首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
山东及邻区上地幔波速各向异性及地球动力学意义   总被引:5,自引:0,他引:5       下载免费PDF全文
王良书  李成  薛革  孙珍 《地质科学》2000,35(1):40-46
根据1975 年1 月至1993 年12 月发生的3 级以上416 次天然地震近震首波Pn走时数据,分析了山东及邻区上地幔波速各向异性的特征。研究表明上地幔约有8% 的波速各向异性,波速最大方向近NW-SE,最小方向NEE.结合上地幔波速各向异性成因机制的研究,分析了山东及邻区上地幔波速各向异性的地球动力学背景,为揭示中新生代的构造演化提供了可靠的深部构造依据。  相似文献   

2.
上地幔岩石变形组构特征和地震波速各向异性关系的研究,是当代岩石圈动力学研究水平的一个重要标志。本文着重阐述七十年代以来,国外有关上地幔中地震波各向异性产生的原因;高温高压条件下上地幔岩石的Vp、Vs测定的新成果及其地球物理应用意义;岩石变形机制,变形组构特征和地震波速各向异性之间的内在联系。同时还指出,在我国重视和加速该前沿课题研究的必要性和重要意义。  相似文献   

3.
青藏高原及其部分邻区地震各向异性和土地幔特征   总被引:28,自引:1,他引:28       下载免费PDF全文
通过研究在青藏高原及其部分邻区由三分量宽频地震资料获得的剪切波各向异性的特征,得出了上地幔构造的若干认识,在本区200km以上的上地幔范围内各向异性的方向性变化主要是上地幔物质运移方向的影响,各地体的岩石圈与地壳在相当长时间内是连贯的运移,各向异性的主要方向决定于上地幔承受的主应力剪切作用方向常常与地表的山系和构造方向不一致,最强的各向异性特征出现在高速体地体边缘,与深部热的地幔物质有关,在各地体边缘的走滑断裂附近各向异性与断裂带走向一致。  相似文献   

4.
南北构造带北段位于青藏高原东北缘及其向北东方向扩展的区域,其岩石圈变形特征对于探讨青藏高原东北缘变形机制及其扩展范围具有非常关键的意义。地震波各向异性能很好地反映上地幔的变形特征。因此,本文对布设在南北构造带北段的流动地震台站记录的远震波形资料进行S波分裂研究,获得了研究区上地幔各向异性图像以及该区岩石圈地幔的变形特征信息。S波分裂研究结果表明,研究区地震波各向异性来自于上地幔,区内不同构造单元上地幔各向异性方向不尽相同。快波方向分布显示,青藏高原东北缘,鄂尔多斯西缘以及贺兰构造带北段的快波方向主要表现为NW-SE向,与前人在银川地堑和贺兰构造带中、北部得到的NW-SE向的上地幔各向异性方向一致,显示这些地区岩石圈地幔变形一致,该结果表明青藏高原东北缘向北东方向扩展的影响范围已到达贺兰构造带北段。阿拉善地块内部快波方向显示为NE-SW向,与阿拉善地块北部存在的北东向展布的晚古生代岩浆岩方向一致,表明该NE-SW向的快波方向可能代表地是“化石”各向异性,是晚古生代阿拉善地块受到古亚洲洋闭合作用的结果。此外,鄂尔多斯地块内也存在NE-SW向的各向异性方向,与区内中-晚侏罗世存在的NE-SW向逆冲推覆构造方向一致,因此该各向异性方向也代表了“化石”各向异性,是鄂尔多斯地块受到古特提斯构造域的块体碰撞、古太平洋板块北西向俯冲以及西伯利亚板块向南俯冲共同作用的结果。  相似文献   

5.
华北克拉通上地幔变形及其动力学意义   总被引:1,自引:0,他引:1       下载免费PDF全文
赵亮  郑天愉 《地质科学》2009,44(3):865-876
华北克拉通从稳定到破坏的演化过程对有关地球动力学的经典理论提出了挑战,研究其独特的演化历史是固体地球科学研究的一项重要内容。上地幔矿物晶体的各向异性记录了上地幔发生构造变形的信息,研究上地幔地震波各向异性能够揭示现今和构造历史时期所发生的构造运动。本文总结了近年来作者在华北克拉通地区所进行的高密度、覆盖广泛的地震波横波分裂观测研究结果。横波分裂的快轴方向与绝对板块运动方向的不一致,以及横波分裂参数快速的空间变化特征表明了华北克拉通的SKS横波分裂主要反映上地幔的变形。观测结果表明:鄂尔多斯块体保留了克拉通较弱的各向异性特征,其西端体现了元古代克拉通拼合的变形特征; 中新生代华北克拉通破坏事件以不同的机制主导了华北克拉通中部和东部的上地幔变形,在东部地区北西-南东向的拉张应力作用使得快轴方向平行于拉张方向,而在中部则因受到较厚岩石圈的阻挡使得地幔流动改变了方向,因此造成了北东和北北东向的岩石圈拉张。  相似文献   

6.
介绍了地震波各向异性研究的发展历史和进展,着重叙述在地球各个圈层特别是地壳和上地幔中的地震波各向异性,及其在地球动力学和地震监测中的应用。地震波各向异性为动力地球作用过程的研究提供了一种崭新的手段,它的科学潜力是巨大的、空前的,正逐步形成一个地震学的重要分支——各向异性地震学。  相似文献   

7.
华南壳幔结构与动力学的宽频地震观测研究   总被引:1,自引:0,他引:1       下载免费PDF全文
了解华南各岩石圈块体壳幔结构和各向异性方面的差异是揭示华南深部构造演化的基础。本文利用布设于华南的两条宽频地震测线观测数据,采用多种地震学方法对华南的地壳上地幔结构和各向异性进行了研究。接收函数结果表明,华南地区地壳厚度和岩石圈厚度都较薄,地壳厚度自东南沿海向西北内陆增厚,扬子克拉通的泊松比(波速比)低于华夏块体,表明扬子克拉通地壳较华夏块体更偏长英质。约北纬29°以北的扬子克拉通地幔转换带厚度明显增厚,可能是由地幔转换带底部停滞的冷的古太平洋板片或中生代克拉通碰撞残留造成的。层析成像结果显示华南上地幔具有很强的横向差异性,上地幔中的强烈低速异常体可能对应了晚中生代发生广泛岩浆作用时的岩浆房和岩浆通道。台湾下方的上地幔存在南北横向差异明显的高速异常,分别对应台湾南部向东俯冲的欧亚板块及台湾北部向北俯冲的菲律宾海板块。俯冲的欧亚板块在台湾南部是连续的,而在台湾中北部,由于与菲律宾海板块的相互作用,俯冲的欧亚板块被折断。剪切波分裂结果显示,以江绍断裂为界,华夏块体与扬子克拉通的岩石圈地幔各向异性存在明显的横向变化,表明两者的构造演化过程有显著差异。  相似文献   

8.
地球物理深部探测研究表明,上地幔顶部个别地区具有显著的电导率异常,表现为高电导率和各向异性。造成上地幔顶部电导率异常的机理,一直以来是地球科学中极具争议的问题之一。目前比较流行的解释是由部分熔融产生的熔体和橄榄石中耦合的结构水所致,其它的解释包括由颗粒边界的石墨或硫化物以及其它一些导电性强的矿物所致。这些不同的模型,对于认识上地幔的结构、组成和性质有直接的影响。综合评述了近年来基于岩石学、地球化学、地球物理学、数值模拟和高温高压实验研究等方面的进展,对已有模型伴随的各种问题进行了探讨。局部地区的电导率异常可能主要由固态导电机制造成,但其主要载体可能不是构成地幔主体的橄榄岩,而很可能与上地幔岩石学组成上的宏观不均一性有关。不同地区上地幔顶部的电导率异常,可能由不同的因素造成,可能并不存在所谓的"单一"导电机制。  相似文献   

9.
利用辽宁数字地震台网2013—2017年间15个宽频带地震台站记录到的震中距在85°到140°之间的且Mw≥5.5的远震SKS波形数据,基于SplitLab软件,使用旋转相关法、最小切向能量法和最小特征值法,计算每一个台站的SKS快波偏振方向和快、慢波的延迟时间,获得辽宁地区上地幔各向异性参数共398对。结果显示,辽宁地区存在比较明显的上地幔各向异性,快波偏振方向大部分呈NWW方向,与中生代晚期岩石圈伸展形变方向一致;各向异性快慢波延迟时间在0.4~1.2 s之间,可以推测软流圈对各向异性的影响比较小,主要是由残留在岩石圈的古老形变所导致。  相似文献   

10.
上地幔可以存储大量的水,水能够极大地增强地幔矿物的电导率。在实验室高温高压条件下获得了含水和不含水矿物电导率不同的结论,有必要广泛开展含水矿物电导率实验研究。基于最新实验结果,充分考虑上地幔热力学条件,矿物体积随深度变化和矿物间水分配情况,对2个研究小组上地幔4种主要矿物实验室电导率结果采用平均方法建立随水含量变化的上地幔电导率-深度曲线,并与实测地球物理模型进行了对比。研究表明,水能够极大地影响上地幔的电性结构,推测上地幔平均水质量分数为0.01%,位于地球化学方法推断的上地幔水质量分数范围(50×10-6~200×10-6)。海洋上地幔软流圈高电导率异常很可能是碳酸盐熔体、硅酸盐熔体及水共同作用的结果。  相似文献   

11.
In this study, we used data recorded by two consecutive passive broadband deployments on the Gulf of Aden northern margin, Dhofar region, Sultanate of Oman. The objective of these deployments is to map the young eastern Gulf of Aden passive continental margin crust and upper mantle structure and rheology. In this study, we use shear-wave splitting analysis to map lateral variations of upper mantle anisotropy beneath the study area. In this study, we found splitting magnitudes to vary between 0.33 and 1.0 s delay times, averaging about 0.6 s for a total of 17 stations from both deployment periods. Results show distinct abrupt lateral anisotropy variation along the study area. Three anisotropy zones are identified: a western zone dominated by NW–SE anisotropy orientations, an eastern zone dominated with NE–SW anisotropy orientations, and central zone with mixed anisotropy orientations similar to the east and west zones. We interpret these shorter wavelength anisotropy zones to possibly represent fossil lithospheric mantle anisotropy. We postulate that the central anisotropy zone may be representing a Proterozoic suture zone that separates two terranes to the east and west of it. The anisotropy zones west and east were being used indicative of different terranes with different upper mantle anisotropy signatures.  相似文献   

12.
Specially planned explosion seismic measurements in the oceans provided conclusive evidence that the velocity of Pn-waves depends on the azimuths of the direction of propagation through the upper mantle. The orientation of this azimuthal anisotropy suggests a close connection with the generation of the oceanic lithosphere: in the Pacific the maximum and minimum velocities are measured in a perpendicular and parallel direction to the axis of the oceanic ridges respectively. The observed anisotropy is so strong that a number of models for the generation of anisotropy can be discarded. The most likely cause is a preferred orientation of minerals. The generation of the anisotropy can be simulated in the laboratory under P-T-conditions of the upper mantle. The influence of the rate of deformation can be studied as well. A recent analysis of explosion seismic data in Southern Germany suggests that the continental upper mantle possesses also a velocity anisotropy dependent on azimuth.  相似文献   

13.
Teleseismic earthquake data recorded by 11 broadband digital seismic stations deployed in the India–Asia collision zone in the eastern extremity of the Himalayan orogen (Tidding Suture) are analyzed to investigate the seismic anisotropy in the upper mantle. Shear-wave splitting parameters (Φ and δt) derived from the analysis of core-refracted SKS phases provide first hand information about seismic anisotropy and deformation in the upper mantle beneath the region. The analysis shows considerable strength of anisotropy (delay time ~0.85–1.9 s) with average ENE–WSW-oriented fast polarization direction (FPD) at most of the stations. The FPD observed at stations close to the Tidding Suture aligns parallel to the strike of local geological faults and orthogonal to absolute plate motion direction of the Indian plate. The average trend of FPD at each station indicates that the anisotropy is primarily originated by lithospheric deformation due to India–Asia collision. The splitting data analyzed at closely spaced stations suggest a shallow source of anisotropy originated in the crust and upper mantle. The observed delay times indicate that the primary source of anisotropy is located in the upper mantle. The shear-wave splitting analysis in the Eastern Himalayan syntaxis (EHS) and surrounding regions suggests complex strain partitioning in the mantle which is accountable for evolution of the EHS and complicated syntaxial tectonics.  相似文献   

14.
Comprehensive analysis of the parameters characterizing contemporary and neotectonic deformations of the Earth’s crust and upper mantle developed in the Mongolia-Siberia area is presented. The orientation of the axes of horizontal deformation in the geodetic network from the data of GPS geodesy is accepted as an indicator of current deformations at the Earth’s surface. At the level of the middle crust, this is the orientation of the principal axes of the stress-tensors calculated from the mechanisms of earthquake sources. The orientation of the axes of stress-tensors reconstructed on the basis of structural data is accepted as an indicator of Late Cenozoic deformations in the upper crust. Data on seismic anisotropy of the upper mantle derived from published sources on the results of splitting of shear waves from remote earthquakes serve as indicators of deformation in the mantle. It is shown that the direction of extension (minimum compression) in the studied region coincides with the direction of anisotropy of the upper mantle, the median value of which is 310–320° NW. Seismic anisotropy is interpreted as the ordered orientation of olivine crystals induced by strong deformation owing to the flow of mantle matter. The observed mechanical coupling of the crust and upper mantle of the Mongolia-Siberia mobile area shows that the lithospheric mantle participated in the formation of neotectonic structural elements and makes it possible to ascertain the main processes determining the Late Cenozoic tectogenesis in this territory. One of the main mechanisms driving neotectonic and contemporary deformations in the eastern part of the Mongolia-Siberia area is the long-living and large-scale flow of the upper mantle matter from the northwest to the southeast, which induces both the movement of the northern part of the continent as a whole and the divergence of North Eurasia and the Amur Plate with the formation of the Baikal Rift System. In the western part of the region, deformation of the lithosphere is related to collisional compression, while in the central part, it is due to the dynamic interaction of these two large-scale processes.  相似文献   

15.
The complex analysis of parameters characterizing the modern deformations of the Earth’s crust and upper mantle in the territory of the Mongolia-Siberian Area is made. Directions of principal tension axes of stress-tensors, calculated with the use of earthquake source mechanisms have been taken as parameters of modern deformations at the level of the middle crust; directions of axes of horizontal strains in the geodesic network by the GPS data have been taken as such parameters at the level of the Earth’s surface. The strain parameters for the mantle depths are the data on seismic anisotropy derived from the published sources about the results of studies on splitting of transversal waves from distant earthquakes. Seismic anisotropy is interpreted as the ordered orientation of olivine crystals, which appears with great strains resulting from the flow of the mantle material. It has been shown that directions of extensional strain axes (minimal compression) by geodesic and seismological data coincide with anisotropy directions in the upper mantle in the region whose median value is 310°–320°. The observed mechanical coupling of the crust and the upper mantle of the Mongolia-Siberian Mobile Area shows the participation of the lithospheric mantle in the formation of neotectonical structures and enables us to distinguish the principal processes determining the Late Cenozoic tectogenesis in this territory. One of the leading mechanisms for the neotectonical and modern deformations of the Mongolia-Siberian Region is the large-scale NW-SE material flow in the upper mantle causing both motion of the entire northern part of the continent and divergence of the Eurasia and the Amurian Plate. Lithospheric deformations in the western part of the region are related to collision-induced compression, while those in the central part are caused by interaction of these large-scale tectonic processes.  相似文献   

16.
Recent interpretations of upper continental mantle seismic anisotropy observations have often relied on fabric measurements and calculated anisotropies of upper mantle xenoliths. Seismic ray paths of P and S waves, which provide information on azimuthal compressional wave anisotropy and shear wave splitting, are tens to hundreds of kilometers, whereas, xenoliths are usually only a few centimeters in diameter. To place better constraints on field-based anisotropy observations and to evaluate anisotropy information provided by xenoliths, it is important to examine anisotropy in large ultramafic massifs which have originated in the upper mantle. One such massif is the Twin Sisters Range located in the western portion of the North Cascades of Washington State, USA. The Twin Sisters massif, a slab of unaltered dunite, is 16 km in length, 6 km in width and 3 km thick. Exposed along its south and west sides are mafic granulite facies rocks, which likely represent lower continental crustal fragments. The ultramafic rocks are porphyroclastic in texture, consisting of strained, flattened porphyroclasts of olivine and enstatite and strain-free olivine mosaics. Olivine fabrics are typical of those formed at high temperatures and low strain rates. Petrofabrics and calculated anisotropies of individual samples vary throughout the massif, however, overall anisotropy of the body is significant, with maximum P and S waves anisotropies of 5.4% and 3.9%, respectively. The maximum delay time for split shear waves traveling through a 100-km-thick slab is 0.8 s and two directions of shear wave singularity are observed. The directions of maximum shear wave splitting and shear wave singularities do not coincide with the directions of maximum and minimum compressional wave velocity. In general, individual hand samples show significantly higher anisotropy than the overall anisotropy of the massif. It is concluded that simple averages of xenolith anisotropies are unreliable for use in the interpretation of field anisotropy observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号