首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
《Gondwana Research》2002,5(2):287-305
Large volumes of granitoids were emplaced in the Hercynian Central Iberian Zone during the last ductile deformation phase (D3, 300-320 Ma). The biotite-rich granitoids are the most abundant: (1) syn-D3 granodiorites-monzogranites (313-319 Ma) with calc-alkaline and aluminopotassic affinities; (2) late-D3 granodiorites-monzogranites (306-311 Ma), related to subalkaline and aluminopotassic series. These granitoids are associated with coeval gabbro-norite to granodiorite bodies and/or mafic microgranular enclaves. Both granitoids and basic-intermediate rocks show petrological, geochemical and isotopic evidence of interaction between felsic and mafic magmas.The mantle-derived melts, represented by shoshonitic gabbro-norites, were probably derived from an enriched and isotopically homogeneous source (Sri = 0.7049 to 0.7053, eNd = -2.1 to -2.5). In some syn- and late-D3 plutons there are evidences of essentially crustal granites, represented by moderately peraluminous monzogranites of aluminopotassic affinity. They have similar Nd model ages (1.4 Ga) but different isotopic compositions (Sri = 0.7089 to 0.7106, eNd = -5.6 to -6.8), revealing a heterogeneous crust. Potential protoliths are metasedimentary (immature sediments) and/or felsic meta-igneous lower crust materials. Large amounts of hybrid magmas were generated by the interaction of these coeval mantle- and crust-derived liquids, giving rise to slightly peraluminous monzogranites/granodiorites of calc-alkaline and subalkaline affinities, which display more depleted isotopic compositions than the crustal end-members (Sri = 0.7064 to 0.7085, eNd = -4.4 to -6.2). Petrogenetic processes involving mingling and/or mixing and fractional crystallization (at variable degrees) in multiple reservoirs are suggested.A major crustal growth event occurred in late-Hercynian times (∼305-320 Ma) related to the input of juvenile mantle magmas and leading to the genesis of composite calc-alkaline and subalkaline plutons, largely represented in the Central Iberian Zone.  相似文献   

2.
The Early Cretaceous–Early Eocene granitoids in the Tengchong Block record the evolutionary history of the Mesozoic-Cenozoic tectono-magmatic evolution of Eastern Tethys. (a) The Early Cretaceous granitoids with relatively low (87Sr/86Sr)i ratios of 0.7090–0.7169 and εNd(t) values of ?9.8 to ?7.8 display metaluminous, calc-alkaline dominated by I-type granite affinity and hybrid mantle–crust geochemical signatures. They may have been derived from melting of the subducted Meso-Tethyan Bangong-Nujiang oceanic crust with terrigenous sediments in an arc-continent collisional setting. (b) The Late Cretaceous–Paleocene granitoids with relatively high (87Sr/86Sr)i ratios of 0.7109–0.7627, and εNd(t) values of ?12.1 to ?7.9 exhibit metaluminous to peraluminous, calc-alkaline dominated by S-type granite affinity and hybrid Lower–Upper crust geochemical signatures, which may be originated from partial melting of the Meso-Proterozoic continental crust in the collision setting between the Tengchong Block and Baoshan Block. (c) The Early Eocene granitoids have metaluminous, calc-alkaline I-type and S-type granites dual affinity, with relatively high (87Sr/86Sr)i ratios of 0.711–0.736, εNd(t) values of ?9.4 to ?4.7, showing crust-mantle mixing geochemical signatures. They may have been originated from partial melting of the late Meso-Proterozoic upper crustal components mixed with some upper mantle material during the ascent process of mantle magma caused by the subduction of the Neo-Tethyan Putao–Myitkyian oceanic crust, and collision between the Western Burma Block and the Tengchong Block. It is these multi-stage subductions and collisions that caused the spatial and temporal distribution of the granitic rocks in the Tengchong Block.  相似文献   

3.
An isotopic study was systemically carried out on the granitic complex, diorite-porphyrite, ores and ore minerals of the 103 Ma Xiaoxinancha gold-rich copper deposit in Jilin province to determine the geodynamic model of diagenesis and metallogenesis. Results show that the initial Nd and Sr isotopic compositions of the granitic complex are in the range of 0.70425–0.70505 for (87Sr/86Sr)i , 0.51243–0.51264 for INd, and –1.31 to +2.64 for εNd(t); those of the diorite-porphyrite are in the range from 0.70438–0.70448 for (87Sr/86Sr)i, 0.51259–0.51261 for INd, and +1.56 to +2.09 for εNd(t). For ores and sulfides, the (87Sr/86Sr)i , INd, and εNd(t) values are in the range from 0.70440–0.70805, 0.51259–0.51279 and +1.72 to +5.56, respectively. The Pb isotopic ratios of the granitic complex range from 18.2992–18.6636 for 206Pb/204Pb, from 15.5343–15.5660 for 207Pb/204Pb, and from 38.1640–38.5657 for 208Pb/204Pb. For diorite-porphyrite, the isotopic ratios of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb are 18.3919, 15.5794 and 38.3566, respectively, whereas those of the ores and ore sulfides vary from 18.2275–18.3770 for 206Pb/204Pb, from 15.5555–15.5934 for 207Pb/204Pb and from 38.1318–38.3131 for 208Pb/204Pb. The results indicate that the mineralization was correlated to the formation and evolution of the granitic complex and the diorite-porphyrite. Combining with the reported data in petrologic characteristics, elemental geochemistry and chronology, conclusions can be drawn that the geodynamic settings of diagenesis and metallogenesis of this deposit were consistent with the subduction of the Izanagi oceanic plate during the Early Cretaceous. The diorite-porphyrite was formed by the emplacement of the adakitic magma triggered by partial melting of the enriched mantle, which originated from the derivative continental lithospheric mantle metasomatized by dehydration fluids from the subducting oceanic crust. The granitic complex was produced by fractional crystallization of the mixture between the adakitic magma and the high-K calc-alkaline acidic magma, which were generated by the remelting of the lower crust in the course of intraplate upwelling of the adakitic magma. The ore-bearing fluid reservoir convened in a late stage of the evolution of the mixed magma chamber.  相似文献   

4.
The high-K, calcalkaline granitic rocks of the 370 Ma, post-orogenic Harcourt batholith in southeastern Australia have I-type affinities but are mildly peraluminous and have remarkably radiogenic isotope characteristics, with 87Sr/86Srt in the range 0.70807 to 0.714121 and εNdt in the range ??5.6 to ??4.3. This batholith appears to be a good example of magmas that were derived through partial melting of distinctly heterogeneous source rocks that vary from intermediate meta-igneous to mildly aluminous metasedimentary rocks, with the balance between the two rock types on the metasedimentary side. Such transitional S-I-type magmas, formed from mainly metasedimentary source rocks, may be more common than is generally realised. The Harcourt batholith also contains mainly granodioritic igneous microgranular enclaves (IMEs). Like their host rocks, the IMEs are peraluminous and have rather radiogenic isotope signatures (87Sr/86Srt of 0.71257–0.71435 and εNdt of ??7.3 to ??4.3), though some are hornblende-bearing. Origins of these IMEs by mixing a putative mantle end member with the host granitic magma can be excluded because of the variability in whole-rock isotope ratios and, for the same reason, the IME magmas cannot represent quench cumulates (autoliths) from the host magmas. Less abundant monzonitic to monzosyenitic IMEs cannot represent accumulations of magmatic biotite and/or alkali feldspar because K-feldspar is absent, and there is no co-enrichment of K2O and FeO?+?MgO, nor can they be mixtures of anything plausible with the host-rock magma. The granodioritic IMEs probably originated through high degrees of assimilation of a range of crustal materials (partial melts?) by basaltic magmas in the deep crust, and the monzonitic IMEs as melts of enriched subcontinental mantle. Such enclave suites provide little or no information on the chemical evolution of their host granitic rocks.  相似文献   

5.
The reasons for the isotopic and geochemical heterogeneity of magmatism of the Neoproterozoic large Volhynia-Brest igneous province (VBP) are considered. The province was formed at 550 Ma in response to the break up of the Rodinia supercontinent and extends along the western margin of the East European craton, being discordant to the Paleoproterozoic mobile zone that separates Sarmatia and Fennoscandia and the Mesoproterozoic Volhynia-Orsha aulacogen. The basalts of VBP show prominent spatiotemporal geochemical zoning. Based on petrographic, mineralogical, geochemical, and isotopic data, the following types of basalts can be distinguished: olivine-normative subalkaline basalts consisting of low-Ti (sLT, < 1.10–2.0 wt % TiO2; εNd(550) from ?6.6 to ?2.7) and medium-Ti (sMT, 2.0–3.0 wt % TiO2, occasionally up to 3.6 wt % TiO2; εNd(550) from ?3.55 to + 0.6) varieties; normal quartz-normative basalts (tholeiites) including low-Ti (tLT, < 1.75–2.0 wt % TiO2) and medium-to-high-Ti (tHT1, 2.0–3.6 wt % TiO2, εNd(550) from ?1.3 to + 1.0) varieties. The hypabyssal bodies are made up of subalkaline low-Ti olivine dolerites (LT, 1.2–1.5 wt % TiO2; εNd(550) = ?5.8) and subalkaline high-Ti olivine gabbrodolerites (HT2, 3.0–4.5 wt % TiO2; εNd(550) = ?2.5). Felsic rocks of VBP are classed as volcanic rocks of normal (andesidacites, dacites, and rhyodacites) and subalkaline (trachyrhyodacites) series with TiO2 0.72–0.77 wt% and εNd(550) of ?12. The central part of VBP is underlain by a Paleoproterozoic domain formed by continent-arc accretion and contains widespread sills of HT2 dolerites and lavas of LT basalts; the northern part of the province is underlain by the juvenile Paleoproterozoic crust dominated by MT and HT1 basalts. MT and LT basalts underwent significant AFC-style upper crustal contamination. During their long residence in the upper crustal magmatic chambers, the basaltic melts fractionated and caused notable heating of the wall rocks and, correspondingly, nonmodal melting of the upper crustal protolith containing high-Rb phase (biotite), thus producing the most felsic rocks of the province. The basalts of VBP were derived from geochemically different sources: probably, the lithosphere and a deep-seated plume (PREMA type). The HT2 dolerites were generated mainly from a lithospheric source: by 3–4% melting of the geochemically enriched garnet lherzolite mantle. LT dolerites were obtained by partial melting of the modally metasomatized mantle containing volatile-bearing phases. The concepts of VBP formation were summarized in the model of three-stage plume-lithosphere interaction.  相似文献   

6.
Zircon dating, geochemical and Nd-Sr isotopic analyses have been determined for samples from two granitic intrusions in the Talate mining district, Chinese Altay. Our data suggest that these intrusions were emplaced from 462.5 Ma to 457.8 Ma. These rocks have strong affinity to peralumious S-type granite and are characterized by prominent negative Eu anomalies(δEu=0.20–0.35), strong depletion in Ba, Sr, P, Ti, Nb, Ta and positive anomalies in Rb, Th, U, K, La, Nd, Zr, Hf. Nd-Sr isotopic compositions of the whole rock show negative εNd(t) values(-1.21 to-0.08) and Mesoproterozoic Nd model ages(T2 DM=1.20–1.30 Ga). Their precursor magmas were likely derived from the partial dehydration melting of Mesoproterozoic mica-rich pelitic sources and mixed with minor mantle-derived components, under relatively low P(≤1 kbar) and high T(746–796°C) conditions. A ridge subduction model may account for the early Paleozoic geodynamic process with mantle-derived magmas caused by Ordovician ridge subduction and the opening of a slab window underplated and/or intraplated in the middle–upper crust, which triggered extensive partial melting of the shallow crust to generate diverse igneous rocks, and provided the heat for the crustal melting and juvenile materials for crustal growth.  相似文献   

7.
Miocene igneous rocks in the 1,600 km-long E–W Gangdese belt of southern Tibet form two groups separated at longitude ~89° E. The eastern group is characterized by mainly intermediate–felsic calc-alkaline plutons with relatively high Sr/Y ratios (23 to 342), low (87Sr/86Sr)i ratios (0.705 to 0.708), and high εNdi values (+5.5 to ?6.1). In contrast, the western group is characterized by mainly potassic to ultrapotassic volcanic rocks with relatively high Th and K2O contents, low Sr/Y ratios (11 to 163), high (87Sr/86Sr)i ratios (0.707 to 0.740), and low εNdi values (?4.1 to ?17.5). The eastern plutonic group is associated with several large porphyry Cu–Mo ± Au deposits, whereas the western group is largely barren. We propose that the sharp longitudinal distinction between magmatism and metallogenic potential in the Miocene Gangdese belt reflects the breakoff of the Greater India slab and the extent of underthrusting by the Indian continental lithosphere at that time. Magmas to the east of ~89° E were derived by partial melting of subduction-modified Tibetan lithosphere (mostly lower crust) triggered by heating of hot asthenospheric melt following slab breakoff. These magmas remobilized metals and volatile residual in the crustal roots from prior arc magmatism and generated porphyry Cu–Mo ± Au deposits upon emplacement in the upper crust. In contrast, magmas to the west of ~89° E were formed by smaller volume partial melting of Tibetan lithospheric mantle metasomatized by fluids and melts released from the underthrust Indian plate. They are less hydrous and oxidized and did not have the capacity to transport significant amounts of metals into the upper crust.  相似文献   

8.
浙江省中生代火成岩的Nd-Sr同位素研究   总被引:18,自引:0,他引:18       下载免费PDF全文
本文报道了浙江省21个中生代火成岩的Nd-Sr同位素组成,其中火山岩的εNd值为-12.6——4.9,ISr值为0.70613-0.71079,tDM年龄为1945-1296Ma;花岗岩类的εNd值为-12.9——5.8,ISr值为0.70533-0.71208,tDM年龄为1900-1230Ma,表明两者具有相似的同位素组成。这种相似性在同一火山-侵入杂岩体中表现更为明显,意味着两者在时、空、源方面具有同一性。与扬子地块的相比,华夏地块的中生代火成岩具有较低的εNd值,较高的ISr值和较古老的Nd模式年龄,这种差异可能主要同这两个区域内基底变质岩在形成时代和成分上的差异有关。通过Sm-Nd同位素组成的对比研究,笔者认为,浙江境内的中生代火成岩可能主要是由基底变质沉积岩衍生的。原始岩浆的形成可能同中、下地壳岩石的熔融有关。  相似文献   

9.
新疆阿拉套山花岗岩类高εNd值的成因探讨   总被引:13,自引:0,他引:13       下载免费PDF全文
新疆阿拉套山广泛出露的华力西期花岗岩类的一般岩石学和地球化学性质可与我国以及世界上大部分地区出露的花岗岩相类比,但其εNd(t)高,为+2.2-+3.2,其中一部分花岗岩的87Sr/86Sr(t)也高,可达0.715.这可能是壳幔物质AFC式混合的结果,也可能是准噶尔地块及其两缘特殊地质环境的反映。  相似文献   

10.
The Duolong porphyry Cu–Au deposit (5.4 Mt at 0.72% Cu, 41 t at 0.23 g/t Au) was recently discovered in the southern Qiangtang terrane, central Tibet. Here, new whole‐rock elemental and Sr–Nd–Pb isotope and zircon Hf isotopic data of syn‐ and post‐ore volcanic rocks and barren and ore‐bearing granodiorite porphyries are presented for a reconstruction of magmas associated with Cu–Au mineralization. LA–ICP–MS zircon U–Pb dating yields mean ages of 117.0 ± 2.0 and 120.9 ± 1.7 Ma for ore‐bearing granodiorite porphyry and 105.2 ± 1.3 Ma for post‐ore basaltic andesite. All the samples show high‐K calc‐alkaline compositions, with enrichment of light rare earth elements (LREE) and large ion lithophile elements (LILE: Cs and Rb) and depletion of high field strength elements (HFSE: Nb and Ti), consistent with the geochemical characteristics of arc‐type magmas. Syn‐ and post‐ore volcanic rocks show initial Sr ratios of 0.7045–0.7055, εNd(t) values of −0.8 to 3.6, (206Pb/204Pb)t ratios of 18.408–18.642, (207Pb/204Pb)t of 15.584–15.672 and positive zircon εHf(t) values of 1.3–10.5, likely suggesting they dominantly were derived from metasomatized mantle wedge and contaminated by southern Qiangtang crust. Compared to mafic volcanic rocks, barren and ore‐bearing granodiorite porphyries have relatively high initial Sr isotopic ratios (0.7054–0.7072), low εNd(t) values (−1.7 to −4.0), similar Pb and enriched zircon Hf isotopic compositions [εHf(t) of 1.5–9.7], possibly suggesting more contribution from southern Qiangtang crust. Duolong volcanic rocks and granodiorite porphyries likely formed in a continental arc setting during northward subduction of the Bangong–Nujiang ocean and evolved at the base of the lower crust by MASH (melting, assimilation, storage and homogenization) processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
ABSTRACT

Abundant evidence points to the Cretaceous crust–mantle interaction and plate subduction in the Gan-Hang Tectonic Belt (GHTB), southeastern China, but the evolutionary process remains poorly constrained. Here we conduct a comprehensive study on Daqiaowu granitic porphyry and diabase dikes in the eastern GHTB, in conjunction with previous studies on simultaneous felsic and mafic rocks along the GHTB, to demonstrate their petrogenesis and geodynamic evolutionary process. The Daqiaowu granitic porphyry (125 Ma), as well as the coeval granitic rocks, exhibits high zircon saturation temperatures, alkalis, 104*Ga/Al ratios, and Zr + Nb + Ce + Y contents, concluding a distinctive belt of the Early Cretaceous (~137–125 Ma) A-type volcanic–intrusive rocks in the GHTB. Their εNd(t) and zircon εHf(t) values gradually increased through time from approximately ?9.0 to ?1.0 and ?10.0 to +4.0, respectively, implying increasing contribution of mantle-derived components to their formation, and hence progressively intensified crust–mantle interaction in an intra-arc rift environment (a geodynamic transition stage from continental arc to back-arc) during the Early Cretaceous. This plausibility is further supported by the Early Cretaceous Daqiaowu diabase dikes and coeval mafic rocks which exhibit arc-like magmatic signatures and were derived from mantle wedge. In contrast, the Late Cretaceous mafic rocks show ocean island basalt-like geochemical characteristics, reflecting a depleted asthenosphere mantle source. This discrepancy of mantle sources concludes that the geodynamic setting in the GHTB may have basically transferred to back-arc regime in the Late Cretaceous. Thus, the Cretaceous geodynamic evolutionary process in the GHTB can be defined as the Early Cretaceous gradually intensified crust–mantle interaction in a geodynamic transition stage (from continental arc to back-arc extension) and the Late Cretaceous back-arc extensional setting.  相似文献   

12.
The Late Cretaceous ükapili Granitoid including mafic microgranular enclaves intruded into metapelitic and metabasic rocks, and overlain unconformably by Neogene ignimbrites in the Ni de area of Turkey. It is mostly granite and minor granodiorite in composition, whereas its enclaves are dominantly gabbro with a few diorites in composition. The ükapili Granitoid is composed mainly of quartz, K-feldspar, plagioclase, biotite, muscovite and minor amphibole while its enclaves contain mostly plagioclase, amphibole, minor pyroxene and biotite. The ükapili Granitoid has calcalkaline and peraluminous (A/CNK= 1.0-1.3) geochemical characteristics. It is characterized by high LILE/HFSE and LREE/HREE ratios ((La/Lu) N = 3-33), and has negative Ba, Ta, Nb and Eu anomalies, resembling those of collision granitoids. The ükapili Granitoid has relatively high 87Sr/86Sr (i) ratios (0.711189-0.716061) and low εNd (t) values (-5.13 to -7.13), confirming crustal melting. In contrast, the enclaves are tholeiitic and metaluminous, and slightly enriched in LILEs (K, Rb) and Th, and have negative Ta, Nb and Ti anomalies; propose that they were derived from a subduction-modified mantle source. Based on mineral and whole rock chemistry data, the ükapili granitoid is H-(hybrid) type, post-collision granitoid developed by mixing/mingling processes between crustal melts and mantle-derived mafic magmas.  相似文献   

13.
The mid‐Cretaceous Spences Bridge Group (SBG) comprises a series of basaltic to rhyolitic lavas and related volcaniclastic rocks (Pimainus Formation) overlain by a succession of mainly amygdaloidal andesites (Spius Formation) related to the closure of the Methow–Tyaughton basin and accretion of the Insular terrane in the North American Cordillera. Geochemical variation in the SBG is related primarily to metasomatic processes in the mantle wedge. Pimainus lavas include low‐ to high‐K, tholeiitic and calc‐alkaline types, and have isotopic compositions (εNd(100Ma) = + 5.2 to + 7.0, εSr(100Ma) = − 10 to − 20, 206Pb/204Pb = 18.82 to 18.91, 207Pb/204Pb = 15.55 to 15.60, 208Pb/204Pb = 38.24 to 38.43) between the ranges for primitive arcs and accreted terrane crust. Crustal sources are identified only for some low–medium K dacite and rhyolite compositions. The occurrence of intermediate compositions with high MgO contents (up to 6 wt%) and the presence of adakitic trace element features in medium–high K felsic lavas attests to metasomatism of the mantle wedge by slab melts during Pimainus volcanism. Spius lavas have comparable K2O and Pb isotopic compositions to the Pimainus, even higher MgO (up to 9.2 wt%), and display a mild intraplate character in having up to 0.6 wt% P2O5, 15 ppm Nb, and 240 ppm Zr. Spius Nd−Sr isotopic compositions (εNd(100Ma) = + 5.3 to + 6.9, εSr(100Ma) = − 14 to − 25) define an array extending from Pimainus to alkaline seamount compositions. The low εSr values, elevated high field strength element contents, and moderate silica contents suggest Spius volcanism was related to the introduction of small melt fractions from the asthenosphere into the mantle wedge which had previously generated Pimainus melts. The range of compositional types in the Pimainus Formation constrains tectonic scenarios to include an elevated slab thermal regime, likely from approach of an ocean ridge system toward the continental margin. Spius volcanism may have been generated by asthenospheric upwelling triggered by slab window development or slab‐hinge roll‐back on closure of the Methow–Tyaughton basin. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
In the Panxi region of the Late Permian (~ 260 Ma) Emeishan large igneous province (ELIP) there is a bimodal assemblage of mafic and felsic plutonic rocks. Most Emeishan granitic rocks were derived by differentiation of basaltic magmas (i.e. mantle-derived) or by mixing between crustal melts and primary basaltic magmas (i.e. hybrid). The Yingpanliangzi granitic pluton within the city of Panzhihua intrudes Sinian (~ 600 Ma) marbles and is unlike the mantle-derived or hybrid granitic rocks. The SHRIMP zircon U–Pb ages of the Yingpanliangzi pluton range from 259 ± 8 Ma to 882 ± 22 Ma. Younger ages are found on the zircon rims whereas older ages are found within the cores. Field relationships and petrography indicate that the Yingpanliangzi pluton must be < 600 Ma, therefore the older zircons are interpreted to represent the protolith age whereas the younger analyses represent zircon re-crystallization during emplacement. The Yingpanliangzi granites are metaluminous and have negative Ta–NbPM anomalies, low εNd(260 Ma) values (? 3.9 to ? 4.4), and high ISr (0.71074 to 0.71507) consistent with a crustal origin. The recognition of a crustally-derived pluton along with mantle-derived and mantle–crust hybrid plutons within the Panxi region of the ELIP is evidence for a complete spectrum of sources. As a consequence, the types of Panxi granitoids can be distinguished according to their ASI, Eu/Eu*, εNd(T), εHf(T), TZr(°C) and Nb–TaPM values. The diverse granitic magmatism during the evolution of the ELIP from ~ 260 Ma to ~ 252 Ma demonstrates the complexity of crustal growth associated with LIPs.  相似文献   

15.
Mesozoic mafic dikes in the Gan-Hang tectonic belt (GHTB) provide an opportunity to explore both the nature of their mantle source(s) and the secular evolution of the underlying Mesozoic lithospheric mantle in the region. The geochronology and primary geochemical and Sr–Nd–Pb isotopic compositions of Group 1 (middle section of GHTB) and Group 2 (the rest of the section) dolerite dikes spanning the GHTB were investigated. K–Ar ages indicate that dikes of both groups were emplaced during the Cretaceous (131–69 Ma). The dikes are doleritic in composition and are enriched in both large ion lithophile elements (LILEs; e.g. Rb, Ba, and Pb) and light rare earth elements (LREEs), with a wide range of Eu anomalies, but are depleted in high field strength elements (HFSEs; e.g. Nb, Ta, and Ti) and heavy rare earth elements (HREEs). Dikes sampled in the middle section of the GHTB (Group 1) show more pronounced REE differentiation and a greater contribution from crustal material than those from the east and west sections (Group 2) and are similar to GHTB volcanic rocks in exhibiting a slight enrichment in LREEs. The dolerites are further characterized by a wide range in 87Sr/86Sr i ?=?0.7041–0.7110, 143Nd/144Nd i ?=?0.511951–0.512758, ?Nd t ?=?–10.4 to?+5.6, and Pb isotopic ratios (206Pb/204Pb i ?=?18.1–18.3, 207Pb/204Pb i ≈ 15.6, and 208Pb/204Pb i ?=?38.2–38.7). The dikes have undergone fractional crystallization of olivine, clinopyroxene, plagioclase, and Ti-bearing phases, except for dikes from the Anding area, which possibly experienced fractionation of plagioclase. Geochemically, all the dike samples originated from mantle sources ranging in composition from depleted to enriched that contained a component of foundered lower crust; crustal contamination during the ascent of these magmas was negligible. In the context of the late Mesozoic lithospheric extension across South China, mafic dike magmatism was likely triggered by the reactivation of deep faults, which promoted foundering of the lower crust and subsequent mantle upwelling in the GHTB.  相似文献   

16.
The origin of ferroan A-type granites in anorogenic tectonic settings remains a long-standing petrological puzzle. The proposed models range from extreme fractional crystallization of mantle-derived magmas to partial melting of crustal rocks, or involve combination of both. In this study, we apply whole-rock chemical and Sm-Nd isotopic compositions and thermodynamically constrained modeling (Magma Chamber Simulator, MCS) to decipher the genesis of a suite of A1-type peralkaline to peraluminous granites and associated intermediate rocks (monzodiorite-monzonite, syenite) from the southwestern margin of the Archean Karelia craton, central Finland, Fennoscandian Shield. These plutonic rocks were emplaced at ca. 2.05 Ga during an early stage of the break-up of the Karelia craton along its western margin and show trace element affinities to ocean island basalt-type magmas. The intermediate rocks show positive εNd(2050 Ma) values (+1.3 to +2.6), which are only slightly lower than the estimated contemporaneous depleted mantle value (+3.4), but much higher than average εNd(2050 Ma) of Archean TTGs (–10) in the surrounding bedrock, indicating that these rocks were essentially derived from a mantle source. The εNd(2050 Ma) values of the peralkaline and peraluminous granite samples overlap (–0.9 to +0.6 and –3.2 to +0.9, respectively) and are somewhat lower than those in the intermediate rocks, suggesting that the mafic magmas parental to granite must have assimilated some amount of older Archean continental crust during their fractionation, which is consistent with the continental crust-like trace element signatures of the granite members. The MCS modeling indicates that fractional crystallization of mantle-derived magmas can explain the major element characteristics of the intermediate rocks. The generation of the granites requires further fractional crystallization of these magmas coupled with assimilation of Archean crust. These processes took place in the middle to upper crust (∼2–4 kbar, ∼7–15 km) and involved crystallization of large amounts of clinopyroxene, plagioclase and olivine. Our results highlight the importance of coupled FC-AFC processes in the petrogenesis of A-type magmas and support the general perception that magmas of A-type ferroan granites become more peraluminous by assimilation of crust. They further suggest that variable fractionation paths of the magmas upon the onset of assimilation may explain the broad variety of A-type felsic and intermediate igneous rocks that is often observed emplaced closely in time and space within the same igneous complex.  相似文献   

17.
The 365-Ma You Yangs batholith is a mainly I-type monzogranitic body, containing rocks with both clinopyroxene and hornblende, but with a 2–2.5?km-wide rim of S-type rocks. In places, the margins of the intrusion wedge out laterally. A laccolithic shape may explain there being only low-grade contact metamorphism of the Ordovician metasedimentary wall rocks. The chemical and isotopic characteristics of the granitic rocks suggest that the magmas formed by partial melting of a source that contained some meta-igneous rocks but was dominated by chemically immature metasedimentary types, to impart an evolved Sr isotope signature (87Sr/86Srt?=?0.70877–0.71066 for the main monzogranitic rocks), combined with relatively non-radiogenic εNdt (–2.4 to –1.9). Crystal fractionation played little role in shaping the compositions of the granitic magmas, with the main variations interpreted to be source-inherited. Igneous-textured microgranular enclaves (IMEs) are prominent in the monzogranitic rocks. The IMEs probably had an ultimate enriched-mantle source, and their magmas did not mix significantly with the crustally derived granitic host magmas. The characteristics of the monzogranitic rocks hosting the enclaves suggest the possibility that an unrecognised metasediment-dominated terrane of ancient arc crust may be present beneath the Bendigo Zone.  相似文献   

18.
Most porphyry Cu deposits in the world occur in magmatic arc settings and are formed in association with calc-alkaline arc magmas related to subduction of oceanic lithosphere. This contribution reviews a number of significant porphyry Cu deposits in the eastern Tethyan metallogenic domain. They widely occur in a variety of non-arc settings, varying from post (late)-collisional transpressional and extensional environments to intracontinental extensional environments related to orogenic and anorogenic processes. Their spatial–temporal localization is controlled by strike–slip faults, orogen-transverse normal faults, lineaments and their intersections in these non-arc settings. These deposits are dominated by porphyry Cu–Mo deposits with minor porphyry Cu–Au and epithermal Au deposits, and exhibit a broad similarity with those in magmatic arcs. The associated magmas are generally hydrous, relatively high fO2, high-K calc-alkaline and shoshonitic, and show geochemical affinity with adakites. They are distinguished from arc magmas and/or oceanic-slab derived adakites, by their occurrence as isolated complexes, high K2O contents (1.2–8.5%), and much wider range of εNd(t) values(? 10 to + 3) and positive εHf(t) values (+ 4.6 to + 6.9). These potassic magmas are most likely formed by partial melting of thickened juvenile mafic lower-crust or delaminated lower crust, but also involving various amounts of asthenospheric mantle components. Key factors that generate hydrous fertile magmas are most likely crust/mantle interaction processes at the base of thickened lower-crust in non-arc settings, rather than oceanic-slab dehydration (as in arc settings). Breakdown of amphibole in thickened lower crust (e.g., amphibole eclogite and garnet amphibolite) during melting is considered to release fluids into the fertile magmas, leading to an elevated oxidation state and higher H2O content necessary for development of porphyry Cu–Mo–Au systems. Copper and Au in hydrous magmas are likely derived from mantle-derived components and/or melts, which either previously underplated and infiltrated at the base of the thickened lower crust, or were input into the primitive magmas by melt/mantle interaction. In contrast, Mo and (part of the) S in the fertile magmas are probably supplied by old crust during melting and subsequent ascent.  相似文献   

19.
The Aqishan-Yamansu belt in the Eastern Tianshan (NW China) contains many intermediate to felsic intrusive rocks and spatially and temporally associated Fe (-Cu) deposits. Zircon U-Pb dating of the Bailingshan granitoids, including diorite enclaves (in granodiorite), diorite, monzogranite and granodiorite, and andesitic tuff from the Shuanglong Fe-Cu deposit area yielded ages of 329.3 ± 2.1 Ma, 323.4 ± 2.6 Ma, 313.0 ± 2.0 Ma, 307.5 ± 1.7 Ma and 318.0 ± 2.0 Ma, respectively. These new ages, in combination with published data can be used to subdivide magmatism of the Bailingshan intrusive complex into three phases at ca. 329–323 Ma, ca. 318–313 Ma and ca. 308–297 Ma. Of the analyzed rocks of this study, the Shuanglong diorite enclave, diorite and andesitic tuff show calc-alkaline affinities, exhibiting LILE enrichment and HFSE depletion, with negative Nb and Ta anomalies. They have high MgO contents and Mg# values, with depleted εHf(t) and positive εNd(t) values, similar crustal-derived Nb/Ta and Y/Nb ratios, low Th/Yb and Th/Nb, and high Ba/La ratios, which are consistent with them being sourced from a depleted mantle wedge metasomatized by slab-derived fluids and crustal contamination. However, the monzogranite and granodiorite are metaluminous with characteristics of low- to high-K calc-alkaline I-type granites. The granitic rocks are enriched in LILE, depleted in HFSE and have significant Eu anomalies, with high Y contents and low Sr/Y ratios, resembling typical of normal arc magmas. Depleted εHf(t) and positive εNd(t) values with corresponding young TDMC ages of zircons, as well as Nb/Ta, Y/Nb, Th/U and La/Yb ratios suggest that the granitic rocks were probably formed by re-melting of juvenile lower crust or pre-existing mantle-derived mafic–intermediate igneous rocks. Integrating published data, we conclude that the Bailingshan granitoids (excluding the Shuanglong diorite and diorite enclave) were derived from re-melting of juvenile lower crust and mantle-derived mafic–intermediate igneous rocks, with mantle components playing a more prominent role in the formation of the younger and more felsic rocks. A comprehensive review, including our new data, suggests that the Aqishan-Yamansu belt formed as a fore-arc basin during the Carboniferous (ca. 350–300 Ma) when the Kangguer oceanic slab subducted beneath the Yili-Central Tianshan block. The ongoing southward subduction of the slab resulted in the closure of the Aqishan-Yamansu fore-arc basin (ca. 320–300 Ma), due to slab steepening and rollback followed by slab breakoff and rebound. During the Aqishan-Yamansu fore-arc basin inversion, the main phase of the Bailingshan granitoids emplaced in the Aqishan-Yamansu belt, accompanied by contemporary Fe and Fe-Cu mineralization.  相似文献   

20.
Isotopic analyses of Nd and Sr on individual microtektites and a bulk microtektite sample from Barbados show them to have a very well defined isotopic composition. These data plot on an εSrεNd diagram precisely within the narrow field determined by North American tektites (εSr ≈ 111; εNd ≈ ?6.2). They yield an Nd model age of 0.6 AE. These results show that the microtektites from the Oceanic beds of late Eocene age are derived from the same target as the North American tektites and should be associated with the same event. Samples of the deep sea sediments in which the Barbados microtektites occur are found to have isotopic signatures which appear to reflect ambient sea water and detrital sediments. They cannot be the source of Sr or Nd in the tektites. Following the arguments of Shaw and Wasserburg (1982) we conclude that the target area which produced the North American tektite field was composed of sediments (Eocambrian or younger) derived from very late Precambrian crust. Glass beads from Lake Wanapitei Crater are isotopically different from all other tektites (εSr ≈ 960; εNd ≈ ?31.4) and cannot be related to the North American tektites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号