation of groundwater in the Luanhe River Delta in recent years has caused the continuous drop of groundwater level and serious environmental and geological problems. This study systematically analyzes the evolution characteristics of the population, economy, and groundwater exploitation in the Luanhe River Delta and summarizes the change patterns of the groundwater flow regime in different aquifers in the Luanhe River Delta according to previous water resource assessment data as well as the latest groundwater survey results. Through comparison of major source/sink terms and groundwater resources, the study reveals the impacts of human activities on the groundwater resources and ecological environment in the study area over the past 30 years from 1990 to 2020. The results are as follows. The average annual drop rate of shallow groundwater and the deep groundwater in the centers of depression cones is 0.4 m and 1.64 m, respectively in the Luanhe River Delta in the past 30 years. The depression cones of shallow and deep groundwater in the study area cover an area of 545.32 km2 and 548.79 km2, respectively, accounting for more than 10% of the total area of the Luanhe River Delta. Overexploitation of groundwater has further aggravated land subsidence. As a result, two large-scale subsidence centers have formed, with a maximum subsidence rate of up to 120 mm/a. The drop of groundwater level has induced some ecological problems in the Luanhe River Delta area, such as the zero flow and water quality deterioration of rivers and continuous shrinkage of natural wetlands and water. Meanwhile, the proportion of natural wetland area to the total wetland area has been decreased from 99% to 8% and the water area from 1776 km2 to 263 km2. These results will provide data for groundwater overexploitation control, land subsidence prevention, and ecological restoration in plains and provide services for water resources management and national land space planning.© 2021 China Geology Editorial Office.  相似文献   

11.
东刘家金矿矿区位于海阳市郭城镇,主要发育3组NE向断裂裂隙,含水岩组主要为第四系冲洪积、坡积孔隙含水岩组,碎屑岩类孔隙裂隙含水岩组,碳酸盐岩类岩溶裂隙含水岩组及基岩风化带裂隙含水岩组。文中在查清水文地质条件的情况下,详细分析了矿区含水层的富水性,地下水补给、径流、排泄及动态特征,矿区地下水开发利用现状。在此基础上,进行了地下水均衡计算,地下水补给来源主要为大气降水入渗和农灌入渗补给,补给方式为地表直接下渗补给、断裂带导水补给以及上覆松散层下渗补给,主要排泄方式为人工开采、矿坑涌水和蒸发,总体上矿区处于地下水均衡状态。研究成果为矿区在今后的开采过程中控制地下水,合理防治与排水,维持区域地下水自然动态等提供了科学的依据。。  相似文献   

12.
位于云贵高原面上宣威岩溶断陷盆地北东部的格宜镇,地貌类型为岩溶丘峰谷区,广泛分布碳酸盐岩地层,由于岩石建造和外地质应力的复杂性,在强烈的溶蚀作用下形成了多种多样的地貌形态,既有溶蚀形成的溶洞、洼地、谷地、落水洞等地表岩溶地貌,又有地下河管道等。通过水文地质学、岩溶学方法,对湖泊型串珠状湿地的构造、水文地质、岩溶发育特征进行研究,云贵高原面上串珠状岩溶湿地演化过程经历了地壳抬升期、南地壳稳定期、地壳再次抬升期三个阶段,在新构造运动作用下,由于地壳抬升,侵蚀基准下切等原因,岩溶管道在漫长的时间内垮塌、淤泥堵塞及岩溶发育的不均匀条件下了形成地表串珠状湿地。针对目前湿地面积的不断萎缩、减小问题,提出了具体的保护建议。   相似文献   

13.
以陕北侏罗纪煤田凉水井煤矿为例,研究了浅埋煤层开采涌水量规律,根据煤矿井下水样的氢氧同位素构成,计算了矿井水的来源。该区矿井水接受风化基岩裂隙承压水和萨拉乌苏组潜水的补给,矿井水δD为-70‰,裂隙水δD为-80‰,萨拉乌苏组潜水δD为-67.46‰,由此可以计算出矿井水的补给来源主要是萨拉乌苏组地下水,萨拉乌苏组潜水补给占79.74%,基岩裂隙水补给占20.26%,据此提出该区保水采煤重点是保护萨拉乌苏组地下水含水结构的稳定性。  相似文献   

14.
胡爱萍  刘万锋  李生永  赵欣  杨阳 《冰川冻土》2017,39(5):1157-1162
干旱的河西走廊永昌县境内分布有弥足珍贵的刘克庄、焦家庄、北海子、圣容寺等4块面积达20.38 km2的湿地,均分布于西大河中游的永昌盆地。湿地的形成是地貌-构造所控制的水文地质条件及地表水、地下水(泉水)相互转化共同作用的结果。受20世纪以来气候变暖趋势及人类过度开发利用水资源的影响,西大河中游湿地面积呈逐步减少的萎缩状态,目前较大的泉眼仅有879个,近30年来湿地面积减少40%以上。加强西大河上游祁连山径流形成区和水资源涵养区的生态环境保护,减少出山地表水的引用量,控制中游地下水开采量及地下水位,是保护有限湿地资源的主要对策措施。  相似文献   

15.
胡秀琦  顾林琳 《吉林地质》2013,(4):124-125,139
吉林省龙井市石井金银矿位于长白山系老爷岭南麓的丘陵地貌中,区内地下水的形成、分布、埋藏条件严格受地质构造、岩性、地貌等条件控制,地下水的补给来源为大气降水。矿区含水层主要类型为:第四系砂砾石孔隙潜水含水层、基岩风化构造裂隙水含水层、构造裂隙脉状水含水层(带);三种地下类型水富水性都较小,对矿床影响不大,该矿区水文地质条件属简单类型。  相似文献   

16.
The environmental impact and potential-risk assessment of an abandoned sulphide-mining site in a semiarid climate is presented here, by the study case of Sierra de Cartagena–La Unión (SE Spain), a 2,500-year-old mining district extending over an area of 100 km2. The regional map illustrates the existence of 12 open-pits, 1,902 mining wells, 2,351 waste deposits, including 89 tailing dams and waste rock derived from mining processes. Mine wastes occupy an area of 9 km2 and have an approximate volume of 200 Mm3. Mineralogical, physical and chemical data distinguish nine different types of mine and metallurgical waste. According to the concentration of sulphate and heavy metals in sediment, soil, rainwater, surface water and groundwater samples, it is possible to conclude that the impact of mine activities occurs not only in the immediate mining area (100 km2), but also in the surrounding areas (an affected area of 1,000 km2 approximately). The hydrochemical data show that groundwater, runoff water and some rainwater samples exceed Spanish and European water quality guideline values for water supply. The main geochemical process recognised is sulphide-mineral oxidation and later-generated sulphate dissolution by groundwater and runoff. Runoff and wind are the major mechanisms of metals and sulphate transport in the study area and adjacent zones.  相似文献   

17.
Large amounts of groundwater are discharged during underground mining operations. As a result, the drawdown of groundwater, known as aquifer dewatering, is common in mining areas. Because of variability in permeability between different media in mines, mine drainage occurs primarily as non-continuous flow. However, calculations of mine water yield are usually made based on the continuous flow theory, and therefore often produce erroneous results. This study predicts the water yield of a mine using the module MODFLOW and incorporating the non-continuous flow theory into the calculation. Using this method, the predicted water yield of a mine was approximately 50 % lower than that predicted using the continuous flow theory. The model also demonstrates that the rate of mine drainage varies over time; there is initially a decrease in the rate of drainage which gradually approaches a constant value. Double level flow occurs when there is non-continuous flow in continuous media, which can effectively minimize the influence of mine drainage on upper aquifers and relieve the conflict between groundwater supply and drainage in the mining area.  相似文献   

18.
刘晓宇 《地下水》2019,(3):17-19,85
矿井采煤对地下水环境的影响主要为对具有供水意义的含水层水位及水量产生影响,确定采煤引起地下水水位降及漏失量是煤矿地下水环境影响评价的关键。以纳林河矿区某大型矿井为例,运用Visual MODFLOW建立模拟区地下水流数值模型,利用实测流场和长观孔的动态观测资料识别和验证数值模型,利用模型来预测采煤对第四系-白垩系含水层水位及水量的影响。模拟结果显示:前25年采煤引起地下水最大水位降为3.6 m,引起地下水的漏失量最大为141.87万m^3/a,占矿井涌水量的29.88%;利用矿化度法确定的越流量占矿井涌水量的6.39%~34.89%,模拟结果基本合理,可作为矿井采煤对地下水环境影响的研究依据。  相似文献   

19.
湿地地表径流包括明渠流和片流等多种形式,且存在海绵状土壤层,其地表水-地下水耦合模拟困难。针对湿地片流和海绵层模拟不准确的问题,以绍兴镜湖国家城市湿地公园为研究对象,考虑湿地多年植物生长沉积形成的独特海绵层,基于GSFLOW模型构建湿地地表水与地下水耦合数值模型,通过二维扩散方程模拟湿地片流、一维圣维南方程模拟湿地明渠流,使用竖管法测量湿地海绵层渗透系数,利用模拟区水文站的监测数据率定模型参数并对模拟结果进行验证,应用校正后模型模拟湿地地表水与地下水的水量交互过程,并对研究区进行水均衡分析。研究结果表明:考虑湿地海绵层的湿地地表水与地下水耦合模型能较为真实地反映湿地水文特性,湿地以地表水补给地下水为主,补给量随降雨量变化。研究建立的湿地地表水与地下水耦合模型合理可靠,对湿地水文分析有良好的应用价值。  相似文献   

20.
The Jharia coalfield is the most important and active minig region; it experiences groundwater inflow and affects groundwater levels in overlying aquifers, and it provides the basis for a conceptual model of the hydrogeological impacts of coal mining. The several sandstone aquifers of the overburden are separated by aquitards that limit vertical hydraulic connection, but the inflow responds to seasonal events and seems to be linked to shallow groundwater behavior. The mine drainage behavior suggests a hydraulic connection between the mine and the shallower groundwater system. The greatest declines are directly above the panels, with an immediate response to coal mining. The inflow is localized by natural and induced fracture zones and is mostly into recent workings. The groundwater behavior is controlled by hydraulic property changes caused by mine-induced fracturing. The hydrological and chemical qualities of the shallow groundwater regime in 13 mining collieries in Mukunda Block have been investigated. Water samples collected from 30 shallow monitoring dug wells were chosen for the study. Rainfall, runoff, and infiltration rates have been calculated in the area. The water-quality plottings were used to interpret the distribution of individual chemical parameters and in predicting the water quality. The underground mine water has been classified as: (1) unconfined groundwater in the calcareous siltstone and sandstone—its composition is Na, Ca, SO4 and Na-MgHCO3 with moderate total dissolved solids (TDS) 200–1480 ppm; (2) the deep groundwater originating from the coal seams and associated sediments in the near-surface environments—this is a Na-HCO3 water with higher TDS; and (3) spoil dump waters are essentially Na-HCO3 with high TDS. This article presents some hydrologic results and conclusions relating to the hydrogeological and environmental impacts of the coal mining in the Jharia coalfield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号