首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Abstract Widespread ultra-high-P assemblages including coesite, quartz pseudomorphs after coesite, aragonite, and calcite pseudomorphs after aragonite in marble, gneiss and phengite schist are present in the Dabie Mountains eclogite terrane. These assemblages indicate that the ultra-high-P metamorphic event occurred on a regional scale during Triassic collision between the Sino-Korean and Yangtze cratons. Marble in the Dabie Mountains is interlayered with coesite-bearing eclogite and gneiss and as blocks of various size within gneiss. Discontinuous boudins of eclogite occur within marble layers. Marble contains an ultra-high-P assemblage of calcite/aragonite, dolomite, clinopyroxene, garnet, phengite, epidote, rutile and quartz/coesite. Coesite, quartz pseudomorphs after coesite, aragonite and calcite pseudomorphs after aragonite occur as fine-grained inclusions in garnet and omphacite. Phengites contain about 3.6 Si atoms per formula unit (based on 11 oxygens). Similar to the coesite-bearing eclogite, marble exhibits retrograde recrystallization under amphibolite–greenschist facies conditions generated during uplift of the ultra-high-P metamorphic terrane. Retrograde minerals are fine grained and replace coarse-grained peak metamorphic phases. The most typical replacements are: symplectic pargasitic hornblende + epidote after garnet, diopside + plagioclase (An18) after omphacite, and fibrous phlogopite after phengite. Ferroan pargasite + plagioclase, and actinolite formed along grain boundaries between garnet and calcite, and calcite and quartz, respectively. The estimated peak P–T conditions for marble are comparable to those for eclogite: garnet–clinopyroxene geothermometry yields temperatures of 630–760°C; the garnet–phengite thermometer gives somewhat lower temperatures. The minimum pressure of peak metamorphism is 27 kbar based on the occurrence of coesite. Such estimates of ultra-high-P conditions are consistent with the coexistence of grossular-rich garnet + rutile, and the high jadeite content of omphacite in marble. The fluid for the peak metamorphism was calculated to have a very low XCO2 (<0.03). The P–T conditions for retrograde metamorphism were estimated to be 475–550°C at <7 kbar.  相似文献   

2.
Samples of the metagranodiorite from M.  Mucrone (Sesia zone, Western Alps) show pseudomorphic and coronitic textures where the igneous minerals were partially replaced by high-pressure metamorphic assemblages. The original magmatic paragenesis consisted of quartz, plagioclase, K-feldspar, biotite and minor phases. During the eclogitic event the original plagioclase was fully replaced by zoisite, jadeite and quartz ± K-feldspar pseudomorphic symplectites and the biotite was in part replaced by phengitic mica. Moreover, a composite corona often developed around the biotite. This corona consists of a layer of phengite I and garnet and, where the igneous biotite and feldspars were in contact, of an outer layer of phengite II intergrown with quartz. Biotite, phengite and K-feldspar are homogeneous while garnet shows a strong composition zoning recording the kinetics of the metamorphic reactions. A numerical simulation of the observed garnet zoning is performed assuming that intercrystalline diffusion and plagioclase resorption were the slowest rate-determining processes during the prograde P-T path. The metamorphic paragenesis constrains the P-T path chosen in the simulation. The comparison between measured and calculated garnet zoning permits evaluation of the relative weights of interface kinetics, grain-boundary and lattice diffusion. Received: 26 November 1997 / Accepted: 6 August 1999  相似文献   

3.
High‐pressure (HP) granulites and eclogitized metagabbro are exposed along an orogen‐parallel high‐P belt that was developed at c. 1050–1020 Ma in the NE Grenville Province. Among these rocks, mafic granulites derived from a Labradorian anorthosite suite of the Lelukuau terrane contain garnet, Al‐Na diopside, and, depending on bulk composition, plagioclase and kyanite. Moreover, the distribution of phases is influenced by the original igneous texture. For instance, in high XMgO leucocratic varieties, garnet porphyroblasts nucleated together with kyanite in An‐rich cores of plagioclase domains whereas in low XMgO rocks garnet occurs together with clinopyroxene within formerly igneous ferromagnesian domains and kyanite is missing. In contrast, garnet pseudomorphs after igneous plagioclase in melanocratic varieties display evidence of earlier corona development. Metamorphic textures are consistent with a two stage evolution: (a) development of garnet and Al‐Na‐diopside (Cpx1) under high‐P metamorphic conditions, concomitant with elimination of plagioclase in the mesocratic to melanocratic varieties; and (b) partial loss of Al‐Na from Cpx1 resulting in production of new andesitic plagioclase, and growth of new clinopyroxene (Cpx2) after garnet and quartz in leucocratic to mesocratic rocks consistent with decompression. Widespread equilibrium textures between garnet‐Pl2‐Cpx2 and/or reset Cpx1 are consistent with development at the thermal peak. Estimated P–T conditions for the presumed thermal peak fall in the range 1500–1800 MPa and 800–900 °C and are comparable to those recorded by eclogitized gabbros from other parts of the high‐P belt of the NE Grenville province. Low jadeite content of clinopyroxene from the HP granulites is attributed to the low bulk Na2O/(Na2O + CaO) of these rocks relative to common basaltic compositions. Scarcity of apparent retrograde textural overprint in both the HP granulites and the eclogites suggests fast subsequent cooling, consistent with extrusion of the high‐P belt towards the foreland shortly after the metamorphic peak.  相似文献   

4.
An ultra-high-pressure (UHP) metamorphic slab at Yangkou Beach near Qingdao in the Sulu region of China consists of blocks of eclogite facies metagabbro, metagranitoid, ultramafic rock and mylonitic orthogneisses enclosed in granitic gneiss. A gradational sequence from incipiently metamorphosed gabbro to completely recrystallized coesite eclogite formed at ultra-high-pressures was identified in a single 30 m block; metagabbro is preserved in the core whereas coesite eclogite occurs along the block margins. The metagabbro contains an igneous assemblage of Pl+Aug+Opx+Qtz+Bt+Ilm/Ti-Mag; it shows relict magmatic textures and reaction coronas. Fine-grained garnet developed along boundaries between plagioclase and other phases; primary plagioclase broke down to Ab+Ky+Ms+Zo±Grt±Amp. Augite is rimmed by sodic augite or omphacite, whereas orthopyroxene is rimmed by a corona of Cum±Act and Omp+Qtz layers or only Omp+Qtz. In transitional rocks, augite and orthopyroxene are totally replaced by omphacite, and the lower-pressure assemblage Ab+Ky+Phn+Zo+Grt coexists with domains of Omp (Jd70–73)+Ky±Phn in pseudomorphs after plagioclase. Both massive and weakly deformed coesite-bearing eclogites contain Omp+Ky+Grt+Phn+Coe/Qtz+Rt, and preserve a faint gabbroic texture. Coesite inclusions in garnet and omphacite exhibit limited conversion to palisade quartz; some intergranular coesite and quartz pseudomorphs after coesite also occur. Assemblages of the coronal stage, transitional and UHP peak occurred at about 540±50 °C at c. 13 kbar, 600–800 °C at ≥15–25 kbar and 800–850 °C at >30 kbar, respectively. Garnet from the coronal- through the transitional- to the eclogite-stage rocks show a decrease in almandine and an increase in grossular±pyrope components; garnet in low-grade rocks contains higher MnO and lower pyrope components. The growth textures of garnet within pseudomorphs after plagioclase or along grain boundaries between plagioclase and other phases are complex; the application of garnet zoning to estimate P–T should be carried out with caution. Some garnet enclosing quartz aggregates as inclusions shows radial growth boundaries; these quartz aggregates, as well as other primary and low-P phases, persisted metastably at UHP conditions due to sluggish reactions resulting from the lack of fluid during prograde and retrograde P–T evolution.  相似文献   

5.
Sm---Nd isotopic systems have been studied in: (1) a sequence of coronitic olivine gabbros showing different degrees of transition to eclogite; (2) coronitic leuco-gabbro norite; and (3) country-rock eclogite, all from the Nordøyane-Brattvåg area, western Norway. Isochrons defined by combinations of whole-rock samples and relict igneous phases give ages of 1198 ± 56 and 1289 ± 48 Ma (olivine gabbro) and 926 ± 70 Ma (leuco-gabbro norite) and have been interpreted in terms of two different episodes of igneous intrusion.

In gabbro with advanced corona formation, relict augite tends to retain its original Nd isotopic composition, while plagioclase may show selective disturbance related to recrystallization and partial replacement by garnet. In completely eclogitized samples, there is a correlation between the degree of isotopic equilibrium and microstructural equilibrium. Whole-rock eclogites occurring within gabbro are characterized by pseudomorphs after igneous phases, and preserve original igneous Nd isotopic composition. Results for eclogite minerals suggest Caledonian ages, but these phases have not achieved complete isotopic equilibrium. In contrast, Nd isotopic systems in texturally equilibrated and strongly deformed eclogite within adjacent gneisses have been disturbed on a whole-rock scale. Minerals from an external eclogite define a Sm---Nd isochron with an age of 400 ± 16 Ma which is interpreted to date synkinematic eclogite equilibration at high-P and -T conditions.  相似文献   


6.
Detailed X‐ray compositional mapping and microtomography have revealed the complex zoning and growth history of garnet in a kyanite‐bearing eclogite. The garnet occurs as clusters of coalesced grains with cores revealing slightly higher Ca and lower Mg than the rims forming the coalescence zones between the grains. Core regions of the garnet host inclusions of omphacite with the highest jadeite, and phengite with the highest Si, similar to values in the cores of omphacite and phengite located in the matrix. Therefore, the core compositions of garnet, omphacite, and phengite have been chosen for the peak pressure estimate. Coupled conventional thermobarometry, average P–T, and phase equilibrium modelling in the NCKFMMnASHT system yields P–T conditions of 26–30 kbar at 800–930°C. Although coesite is not preserved, these P–T conditions partially overlap the coesite stability field, suggesting near ultra‐high–pressure (UHP) conditions during the formation of this eclogite. Therefore, the peak pressure assemblage is suggested to have been garnet–omphacite–kyanite–phengite–coesite/quartz–rutile. Additional lines of evidence for the possible UHP origin of the Mi?dzygórze eclogite are the presence of rod‐shaped inclusions of quartz parallel to the c‐axis in omphacite as well as relatively high values of Ca‐Tschermak and Ca‐Eskola components. Late zoisite, rare diopside–plagioclase symplectites rimming omphacite, and minor phlogopite–plagioclase symplectites replacing phengite formed during retrogression together with later amphibole. These retrograde assemblages lack minerals typical of granulite facies, which suggests simultaneous decompression and cooling during exhumation before the crustal‐scale folding that was responsible for final exhumation of the eclogite.  相似文献   

7.
Permian‐aged metagabbros from the eclogite type‐locality in the eastern European Alps were partially to completely transformed to eclogite during Eoalpine intracontinental subduction. Microtextures developed along a preserved fluid infiltration and reaction front in the gabbros record the incipient gabbro‐to‐eclogite transition, allowing the details of the eclogitization process to be investigated. Original, anorthite‐rich igneous plagioclase is pervasively replaced by fine‐grained intergrowths of clinozoisite, kyanite and Na‐rich plagioclase. Where plagioclase was in contact with igneous orthopyroxene, 100–200 μm thick bimineralic coronae of symplectic kyanite and diopsidic clinopyroxene form along the edges of the grains. The rims of igneous orthopyroxene develop a complementary bimineralic corona of diopsidic clinopyroxene and garnet. Igneous clinopyroxene does not show any breakdown textures; however, jadeite content gradually increases towards the rims. In addition, exsolution lamellae inherited from the igneous clinopyroxene become progressively more jadeitic as eclogitization proceeds. Given that the igneous plagioclase is pervasively replaced by clinozoisite, kyanite and Na‐rich plagioclase, whereas kyanite–diopside symplectites are confined to narrow rim zones, we suggest that the development of these textures was controlled by the (im)mobility of different elements on different length scales. The presence of hydrous minerals in the core of anhydrous plagioclase indicates that H2O diffusivity occurred on a mm‐scale. By contrast, the size of the anhydrous diopside–kyanite and diopside–garnet symplectites indicate that Fe–Mg–Ca–Na diffusivity was limited to a 10s of μm scale. Chemical potential relations calculated in the idealized NCASH chemical system show that the clinozoisite–kyanite–albite intergrowths formed due to an increase of μH2O to plagioclase, whereas all other elements remained effectively immobile on the scale of this texture. Fluid conditions indicated by this texture span from virtually dry conditions (0.15) to H2O‐saturation, and therefore does not imply that the rocks were ever fluid‐saturated. Calculations in the CMAS and NCFMAS systems show that the gabbro‐to‐eclogite transition is characterized by the growth of garnet, diopsidic clinopyroxene and kyanite due to diffusion of Ca (+ Na) and Mg (+ Fe) along a μCaO (+ Na2O)–μMgO (+ FeO) chemical potential gradient developed between orthopyroxene and plagioclase compositional domains. The anhydrous nature of the textures indicate that the gabbro‐to‐eclogite transition is not driven by hydration; however, increased μH2O acts as a catalyst that increases diffusivity of all elements and rates of dissolution–precipitation, allowing the overstepped metamorphic reactions to occur. Our results show that crustal eclogite formation requires low H2O content, confirming that true eclogites are dry rocks.  相似文献   

8.
In the North‐East Greenland Caledonides, P–T conditions and textures are consistent with partial melting of ultrahigh‐pressure (UHP) eclogite during exhumation. The eclogite contains a peak assemblage of garnet, omphacite, kyanite, coesite, rutile, and clinozoisite; in addition, phengite is inferred to have been present at peak conditions. An isochemical phase equilibrium diagram, along with garnet isopleths, constrains peak P–T conditions to be subsolidus at 3.4 GPa and 940°C. Zr‐in‐rutile thermometry on inclusions in garnet yields values of ~820°C at 3.4 GPa. In the eclogite, plagioclase may exhibit cuspate textures against surrounding omphacite and has low dihedral angles in plagioclase–clinopyroxene–garnet aggregates, features that are consistent with former melt–solid–solid boundaries and crystallized melt pockets. Graphic intergrowths of plagioclase and amphibole are present in the matrix. Small euhedral neoblasts of garnet against plagioclase are interpreted as formed from a peritectic reaction during partial melting. Polymineralic inclusions of albite+K‐feldspar and clinopyroxene+quartz±kyanite±plagioclase in large anhedral garnet display plagioclase cusps pointing into the host, which are interpreted as crystallized melt pockets. These textures, along with the mineral composition, suggest partial melting of the eclogite by reactions involving phengite and, to a large extent, an epidote‐group mineral. Calculated and experimentally determined phase relations from the literature reveal that partial melting occurred on the exhumation path, at pressures below the coesite to quartz transition. A calculated P–T phase diagram for a former melt‐bearing domain shows that the formation of the peritectic garnet rim occurred at 1.4 GPa and 900°C, with an assemblage of clinopyroxene, amphibole, and plagioclase equilibrated at 1.3 GPa and 720°C. Isochemical phase equilibrium modelling of a symplectite of clinopyroxene, plagioclase, and amphibole after omphacite, combined with the mineral composition, yields a P–T range at 1.0–1. 6 GPa, 680–1,000°C. The assemblage of amphibole and plagioclase is estimated to reach equilibrium at 717–732°C, calculated by amphibole–plagioclase thermometry for the former melt‐bearing domain and symplectite respectively. The results of this study demonstrate that partial melt formed in the UHP eclogite through breakdown of an epidote‐group mineral with minor involvement of phengite during exhumation from peak pressure; melt was subsequently crystallized on the cooling path.  相似文献   

9.
Jadeite‐bearing kyanite eclogite has been discovered in the Iratsu body of the Sanbagawa belt, SW Japan. The jadeite + kyanite assemblage is stable at higher pressure–temperature (PT) conditions or lower H2O activity [a(H2O)] than paragonite, although paragonite‐bearing eclogite is common in the Sanbagawa belt. The newly discovered eclogite is a massive metagabbro with the peak‐P assemblage garnet + omphacite + jadeite + kyanite + phengite + quartz + rutile. Impure jadeite is exclusively present as inclusions in garnet. The compositional gap between the coexisting omphacite (P2/n) and impure jadeite (C2/c) suggests relatively low metamorphic temperatures of 510–620 °C. Multi‐equilibrium thermobarometry for the assemblage garnet + omphacite + kyanite + phengite + quartz gives peak‐P conditions of ~2.5 GPa, 570 °C. Crystallization of jadeite in the metagabbro is attributed to Na‐ and Al‐rich effective bulk composition due to the persistence of relict Ca‐rich clinopyroxene at the peak‐P stage. By subtracting relict clinopyroxene from the whole‐rock composition, pseudosection modelling satisfactorily reproduces the observed jadeite‐bearing assemblage and mineral compositions at ~2.4–2.5 GPa, 570–610 °C and a(H2O) >0.6. The relatively high pressure conditions derived from the jadeite‐bearing kyanite eclogite are further supported by high residual pressures of quartz inclusions in garnet. The maximum depth of exhumation in the Sanbagawa belt (~80 km) suggests decoupling of the slab–mantle wedge interface at this depth.  相似文献   

10.
Eclogite facies cataclasite is recognized at Yangkou in the Chinese Su‐Lu ultrahigh‐P metamorphic belt. The cataclasite dykes (5?15 cm wide) are bounded by mylonite/ultramylonite zones, cutting through unfoliated metagabbro and/or eclogite. The cataclasite veins (generally 2–4 cm wide) are free of mylonite boundary zones, cutting through the foliation of the high‐P host rock. The dykes and veins are dominated by eclogite fragments consisting of debris of omphacite, garnet, quartz, phengite and kyanite, in a matrix of variable amounts of a schist rich in quartz, phengite and kyanite. Garnet clasts in the fragments are welded and overgrown by more Ca‐rich garnet containing mineral inclusions different from those in the garnet cores. The micropoikilitic texture of garnet is typical of eclogitic pseudotachylytes. Crack‐sealing K‐feldspar veinlets in the cataclasite dykes also imply frictional or shock‐induced melting of K‐mica. The modal abundances in the cataclasite and the schist imply that the dykes formed by flow of the omphacite and garnet‐dominated cataclasites into the fractures during seismic faulting, while the lower density minerals (quartz, phengite and kyanite) were largely left in the ultramylonite boundary zones. The dykes have the same composition as their host rocks, except for slightly lower Si and large ion lithophile elements and higher Mg, Ca, Cr, Co and Ni. Chromite, probably spurted from the nearby ultramafic rock, is found as rare particles in the cataclasite fragments. This indicates that material exchange occurred by mechanical mixing between the dykes and the ultramafic rock during seismic faulting. The Cr‐rich eclogite minerals grown on the chromite are evidence for coseismic high‐P crystallization. Short‐lived crystal growth is implied by the fine grain sizes of the eclogite minerals and very limited element diffusion between the garnet clasts and their overgrowths. The fact that the host rocks are more hydrated implies that the dyke formation was not related to fluid infiltration. It appears, therefore, that stress was the key factor inducing the high‐P phase transformation in the dykes. Both stress and temperature were only transiently high in the dykes, which have been metastable since they were formed.  相似文献   

11.
G. Rebay  B. Messiga 《Lithos》2007,98(1-4):275-291
In the coronitic metagabbroic rocks of the Corio and Monastero metagabbro bodies in the continental Sesia–Lanzo zone of the western Italian Alps, a variety of mineral reactions that testify to prograde conditions from greenschist to eclogite-facies can be recognised. A microstructural and microchemical study of a series of samples characterized by coronitic textures and pseudomorphic replacement of the original igneous minerals has allowed the prograde reactions undergone by the rocks to be established.

In completely eclogitized coronitic samples, paragonite, blue amphibole, garnet, epidote, fine grained jadeite and chloritoid occur in plagioclase microdomains (former igneous plagioclase). The mafic mineral microdomains consist of glaucophane and garnet. Complexly-zoned amphiboles constrain changing metamorphic conditions: cores of pre-Alpine brown hornblende and/or tremolite are preserved inside rims of a sodic–calcic amphibole that are in turn surrounded by a sodic amphibole. The main high-pressure mineral assemblage, as seen in mylonites, involves glaucophane, chloritoid, epidote, garnet ± phengite, ± paragonite. Some layers within the gabbro contain garnet, omphacite, ± glaucophane, and acid dykes crosscutting the gabbro body contain jadeite, quartz, garnet, epidote and paragonite.

The presence of chloritoid-bearing high-pressure assemblages reflects hydration of the gabbros during their pre-Alpine exhumation prior to subduction, as well as the composition of the microdomains operating during subduction. The pressure and temperature conditions of gabbro transformation during subduction are inferred to be 450–550 °C at up to 2 GPa on the basis of the chloritoid-bearing assemblages. The factors controlling the reaction pathway to form chloritoid-bearing high-pressure assemblages in mafic rocks are inferred from these observations.  相似文献   


12.
Dokukina  K. A.  Konilov  A. N.  Van  K. V.  Mints  M. V. 《Doklady Earth Sciences》2017,477(1):1353-1357

In the Salma eclogite of the Belomorian eclogite province, a dumortierite–phengite–corundum–bearing quartz–feldspar rock has been studied: its primary HP mineral paragenesis included garnet, phengite, and quartz. The phengite–quartz rocks were formed during dehydration and/or melting of boroncontaining rocks when they were dipped in the Meso- Neoarchaean subduction zone to a depth of not less than 70 km. As a result of the subsequent superimposed high-temperature metamorphic events under PT conditions of high-pressure granulite facies, the phengite in quartz underwent incongruent dehydration melting with formation of complex polymineral pseudomorphs, consisting of feldspars, biotite, newly formed muscovite, kyanite, corundum, and dumortierite. New estimates of the metamorphic temperature (850–900°C according to the melting reactions of phengite and the dumortierite field of stability; about 1000°C by the reintegrated composition of feldspar–mesoperthite) that affected the HP parageneses of Salma eclogitized rocks are at least 50–100°C (or even more) higher than them estimated earlier.

  相似文献   

13.
A coesite-bearing eclogite breccia is reported here for the first time at Yangkou in the Chinese Su–Lu ultrahigh-pressure (UHP) metamorphic belt. It is thrusted over a coesite-bearing coronitic eclogite and is gradational to a foliated eclogite at the contact. The coronitic eclogite is characterized by garnet coronas between fine-grained high-pressure mineral aggregates forming pseudomorphs after plagioclase, ilmenite, biotite, and pyroxene in a gabbroic protolith. The breccia consists of fine-grained cataclastic eclogite fragments (garnet + omphacite + coesite/quartz ± phengite ± kyanite) and a coarser-grained matrix schist (garnet + quartz + phengite + kyanite). The foliated eclogite consists of intercalating bands of the cataclastic eclogite and a schist similar to the fragments and the matrix, respectively, in the breccia. The igneous fabric of the eclogitized gabbro is increasingly obliterated from the coronitic eclogite through the foliated eclogite to the breccia. Micropoikilitic amoeboid garnet containing numerous inclusions of omphacite and other high-pressure minerals is characteristic of eclogite facies pseudotachylytes and suggests flash melting and rapid crystallization. In the breccia and foliated eclogite, quartz + K-feldspar ± albite aggregates are included in garnet or form strings cutting across the cataclasites. In some aggregates, quartz grains are cemented by K-feldspar and vesicular albite, also implying crystallization from melts in a rapid cooling and decompression process from the UHP condition. The field context, the locally preserved igneous fabric in the breccia, the similar whole-rock compositions, as well as the complementary mineral assemblages in the fragments and the matrix with respect to the coronitic eclogite, suggest that the breccia was formed by cataclasis and segregation of minerals in a former coronitic eclogite in response to a sudden pressure release. Intergranular coesite is found only in the eclogite cataclasites and may have survived via the rapid cooling event, as coesite converts to quartz completely in a few years when being cooled slowly at lower pressures. Such rate information is incompatible with the presumed deep subduction/exhumation process but implies transient UHP metamorphism coeval with the seismic event.  相似文献   

14.
Kyanite‐ and phengite‐bearing eclogites have better potential to constrain the peak metamorphic P–T conditions from phase equilibria between garnet + omphacite + kyanite + phengite + quartz/coesite than common, mostly bimineralic (garnet + omphacite) eclogites, as exemplified by this study. Textural relationships, conventional geothermobarometry and thermodynamic modelling have been used to constrain the metamorphic evolution of the Tromsdalstind eclogite from the Tromsø Nappe, one of the biggest exposures of eclogite in the Scandinavian Caledonides. The phase relationships demonstrate that the rock progressively dehydrated, resulting in breakdown of amphibole and zoisite at increasing pressure. The peak‐pressure mineral assemblage was garnet + omphacite + kyanite + phengite + coesite, inferred from polycrystalline quartz included in radially fractured omphacite. This omphacite, with up to 37 mol.% of jadeite and 3% of the Ca‐Eskola component, contains oriented rods of silica composition. Garnet shows higher grossular (XGrs = 0.25–0.29), but lower pyrope‐content (XPrp = 0. 37–0.39) in the core than the rim, while phengite contains up to 3.5 Si pfu. The compositional isopleths for garnet core, phengite and omphacite constrain the P–T conditions to 3.2–3.5 GPa and 720–800 °C, in good agreement with the results obtained from conventional geothermobarometry (3.2–3.5 GPa & 730–780 °C). Peak‐pressure assemblage is variably overprinted by symplectites of diopside + plagioclase after omphacite, biotite and plagioclase after phengite, and sapphirine + spinel + corundum + plagioclase after kyanite. Exhumation from ultrahigh‐pressure (UHP) conditions to 1.3–1.5 GPa at 740–770 °C is constrained by the garnet rim (XCaGrt = 0.18–0.21) and symplectite clinopyroxene (XNaCpx = 0.13–0.21), and to 0.5–0.7 GPa at 700–800 °C by sapphirine (XMg = 0.86–0.87) and spinel (XMg = 0.60–0.62) compositional isopleths. UHP metamorphism in the Tromsø Nappe is more widespread than previously known. Available data suggest that UHP eclogites were uplifted to lower crustal levels rapidly, within a short time interval (452–449 Ma) prior to the Scandian collision between Laurentia and Baltica. The Tromsø Nappe as the highest tectonic unit of the North Norwegian Caledonides is considered to be of Laurentian origin and UHP metamorphism could have resulted from subduction along the Laurentian continental margin. An alternative is that the Tromsø Nappe belonged to a continental margin of Baltica, which had already been subducted before the terminal Scandian collision, and was emplaced as an out‐of‐sequence thrust during the Scandian lateral transport of nappes.  相似文献   

15.
The metamorphic evolution of a granulitized eclogite from the Phung Chu Valley (Eastern Himalaya) was reconstructed combining microstructural observations, conventional thermobarometry and quantitative pseudosection analysis. The granulitized eclogite consists of clinopyroxene, plagioclase, garnet, brown amphibole, and minor orthopyroxene, biotite, ilmenite and quartz. On the basis of microstructural observations and mineral relationships, four metamorphic stages and related mineral assemblages have been recognized: (i) M1 eclogite‐facies assemblage, consisting of garnet, omphacite (now replaced by a clinopyroxene + plagioclase symplectite) and phengite (replaced by biotite +plagioclase symplectite); (ii) M2 granulite‐facies assemblage, represented by clinopyroxene, orthopyroxene, garnet, plagioclase and accessory ilmenite; (iii) M3 plagioclase + orthopyroxene corona developed around garnet, and (iv) M4 brown amphibole + plagioclase assemblage in the rock matrix. Because of the nearly complete lack of eclogitic mineral relics, M1 conditions can be only loosely constrained at >1.5 GPa and >580 °C. In contrast, assemblage M2 tightly constrains the peak granulitic stage at 0.8–1.0 GPa and >750 °C. The second granulitic assemblage M3, represented by the plagioclase + orthopyroxene corona, formed at lower pressures (~0.4 GPa and ~750 °C). During the subsequent exhumation, the granulitized eclogite experienced significant cooling to nearly 700 °C, marked by the appearance of brown amphibole and plagioclase (M4) in the rock matrix. U‐Pb SHRIMP analyses on low‐U rims of zircon from an eclogite of the same locality suggest an age of 13–14 Ma for the M3 stage. The resulting decompressional clockwise P–T path of the Ama Drime eclogite is characterized by nearly isothermal decompression from >1.5 GPa to ~0.4 GPa, followed by nearly isobaric cooling from ~775 °C to ~710 °C. Modelling of phase equilibria by a calculated petrogenetic grid and conventional thermobarometry on a biotite‐garnet‐sillimanite metapelite hosted in the country rock granitic orthogneiss extends the inferred P–T trajectory down to ~630 °C and ~0.3 GPa.  相似文献   

16.
Polymetamorphic metapelites and embedded eclogites share a complex, episodic interplay of dehydration and fluid infiltration at the eclogite type‐locality (Saualpe–Koralpe, Eastern Alps, Austria). The metapelites inherited a fluid content (i.e. mineral‐bound OH expressed in terms of mol.% H2O) of ~6–7 mol.% H2O from high‐T–low‐P metamorphism experienced during the Permian. At or near Pmax of the subsequent Eoalpine event (~20 kbar and 680°C), the breakdown of paragonite to Na‐rich clinopyroxene and kyanite in metapelites released a discrete pulse of hydrous fluid. Prior to the dehydration event, the rocks were largely fluid absent, allowing only limited re‐equilibration during the prograde Eoalpine evolution. Similarly, Permian‐aged gabbros have persisted metastably due to the absence of a catalyst prior to fluid‐induced re‐equilibration. The fluid triggered partial to complete eclogitization along a fluid infiltration front partially preserved in metagabbro. Near‐isothermal decompression to ~7.5–10 kbar and 670–690°C took place under fluid‐absent conditions. After decompression, a second breakdown of phengitic white mica and garnet produced muscovite, biotite, plagioclase and ~0.1–0.7 mol.% H2O that enhanced extensive fluid‐aided re‐equilibration of the metapelites. Potential relicts of high‐P assemblages were largely obliterated and replaced by the recurrent amphibolite facies assemblage garnet+biotite+staurolite+kyanite+muscovite+plagioclase+ilmenite+quartz. The hydrous fluid originating from the metapelites infiltrated the embedded eclogites at these P–T conditions and induced the local breakdown of the peak assemblage omphacite and garnet to fine‐grained symplectites of diopside and plagioclase. Further fluid infiltration led to the formation of hornblende–quartz poikiloblasts at the expense of the symplectites. The metapelites re‐equilibrated until the growth of retrograde staurolite consumed any remaining free fluid, thereby terminating the process. Further re‐equilibration is inhibited by both the lack of a catalytic fluid and H2O as a reactant essential for rehydration reactions. The interplay between fluid sources and fluid sinks describes a closed cycle for the rocks at the eclogite type‐locality. Final, near‐isobaric cooling is indicated by a slight increase of XFe in garnet rims. Post‐decompression dehydration and fluid‐aided re‐equilibration arrested by the introduction of staurolite might explain the apparently homogeneous retrogression conditions as well as the notorious absence of diagnostic high‐P assemblages in metapelites at the eclogite type‐locality.  相似文献   

17.
Northward subduction of the leading edge of the Indian continental margin to depths greater than 100 km during the early Eocene resulted in high‐pressure (HP) quartz‐eclogite to ultrahigh‐pressure (UHP) coesite–eclogite metamorphism at Tso Morari, Ladakh Himalaya, India. Integrated pressure–temperature–time determinations within petrographically well‐constrained settings for zircon‐ and/or monazite‐bearing assemblages in mafic eclogite boudins and host aluminous gneisses at Tso Morari uniquely document segments of both the prograde burial and retrograde exhumation path for HP/UHP units in this portion of the western Himalaya. Poikiloblastic cores and inclusion‐poor rims of compositionally zoned garnet in mafic eclogite were utilized with entrapped inclusions and matrix minerals for thermobarometric calculations and isochemical phase diagram construction, the latter thermodynamic modelling performed with and without the consideration of cation fractionation into garnet during prograde metamorphism. Analysis of the garnet cores document (M1) conditions of 21.5 ± 1.5 kbar and 535 ± 15 °C during early garnet growth and re‐equilibration. Sensitive high resolution ion microprobe (SHRIMP) U–Pb analysis of zircon inclusions in garnet cores yields a maximum age determination of 58.0 ± 2.2 Ma for M1. Peak HP/UHP (M2) conditions are constrained at 25.5–27.5 kbar and 630–645 °C using the assemblage garnet rim–omphacite–rutile–phengite–lawsonite–talc–quartz (coesite), with mineral compositional data and regional considerations consistent with the upper PT bracket. A SHRIMP U–Pb age determination of 50.8 ± 1.4 Ma for HP/UHP metamorphism is given by M2 zircons analysed in the eclogitic matrix and that are encased in the garnet rim. Two garnet‐bearing assemblages from the Puga gneiss (host to the mafic eclogites) were utilized to constrain the subsequent decompression path. A non‐fractionated isochemical phase diagram for the assemblage phengite–garnet–biotite–plagioclase–quartz–melt documents a restricted (M3) P–T stability field centred on 12.5 ± 0.5 kbar and 690 ± 25 °C. A second non‐fractionated isochemical phase diagram calculated for the lower pressure assemblage garnet–cordierite–sillimanite–biotite–plagioclase–quartz–melt (M4) documents a narrow P–T stability field ranging between 7–8.4 kbar and 705–755 °C, which is consistent with independent multiequilibria PT determinations. Th–Pb SHRIMP dating of monazite cores surrounded by allanite rims is interpreted to constrain the timing of the M4 equilibration to 45.3 ± 1.1 Ma. Coherently linking metamorphic conditions with petrographically constrained ages at Tso Morari provides an integrated context within which previously published petrological or geochronological results can be evaluated. The new composite path is similar to those published for the Kaghan UHP locality in northern Pakistan, although the calculated 12‐mm a?1 rate of post‐pressure peak decompression at Tso Morari would appear less extreme.  相似文献   

18.
Summary Lenses and pods of mafic rocks from the Monotonous Unit near Svetlik are characterized by eclogite facies mineral assemblages; however some inclusion patterns (oriented quartz rods in clinopyroxene and cuboids of disordered graphite in garnet) that are usually known from ultra-high pressure rocks were also observed in one sample. Conventional thermobarometry yielded maximum PT conditions of 2.0–2.5 GPa and 750 °C. Decompression and heating at amphibolite and granulite facies conditions resulted in the formation of at least five distinct types of symplectites. These include symplectitic intergrowth of ilmenite and clinopyroxene after titanite, described here for the first time from the Moldanubian Zone. In addition, symplectites of plagioclase and biotite with accessory amounts of spinel after tabular pseudomorphs (after phengite?) are also reported here. Mass balance relations indicate that symplectites of diopside + plagioclase after omphacite and plagioclase + spinel (sapphirine) after kyanite + garnet, formed by nearly isochemical reactions. All other symplectite-forming reactions were allochemical and were accelerated by the presence of fluid in the primary phases. Preserved zoning pattern in garnet with high compositional gradient in some samples suggests that the rocks were affected briefly by granulite facies overprint.  相似文献   

19.
Although ophiolitic rocks are abundant in Anatolia (Turkey), only in rare cases have they experienced high‐grade metamorphism. Even more uncommon, in Anatolia and elsewhere are high‐grade meta‐ophiolites that retain an oceanic lithosphere stratigraphy from upper crustal mafic volcanic rocks through lower crustal gabbro to mantle peridotite. The Berit meta‐ophiolite of SE Turkey exhibits both features: from structurally higher to lower levels, it consists of garnet amphibolite (metabasalt), granulite facies metagabbro (as lenses in amphibolite inferred to be retrogressed granulite) and metaperidotite (locally with metapyroxenite layers). Whole‐rock major and trace‐element data indicate a tholeiitic protolith that formed in a suprasubduction setting. This paper presents new results for the metamorphic PT conditions and path of oceanic lower crustal rocks in the Berit meta‐ophiolite, and an evaluation of the tectonic processes that may drive granulite facies metamorphism of ophiolite gabbro. In the Do?an?ehir (Malatya, Turkey) region, granulite facies gabbroic rocks contain garnet (Grt)+clinopyroxene (Cpx)+plagioclase (Pl)+corundum (Crn)±orthopyroxene (Opx)±kyanite (Ky)±sapphirine (Spr)±rutile. Some exhibit symplectites consisting of Crn+Cpx, Ky+Cpx and/or coronas of garnet (outer shell) around a polygonal aggregate of clinopyroxene that in some cases surrounds a polygonal aggregate of orthopyroxene. Coronitic and non‐coronitic textures occur in proximity in mm‐ to cm‐scale layers; corona structures typically occur in plagioclase‐rich layers. Their formation is therefore related primarily to protolith type (troctolite v. gabbro) rather than P–T path. Phase diagrams calculated for a kyanite‐rich granulite, a plagioclase‐rich non‐coronitic granulite, and a plagioclase‐rich coronitic granulite (taking into account changes in effective bulk composition during texture development) predict peak conditions of ~800°C, 1.1–1.5 GPa; these conditions do not require invoking an unusually high geothermal gradient. In the coronitic metagabbro, reaction textures formed along the prograde path: Crn–Cpx symplectites grew at the expense of garnet, sapphirine and plagioclase. Peak conditions were followed by isobaric cooling of ~150°C. Hornblende–plagioclase thermometry results for host amphibolite (Hbl+Pl±Crn±Grt±relict Cpx) indicate retrograde conditions of 620–675°C and 0.5–0.8 GPa accompanied by infiltration of H2O‐rich fluid. This anticlockwise P–T path differs from an isothermal decompression path previously proposed for these rocks based on the presence of symplectite. Metamorphism of the ophiolitic rocks was driven by closing of the southern Neotethys Ocean, as oceanic lithosphere was obducted (most SE Anatolian ophiolites) or underthrust (Berit meta‐ophiolite). This was followed by subduction of a continental margin, driving cooling of the Berit granulite after the thermal peak at depths of ~40 km.  相似文献   

20.
Eclogites from the Kebuerte Valley, Chinese South Tianshan, consist of garnet, omphacite, phengite, paragonite, glaucophane, hornblendic amphibole, epidote, quartz and accessory rutile, titanite, apatite and carbonate minerals with occasional presence of coesite or quartz pseudomorphs after coesite. The eclogites are grouped into two: type I contains porphyroblastic garnet, epidote, paragonite and glaucophane in a matrix dominated by omphacite where the proportion of omphacite and garnet is >50 vol.%; and type II contains porphyroblastic epidote in a matrix consisting mainly of fine‐grained garnet, omphacite and glaucophane where the proportion of omphacite and garnet is <50 vol.%. Garnet in both types of eclogites mostly exhibits core–rim zoning with increasing grossular (Xgr) and pyrope (Xpy) contents, but a few porphyroblastic garnet grains in type I eclogite shows core–mantle zoning with increasing Xpy and a slight decrease in Xgr, and mantle–rim zoning with increases in both Xgr and Xpy. Garnet rims in type I eclogite have higher Xpy than in type II. Petrographic observations and phase equilibria modelling with pseudosections calculated using thermocalc in the NCKMnFMASHO system for three representative samples suggest that the eclogites have experienced four stages of metamorphism: stage I is the pre‐peak temperature prograde heating to the pressure peak (Pmax) which was recognized by the garnet core–mantle zoning with increasing Xpy and decreasing Xgr. The PT conditions at Pmax constrained from garnet mantle or core compositions with minimum Xgr content are 29–30 kbar at 526–540 °C for type I and 28.2 kbar at 518 °C for type II, suggesting an apparent thermal gradient of ~5.5 °C km?1. Stage II is the post‐Pmax decompression and heating to the temperature peak (Tmax), which was modelled from the garnet zoning with increasing Xgr and Xpy contents. The PT conditions at Tmax, defined using the garnet rim compositions with maximum Xpy content and the Si content in phengite, are 24–27 kbar at 590 °C for type I and 22 kbar at 540 °C for type II. Stage III is the post‐Tmax isothermal decompression characterized by the decomposition of lawsonite, which may have resulted in the release of a large amount of fluid bound in the rocks, leading to the formation of epidote, paragonite and glaucophane porphyroblasts. Stage IV is the late retrograde evolution characterized by the overprint of hornblendic amphibole in eclogite and the occurrence of epidote–amphibole facies mineral assemblages in the margins or in the strongly foliated domains of eclogite blocks due to fluid infiltration. The PT estimates obtained from conventional garnet–clinopyroxene–phengite thermobarometry for the Tianshan eclogites are roughly consistent with the P–T conditions of stage II at Tmax, but with large uncertainties in temperature. On the basis of these metamorphic stages or P–T paths, we reinterpreted that the recently reported zircon U–Pb ages for eclogite may date the Tmax stage or the later decompression stage, and the widely distributed (rutile‐bearing) quartz veins in the eclogite terrane may have originated from the lawsonite decomposition during the decompression stage rather than from the transition from blueschist to eclogite as previously proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号