首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
地埋管与土相互作用分析模型及其参数确定   总被引:9,自引:3,他引:6  
刘全林  杨敏 《岩土力学》2004,25(5):728-731
对地埋管道结构分析,考虑管道与土的相互作用问题是非常必要的。其相互作用问题可归结为界面处接触应力的确定,为此,基于地埋管道受力特征的实测结果,建立了地埋管道与土的相互作用分析组合模型,并给出了模型参数的确定方法。由于管与土和管与基床的相对刚度对管土接触面上分布应力的影响显著,在确定其相互作用模型参数时,利用实测结果对其进行了修正,从而,将管道刚度的影响融入到相互作用分析模型中。  相似文献   

2.
地埋管道与土相互作用平面分析与计算方法   总被引:1,自引:0,他引:1  
刘全林 《岩土力学》2007,28(1):83-88
地埋管道上实测的土压力并不是按现行计算方法假定形状分布的,其分布形式与管土的相对刚度及施工埋设方式密切相关。为此,依据现场实测和模型试验得到的地埋管道受力特征,在平面应变条件下,采用建立的管-土相互作用分析Vlazov模型来模拟管-土之间的相互作用,考虑管道不同的埋设条件、管周的不同充填介质及管-土相互作用引起的土压力状态等情况,建立了地埋管与土相互作用平面问题的传递矩阵分析法。并设计了可视化计算机软件,实现了计算手段的创新。运用此软件对现场埋管工程作了分析计算,并与实测结果进行比较,验证了所建立的计算方法的正确性。  相似文献   

3.
管土相互作用土箱模型实验设计   总被引:1,自引:0,他引:1  
随着给排水管道埋深的增加,土压力对管道受力状态的影响也越显著。这要求设计和施工人员对管土相互作用有更深入的认识,并能准确地计算作用在管道上土压力的标准值。埋地管道管周土压力分布规律、管道内部应力特征、管道破坏机理以及填土对管道受力状态的影响是管道设计和施工的主要影响因素。土箱模型实验可用于研究和解决上述问题,介绍并分析了管土相互作用土箱实验系统设计原理。土箱模型实验的设计包括管土受力模型的简化、土箱尺寸的设计、土箱加载方式的选择、土箱侧壁摩擦阻力和箱壁变形的评价、物理量的量测以及实验土体的选择与填筑等。土箱模型实验设计的关键是要保证设计出来的土箱中管土单元的受力状态仍然是简单的三向受力状态。  相似文献   

4.
上埋式管道上竖向土压力计算的探讨   总被引:15,自引:2,他引:15  
刘全林  杨敏 《岩土力学》2001,22(2):214-218
作用于上埋式管道的竖向上压力受管土相对刚度及基床形式的影响,而目前的一些计算方法均未考虑这两大因素,如对钢管和钢筋混凝土管道采用完全相同的计算公式,使计算结果与实测结果有一定的差距,为此,利用实测数据分析这两大因素的影响程度,最后根据实测结果,假定管道变形所引起土滑动破坏的形状,提出了土压力的计算模型,推导出了计算公式,公式被实测结果所验证,可供管道工程设计参考。  相似文献   

5.
场地和断层对埋地管道破坏的影响分析   总被引:7,自引:3,他引:4  
朱庆杰  陈艳华  蒋录珍 《岩土力学》2008,29(9):2392-2396
场地条件和断层活动是埋地管道破坏的主要原因,避免因为场地岩土和断层的影响而造成管道破坏,是城市地下生命线工程建设中急需解决的问题。采用ADINA软件的Parasolid建模方式,通过定义合适的体类型和布尔操作,建立了埋地管道破坏分析的几何模型,实现了土体-断层-管道破坏有限元建模。借助模型参数选择,确定了基岩与岩土性质、管道特性等模型参数;定义了管-土摩擦和约束条件、地震波和断层位移荷载等。依据计算结果,分析了场地条件和断层参数对地下管道地震破坏的影响;结果表明:管道埋藏越深,断层断距越大,管道的变形越大,破坏越严重。给出了管-土摩擦系数和断层与管道交角的最优值,并给出了几点工程建议。  相似文献   

6.
开采沉陷区埋地管道力学反应分析   总被引:2,自引:0,他引:2  
王晓霖  帅健  张建强 《岩土力学》2011,32(11):3373-3378
开采沉陷引发地表变形,导致埋地管道大范围弯曲变形,对管道安全运行构成严重威胁。采用概率积分法预测沉陷区地表三维变形,考虑管-土间的轴向作用和管材非线性等因素,推导管道物理伸长和几何伸长的变形协调方程,迭代求解管道轴心应力和应变。通过实例分析了开采沉陷区埋地管道的应力-应变分布。结果表明,管道除了发生空间弯曲变形外,管-土间的摩擦力还导致管道产生轴向拉、压变形。解析方法计算结果与有限元方法吻合较好,适于以任意角度穿越沉陷区埋地管道的应力-应变计算。分析了开采参数、管道参数以及回填土性质等对管道的变形和应力影响,提出沉陷区埋地管道最大应力与应变的简化评定公式  相似文献   

7.
土-结爆炸冲击相互作用模爆试验相似设计方法   总被引:8,自引:0,他引:8  
模爆试验是研究爆炸冲击荷载作用下地基动力性能、土-结爆炸冲击相互作用及埋地防护结构抗爆能力与破坏机理等的重要手段之一。模型相似设计是确保模爆试验能够尽可能真实地反映原型爆炸冲击动力性状的关键之一。以上覆饱和砂土层对浅埋地下圆拱直墙式防护隧道免遭炸弹触地爆炸触发地冲击波破坏的保护效应为研究目的,基于目前广泛应用的Bockinghamπ定理,采用量纲分析方法,并且结合考虑土-结体系非线性爆炸冲击动力响应、土-结接触面爆炸冲击动力响应以及爆炸地冲击波-结构动力相互作用等的相似性,求解土-结爆炸冲击相互作用模爆试验的模型设计相似关系。  相似文献   

8.
周恩全  宗之鑫  王琼  陆建飞  左熹 《岩土力学》2020,41(4):1388-1395
埋地管道在交通荷载等作用下会发生破坏,对区域内的经济和生活造成较大的影响。近年来废弃橡胶轮胎颗粒与土混合成轻质土逐渐被用于路基填料等领域。设计完成了冲击动载下橡胶?粉土轻质混合土中管道动力响应特性的模型试验,采用等体积置换法在地基土中掺入0%、10%、20%、30%的废轮胎颗粒,通过路基的表层沉降以及埋地管道的变形特性来研究轻质混合土作为路基填料的减振性能。试验结果表明,加入橡胶颗粒能有效减小路基表层沉降,当橡胶含量10%时,路基沉降减小最明显;埋地管道在冲击动载的作用下表现出“压扁”的形态特征,加入橡胶颗粒能明显减小埋地管道的应变及弯矩响应,当橡胶含量为20%和30%时,管道的应变和弯矩减小更为明显。  相似文献   

9.
我国城市化、工业化进程对地下管线的依赖性和需求越来越强,但是近年来相关的重大安全事故频发,亟待加强对管道破坏机理及管-土相互作用的研究。本文基于准分布式光纤布拉格光栅(FBG)技术,在室内开展了一系列平面应变模型试验,利用光纤应变传感器监测了地表加载作用下埋地管道的受力变形特征,据此提出了由应变测值反演管周土压力的计算方法;同时,利用粒子图像测速(PIV)技术获取了管道周边土体的变形规律,并和光纤监测结果进行了对比分析。试验结果表明:采用FBG传感技术,可以有效获取管周土压力分布及土体应变的演化过程;不同埋深率情况下管周土体的变形破坏模式有较大的不同,土拱效应随管道埋深增大而变得更加显著。相关结论为进一步认识埋地管道的灾变机理、提高监测预警水平,提供了一定的参考。  相似文献   

10.
断层、滑坡、液化等地质灾害引起的场地大变形对埋地管道结构安全产生严重的威胁。开展了中密砂中埋地管道−砂土水平横向相互作用的系列三维数值模拟,根据数值模拟的结果探讨了不同深径比下管−砂土横向相互作用时土体的破坏模式,研究了深径比对砂土极限承载力的影响。基于管周土体的破坏模式建立了简化计算模型,根据极限平衡理论推导了管道水平横向运动时砂土极限承载力计算公式。研究结果表明:极限状态下,浅埋管道周围土体形成延伸到地表的破裂面,轮廓线近似对数螺线;砂土的极限承载力随着深径比增加,最终在临界深径比处达到稳定;随着深径比的增加,土体发生剪切滑动破坏所需的管道位移也逐渐增大;由于横向承载力系数取值依据不同,国内外规范计算所得土体极限承载力差异较大;得到的解析解能够较好地预测中密砂土中浅埋管道水平横向运动时土体的极限承载力。  相似文献   

11.
The response of box culverts to static loads is controlled by soil arching. Soil arching is a result of a complex soil culvert interaction (SCI) due to the relative stiffness between the culvert and the surrounding soil, and is a critical consideration in culvert design. The factors that affect soil arching on box culverts include the soil height above the culvert, the geometrical configuration of the box culvert and the properties of the soil around it. Box culverts are typically designed using formulae that assume simplified behaviors and in some cases rely on considerable empiricism. In the present study, small scale centrifuge physical model tests were conducted to investigate SCI considering the height and density of soil above the culvert and the geometry of the culvert. The results of these centrifuge tests were used to calibrate and verify a numerical model that was used to further investigate the response of box culverts to static loads. The results have been evaluated for bending moment and soil culvert interaction factors. The results demonstrated that the soil culvert interaction factors are not only a function of the height of soil column above the culvert, but also a function of the culvert thickness, soil elastic modulus and Poisson’s ratio. Therefore, the results were used to establish charts and equations that can be employed to assess the design values of the static soil pressure and static bending moment for box culverts.  相似文献   

12.
The effects of frictional forces acting on the sidewalls of buried box culverts are presented as determined with finite element method (FEM) and detailed soil modelling. The possibility of reducing earth pressure on deeply buried concrete box culverts by the imperfect trench installation (ITI) method has been contemplated during the last several decades. There have been limited research results published primarily regarding the qualitative aspect of load reduction in ITIs. It was found during the course of this study that significant frictional forces develop along the sidewalls of box culverts and adjacent sidefills in ITIs. Current American Association of State Highway and Transportation Officials provisions do not consider these frictional forces, but they cannot be neglected in ITIs, as their effect is dominant. An optimum geometry for the soft zone in ITIs is presented to maximize earth load reductions. The soil–structure interaction at the box culvert–soil interface was found to have a significant effect on total earth pressure acting on the bottom slab. Predictor equations for earth load reduction rates were formulated for ITIs incorporating the optimum soft zone geometry based on the FEM. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
地基土承受超载作用时就会产生沉降,在土体沉降作用下埋置于其中的管道,管壁就会产生变形甚至破裂。为分析地面超载对临近地下管线的影响,基于温克勒(Winkler)弹性地基短梁理论,应用Boussinesq解,考虑地面超载引起下卧层的沉降及地基土体的侧向移动对管道的影响,建立地面超载对埋地管道影响的分析计算模型,并采用有限差分法进行求解;通过算例分析了超载大小、位置,管道刚度、埋深、管径以及土体性质对埋地管道位移的影响;结果表明:超载大小、管道的刚度、埋深、管径对地下管道位移的影响较大,而当地基基床系数和超载离管道的距离增大到一定值时,地面超载对其影响将减弱。因此,需要考虑邻近超载对管道的影响,合理制定埋地管道的保护措施。  相似文献   

14.
任建亭  侯庆志 《岩土力学》2008,29(3):645-650
考虑土体-结构-流体耦合作用,研究流体脉动对浅埋输液管道轴向应力的影响.基于流固耦合、管-土耦合理论,建立了浅埋管道动力学分析模型,应用力平衡条件,推导了浅埋管道的静力及动力方程,并利用行波方法求取了动力方程的解析解.在此基础上,研究了管道应力特性.结果表明:流固耦合对浅埋管道应力有较大影响,较小幅值的压力脉动可使管道应力大幅增加.同时,讨论了管道埋深、土质条件及管道半径对管道应力的影响.在相同流体脉动激励下,管道应力随覆盖层厚度、土体刚度、管道半径增加而减小.  相似文献   

15.
顶管施工对邻近地下管线的影响预测分析   总被引:3,自引:0,他引:3  
魏纲  朱奎 《岩土力学》2009,30(3):825-831
采用通用Peck公式计算顶管施工引起的地下管线平面处的土体竖向位移。对地下管线的受力模型进行简化,基于Winkler地基模型,得到地下管线由于顶管开挖引起的极限弯矩、理论弯矩以及管线变形的计算方法。通过算例分析,与连续弹性解、Attewell解和王涛解的计算结果进行比较,探讨了土质条件、管线材质、管线埋深、管线管径对地下管线受力的影响。计算结果表明,本方法适用于各种土质,可较好地预估管线所受弯矩,且不会低估管线所受的最大弯矩;在相同条件下,管线埋深越大承受的弯矩也越大,但埋深仅对最大正弯矩和最大负弯矩位置附近处的管线影响较大,对其余部位影响较小;管线抗弯刚度越大,管线承受的极限弯矩和影响范围也越大;管线管径越大,管线承受的弯矩也越大。  相似文献   

16.
张业勤  陈保国  孟庆达  徐昕 《岩土力学》2019,40(12):4813-4818
针对现有的理论方法主要关注涵顶土压力而未能考虑涵洞侧墙摩擦阻力对高填方涵洞结构受力状态的影响,提出了完整的减载条件下涵?土作用机制模型,推得涵洞侧墙摩擦力及基底压力的计算式。并将该理论方法的计算结果与数值模拟结果进行了比对,验证了该理论方法的正确性。研究结果表明,侧墙摩擦力沿墙身深度近似呈线性增加,并随填土高度的增加而增大;相同填土高度时,减载条件下的侧墙摩擦力大于非减载条件下侧墙摩擦力;采用减载措施虽然降低了涵顶垂直土压力,但是增大了涵测水平土压力,基底压力并未减小,现有的减载理论方法中不考虑侧墙摩擦力的影响是不合理的。  相似文献   

17.
钢筋混凝土箱涵竖向土压力理论研究 ——梯形沟谷设涵   总被引:2,自引:0,他引:2  
陈保国  焦俊杰  宋丁豹 《岩土力学》2013,34(10):2911-2918
梯形沟谷设涵在山区公路和铁路建设中的应用非常广泛。然而,目前规范中尚无梯形沟谷设涵的设计方法。现有的研究主要针对上埋式和沟埋式涵洞,对天然梯形沟谷埋设涵洞时的涵洞受力性状的研究甚少。通过数值模拟得出梯形沟谷设涵时,钢筋混凝土箱型涵洞顶部填土内的应力状态和土拱的分布规律。在此基础上建立理论模型,推导涵洞土压力理论计算式,并验证理论方法的正确性。此外,对涵顶土压力的影响因素进行了参数研究。结果表明,梯形沟谷设涵时涵洞的受力状态不同于上埋式和沟埋式两种情况。当涵顶填土高度到达临界高度时,填土中会形成上、下两层土拱。下层土拱效应使涵顶产生土压力集中,上层土拱效应会减小涵顶的土压力集中。涵顶土压力的大小取决于涵顶的填土高度、沟谷坡角、沟谷宽度、涵洞的几何尺寸及填土的性质。  相似文献   

18.
顶管施工对相邻平行地下管线位移影响因素分析   总被引:6,自引:2,他引:4  
余振翼  魏纲 《岩土力学》2004,25(3):441-445
顶管施工引起的管道周围土体移动会对相邻地下管线造成危害。采用三维有限元方法分析了顶管施工引起的相邻平行地下管线的位移,研究了注浆、纠偏、离顶管距离的远近、地下管线埋深、管线与土体弹性模量比及不同管材对地下管线位移的影响。计算结果表明,注浆与纠偏压力越大,地下管线的位移越大;地下管线距离顶管越远,引起的位移越小;地下管线弹性模量越小,产生的位移越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号