首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
<正>Objective The Susong complex zone(SCZ)is a relatively lowgrade metamorphic unit mostly with an epidoteamphibolite facies,located in the southernmost part of the Dabie orogen.However,its rock compositions,ages,metamorphic processes and petrogenesis are still  相似文献   

2.
3.
The methods of deriving Fe O and Ti O_2 contents from the Clementine spacecraft data were discussed,and an approach was developed to derive the content from the measurements using the Moon Mineralogy Mapper (M~3) instrument on Chandrayaan-1.The density of lunar bedrock was then modeled on the basis of the derived Fe O and Ti O_2 abundances.The Fe O and Ti O_2 abundances derived from the M~3 data were compared with the previous results of the Clementine data and were in good agreement.The Fe O abundance data also agreed well with the Lunar Prospector data,which were used as an independent source.The previous Clementine and newly M~3 derived abundances were compared with the laboratory measured Fe O and Ti O_2 contents in the Apollo and Luna returned samples.The Clementine derived Fe O content was systematically 1%–2%lower than the laboratory measurements in all the returned samples.The M~3 derived content agreed well with the returned Apollo samples and was within±2.8%of the laboratory measurements.The Clementine derived Ti O_2abundance was systematically 0.1%–4%higher than the laboratory measurements of the returned samples.The M~3 derived Ti O_2 agreed well (±0.6%) with the laboratory measurements of the returned samples,except for samples with high Ti O_2content.However,these results should be carefully interpreted because the error range requires verification.No error analysis was provided with the previous Clementine derived contents.  相似文献   

4.
This paper presents a methodology to conduct geostatistical variography and interpolation on areal data measured over geographical units (or blocks) with different sizes and shapes, while accounting for heterogeneous weight or kernel functions within those units. The deconvolution method is iterative and seeks the point-support model that minimizes the difference between the theoretically regularized semivariogram model and the model fitted to areal data. This model is then used in area-to-point (ATP) kriging to map the spatial distribution of the attribute of interest within each geographical unit. The coherence constraint ensures that the weighted average of kriged estimates equals the areal datum.This approach is illustrated using health data (cancer rates aggregated at the county level) and population density surface as a kernel function. Simulations are conducted over two regions with contrasting county geographies: the state of Indiana and four states in the Western United States. In both regions, the deconvolution approach yields a point support semivariogram model that is reasonably close to the semivariogram of simulated point values. The use of this model in ATP kriging yields a more accurate prediction than a naïve point kriging of areal data that simply collapses each county into its geographic centroid. ATP kriging reduces the smoothing effect and is robust with respect to small differences in the point support semivariogram model. Important features of the point-support semivariogram, such as the nugget effect, can never be fully validated from areal data. The user may want to narrow down the set of solutions based on his knowledge of the phenomenon (e.g., set the nugget effect to zero). The approach presented avoids the visual bias associated with the interpretation of choropleth maps and should facilitate the analysis of relationships between variables measured over different spatial supports.  相似文献   

5.
A great deal of early-to-mid Early Cretaceous magmatic activities have been recorded in the Zhalantun area of Inner Mongolia,while the late Early to Late Cretaceous magmatic rocks have been barely reported(Guo et al.,2018;Zhang Xiangxin et al.,2017).At present,only a few Late Cretaceous magmatic activities were reported in the Arongqi area,such as volcanic rocks of the Gushanzhen Formation.However,the Gushanzhen Formation lacks accurate isotopic age,and contemporaneous intrusive rocks has not been reported yet.In this work,we collected the volcanic rocks from the Gushanzhen Formation and contemporaneous intrusive rocks in the Zhanlantun and nearby,and aim to figure out the formation ages of volcanic rocks of the Gushanzhen Formation and accompanied intrusive rocks by analyzing zircon U-Pb isotopes(Fig.1).  相似文献   

6.
The paper deals with the approximation and optimal interpolation of functions defined on the bisphere \mathbb S2×\mathbb S2\mathbb {S}^{2}\times \mathbb {S}^{2} from scattered data. We demonstrate how the least square approximation to the function can be computed in a stable and efficient manner. The analysis of this problem is based on Marcinkiewicz–Zygmund inequalities for scattered data which we present here for the bisphere. The complementary problem of optimal interpolation is also solved by using well-localized kernels for our setting. Finally, we discuss the application of the developed methods to problems of texture analysis in material science.  相似文献   

7.
We report results from axisymmetric deformation experiments carried out on forsterite aggregates in the deformation-DIA apparatus, at upper mantle pressures and temperatures (3.1–8.1 GPa, 1373–1673 K). We quantified the resulting lattice preferred orientations (LPO) and compare experimental observations with results from micromechanical modeling (viscoplastic second-order self-consistent model—SO). Up to 6 GPa (~185-km depth in the Earth), we observe a marked LPO consistent with a dominant slip in the (010) plane with one observation of a dominant [100] direction, suggesting that [100](010) slip system was strongly activated. At higher pressures (deeper depth), the LPO becomes less marked and more complex with no evidence of a dominant slip system, which we attribute to the activation of several concurrent slip systems. These results are consistent with the pressure-induced transition in the dominant slip system previously reported for olivine and forsterite. They are also consistent with the decrease in the seismic anisotropy amplitude observed in the Earth’s mantle at depth greater than ~200 km.  相似文献   

8.
Representing Spatial Uncertainty Using Distances and Kernels   总被引:8,自引:7,他引:1  
Assessing uncertainty of a spatial phenomenon requires the analysis of a large number of parameters which must be processed by a transfer function. To capture the possibly of a wide range of uncertainty in the transfer function response, a large set of geostatistical model realizations needs to be processed. Stochastic spatial simulation can rapidly provide multiple, equally probable realizations. However, since the transfer function is often computationally demanding, only a small number of models can be evaluated in practice, and are usually selected through a ranking procedure. Traditional ranking techniques for selection of probabilistic ranges of response (P10, P50 and P90) are highly dependent on the static property used. In this paper, we propose to parameterize the spatial uncertainty represented by a large set of geostatistical realizations through a distance function measuring “dissimilarity” between any two geostatistical realizations. The distance function allows a mapping of the space of uncertainty. The distance can be tailored to the particular problem. The multi-dimensional space of uncertainty can be modeled using kernel techniques, such as kernel principal component analysis (KPCA) or kernel clustering. These tools allow for the selection of a subset of representative realizations containing similar properties to the larger set. Without losing accuracy, decisions and strategies can then be performed applying a transfer function on the subset without the need to exhaustively evaluate each realization. This method is applied to a synthetic oil reservoir, where spatial uncertainty of channel facies is modeled through multiple realizations generated using a multi-point geostatistical algorithm and several training images.  相似文献   

9.
Based on the fracture trace length distribution, conditions for the existence, uniqueness, and correctness of the fracture diameter distribution are given using Warburton’s fracture model. In particular, a solution for the fracture diameter distribution exists and is unique for all trace length probability density functions, h A (y), such that \(h_{A}(y)/\sqrt{y^{2}-x^{2}}\) is Lebesgue integrable on [x,∞). This condition is met by the uniform, exponential, gamma, lognormal, and power-law trace length distributions as well as by the trace length distributions that arise from a deterministic fracture diameter or from a discontinuous fracture diameter length distribution. Exponential, gamma, lognormal, and power-law trace length distributions satisfy necessary conditions for the diameter distribution to be non-negative, and necessary and sufficient conditions for the distribution to have unit integral over the real line. Negative values of the fracture diameter distribution arise when the trace has a uniform distribution and the lower bound of the fracture trace is greater than zero.  相似文献   

10.
In this paper we consider an anisotropic scaling approach to understanding rock density and surface gravity which naturally accounts for wide range variability and anomalies at all scales. This approach is empirically justified by the growing body of evidence that geophysical fields including topography and density are scaling over wide range ranges. Theoretically it is justified, since scale invariance is a (geo)dynamical symmetry principle which is expected to hold in the absence of symmetry breaking mechanisms. Unfortunately, to date most scaling approaches have been self-similar, i.e., they have assumed not only scale invariant but also isotropic dynamics. In contrast, most nonscaling approaches recognize the anisotropy (e.g., the strata), but implicitly assume that the latter is independent of scale. In this paper, we argue that the dynamics are scaling but highly anisotropic, i.e., with scale dependent differential anisotropy. By using empirical density statistics in the crust and a statistical theory of high Prandtl number convection in the mantle, we argue that is a reasonable model for the 3-D spectrum (K is the horizontal wavevector and K is its modulus, k z is a vertical wavenumber), (s,H z ) are fundamental exponents which we estimate as (5.3,3), (3,3) in the crust and mantle, respectively. We theoretically derive expressions for the corresponding surface gravity spectrum. For scales smaller than ≈100 km, the anisotropic crust model of the density (with flat top and bottom) using empirically determined vertical and horizontal density spectra is sufficient to explain the (Bouguer) g z spectra. However, the crust thickness is highly variable and the crust-mantle density contrast is very large. By considering isostatic equilibrium, and using global gravity and topography data, we show that this thickness variability is the dominant contribution to the surface g z spectrum over the range ≈100–1000 km. Using estimates of mantle properties (viscosity, thermal conductivity, thermal expansion coefficient, etc.), we show that the mantle contribution to the mean spectrum is strongest at ≈1000 km and is comparable to the variable crust thickness contribution. Overall, we produce a model which is compatible with both the observed (horizontal and vertical) density heterogeneity and surface gravity anomaly statistics over a range of meters to several thousand kilometers.  相似文献   

11.
12.
The equation of groundwater flow in marine island aquifers in which there is time-independent, spatially-variable recharge and pumping is solved in closed form for rectangular, circular, and elliptical island geometries. The solution of the groundwater flow equation is expressed in terms of the elevation of the phreatic surface within the flow domain. The depth of the seawater-freshwater interface below mean sea level follows from the Dupuit–Ghyben–Herzberg relation. The method of solution presented in this work relies on expanding the hydraulic head and forcing function (recharge and groundwater extraction) as Fourier series that transforms the two-dimensional Poisson-type flow equations into second-order ordinary differential equations solvable using classical theory. The important case of constant recharge (without groundwater extraction) leads to solutions in which the hydraulic head is expressible as the product of a flow factor equal to the squared root of the ratio of recharge over hydraulic conductivity times a geometric factor involving island shape parameters and flow boundary conditions. Estimability conditions for the hydraulic conductivity are derived for the cases of constant recharge and spatially variable recharge with pumping.  相似文献   

13.
This paper presents a new numerical program able to model syntectonic sedimentation. The new model combines a discrete element model of the tectonic deformation of a sedimentary cover and a process-based model of sedimentation in a single framework. The integration of these two methods allows us to include the simulation of both sedimentation and deformation processes in a single and more effective model. The paper describes briefly the antecedents of the program, Simsafadim-Clastic and a discrete element model, in order to introduce the methodology used to merge both programs to create the new code. To illustrate the operation and application of the program, analysis of the evolution of syntectonic geometries in an extensional environment and also associated with thrust fault propagation is undertaken. Using the new code, much more complex and realistic depositional structures can be simulated together with a more complex analysis of the evolution of the deformation within the sedimentary cover, which is seen to be affected by the presence of the new syntectonic sediments.  相似文献   

14.
This paper describes two new approaches that can be used to compute the two-dimensional experimental wavelet variogram. They are based on an extension from earlier work in one dimension. The methods are powerful 2D generalizations of the 1D variogram that use one- and two-dimensional filters to remove different types of trend present in the data and to provide information on the underlying variation simultaneously. In particular, the two-dimensional filtering method is effective in removing polynomial trend with filters having a simple structure. These methods are tested with simulated fields and microrelief data, and generate results similar to those of the ordinary method of moments variogram. Furthermore, from a filtering point of view, the variogram can be viewed in terms of a convolution of the data with a filter, which is computed fast in O(NLogN) number of operations in the frequency domain. We can also generate images of the filtered data corresponding to the nugget effect, sill and range of the variogram. This in turn provides additional tools to analyze the data further.  相似文献   

15.
New versions of the universal Jd-Di exchange clinopyroxene barometer for peridotites,pyroxenites and eclogites,and also garnet barometer for eclogites and peridotites were developed.They were checked using large experimental data sets for eciogitic(~530) and peridotitic systems(650).The precision of the universal Cpx barometer for peridotites based on Jd-Di exchange is close to Cr-Tschermalite method produced by Nimis and Taylor(2000).Cpx barometer was transformed by the substitution of major multiplier for K_D by the equations dependent from Al-Na-Fe.Obtained equation in combination with the thermometer of Nimis and Taylor(2000) allow to reconstruct position of the magma feeder systems of the alkali basaltic magma within the mantle diapirs in modern platforms like in Vitim plateau and other Southern Siberia localities and several localities worldwide showing good agreement of pressure ranges for black and green suites.These equations allow construct PTX diagrams for the kimberlite localities in Siberia and worldwide calculating simultaneously the PT parameters for different groups of mantle rocks.They give very good results for the concentrates from kimberlite lamproites and placers with mantle minerals.They are useful for PT estimates for diamond inclusions.The positions of eclogite groups in mantle sections are similar to those determined with new Gar—Cpx barometer produced by C.Beyer et al.(2015).The Fe rich eclogites commonly trace the boundary between the lower upper parts of subcontinental lithospheric mantle(SCLM) at 3-4 CPa marking pyroxenite eclogites layer.Ca-rich eclogites and especially grospydires in SCLM beneath Precambrian kimberlites occurs near pyroxenite layer but in younger mantle sections they became common in the lower parts.The diamondiferous Mg Cr-less group eclogites referring to the ancient island arc complexes are also common in the middle part of mantle sections and near 5-6 GPa.Commonly eclogites in lower apart of mantle sections are remelted and trace the high temperature convective branch.The Mg-and Fe-rich pyroxenites also show the extending in pressure trends which suggest the anatexic melting under the influence of volatiles or under the interaction with plums.  相似文献   

16.
Logistic regression is a widely used statistical method to relate a binary response variable to a set of explanatory variables and maximum likelihood is the most commonly used method for parameter estimation. A maximum-likelihood logistic regression (MLLR) model predicts the probability of the event from binary data defining the event. Currently, MLLR models are used in a myriad of fields including geosciences, natural hazard evaluation, medical diagnosis, homeland security, finance, and many others. In such applications, the empirical sample data often exhibit class imbalance, where one class is represented by a large number of events while the other is represented by only a few. In addition, the data also exhibit sampling bias, which occurs when there is a difference between the class distribution in the sample compared to the actual class distribution in the population. Previous studies have evaluated how class imbalance and sampling bias affect the predictive capability of asymptotic classification algorithms such as MLLR, yet no definitive conclusions have been reached.  相似文献   

17.
The need for improved product quality in the aggregates industry is driving the search for greater automation in rock type identification. In practice, reflectance spectra in visible and near-infrared light may reliably be used for the classification of rock classes and their variants. Previous studies introduced statistical classification of six rock variants by means of infrared spectra. The present investigation extends these studies to cover twelve rock types and variants of worldwide economic importance. These were measured by visible and near-infrared light. Statistical classification of these spectra is highly challenging due to the high number of groups and the high dimensionality of the data. In functional data analysis, spectra are regarded as curves instead of vectors of characteristics. To obtain a compact form that is more susceptible to further analysis, the spectra are represented by a B-spline basis. Two functional versions of linear support vector machines and penalized functional discriminant analysis are considered for classification. The multiclass problem is addressed by margin trees and by considering all one-against-one classifications combined with a voting strategy for testing. Since classification error estimated by 5-fold cross-validation is very low, in particular for penalized discriminant analysis, we conclude that the rock types can be classified reliably.  相似文献   

18.
Singular physical or chemical processes may result in anomalous amounts of energy release or mass accumulation that, generally, are confined to narrow intervals in space or time. Singularity is a property of different types of non-linear natural processes including cloud formation, rainfall, hurricanes, flooding, landslides, earthquakes, wildfires, and mineralization. The end products of these non-linear processes can be modeled as fractals or multifractals. Hydrothermal processes in the Earth’s crust can result in ore deposits characterized by high concentrations of metals with fractal or multifractal properties. Here we show that the non-linear properties of the end products of singular mineralization processes can be applied for prediction of undiscovered mineral deposits and for quantitative mineral resource assessment, whether for mineral exploration or for regional, national and global planning for mineral resource utilization. In addition to the general theory and framework for the non-linear mineral resources assessment, this paper focuses on several power-law models proposed for characterizing non-linear properties of mineralization and for geoinformation extraction and integration. The theories, methods, and computer system discussed in this paper were validated using a case study dealing with hydrothermal Au mineral potential in southern Nova Scotia, Canada.  相似文献   

19.
A hierarchical geostatistical analysis is conducted on a high-resolution, multiscale hydraulic conductivity (ln K) map, created by scaling up an experimental stratigraphy. Unlike a previous study which evaluates ln K variograms within individual depositional environments, this study analyzes deposits (or samples) that incorporate multiple depositional environments. Based on conductivity cutoffs selected from a global ln K histogram, an indicator map is created to divide the deposits into 4 categories: sand, silty sand, clayey silt, and clay (Hierarchy-I). Based on facies and facies assemblage types selected using geological criteria, two more indicator maps are created at a higher hierarchy (Hierarchy-II) to divide the deposits into 14 units and 2 units, respectively. For each sample, its experimental ln K variogram is decomposed into 4 auto- and cross-transition component variograms. The decomposition characteristics are then evaluated against the underlying heterogeneity and specific division rule. The analysis reveals that: (1) ln K cutoffs (sand contents of the physical stratigraphy) can be used to distinguish the shifts in dominant deposition mode; (2) sample univariate modes depend on the choice of hierarchical division; (3) sample variograms exhibit smooth-varying correlation structures (exponential-like variograms are observed in samples with a large variance in mean facies length); (4) the decomposition characteristics are sensitive to the division based on conductivity cutoffs, but not sensitive to the division based on depositional environment (For all samples, with appropriate division, the sample variogram is closely approximated by the sum of the cross-transition component variograms.); and (5) at the Hierarchy-II level, the 2-unit division gives similar decomposition characteristics as the 14-unit division. For the select samples, parsimony in hierarchical division is achieved at the facies assemblage scale.  相似文献   

20.
The thermo-elastic behavior of a natural epidote [Ca1.925 Fe0.745Al2.265Ti0.004Si3.037O12(OH)] has been investigated up to 1,200 K (at 0.0001 GPa) and 10 GPa (at 298 K) by means of in situ synchrotron powder diffraction. No phase transition has been observed within the temperature and pressure range investigated. PV data fitted with a third-order Birch–Murnaghan equation of state (BM-EoS) give V 0 = 458.8(1)Å3, K T0 = 111(3) GPa, and K′ = 7.6(7). The confidence ellipse from the variance–covariance matrix of K T0 and K′ from the least-square procedure is strongly elongated with negative slope. The evolution of the “Eulerian finite strain” vs “normalized stress” yields Fe(0) = 114(1) GPa as intercept values, and the slope of the regression line gives K′ = 7.0(4). The evolution of the lattice parameters with pressure is slightly anisotropic. The elastic parameters calculated with a linearized BM-EoS are: a 0 = 8.8877(7) Å, K T0(a) = 117(2) GPa, and K′(a) = 3.7(4) for the a-axis; b 0 = 5.6271(7) Å, K T0(b) = 126(3) GPa, and K′(b) = 12(1) for the b-axis; and c 0 = 10.1527(7) Å, K T0(c) = 90(1) GPa, and K’(c) = 8.1(4) for the c-axis [K T0(a):K T0(b):K T0(c) = 1.30:1.40:1]. The β angle decreases with pressure, βP(°) = βP0 −0.0286(9)P +0.00134(9)P 2 (P in GPa). The evolution of axial and volume thermal expansion coefficient, α, with T was described by the polynomial function: α(T) = α0 + α1 T −1/2. The refined parameters for epidote are: α0 = 5.1(2) × 10−5 K−1 and α1 = −5.1(6) × 10−4 K1/2 for the unit-cell volume, α0(a) = 1.21(7) × 10−5 K−1 and α1(a) = −1.2(2) × 10−4 K1/2 for the a-axis, α0(b) = 1.88(7) × 10−5 K−1 and α1(b) = −1.7(2) × 10−4 K1/2 for the b-axis, and α0(c) = 2.14(9) × 10−5 K−1 and α1(c) = −2.0(2) × 10−4 K1/2 for the c-axis. The thermo-elastic anisotropy can be described, at a first approximation, by α0(a): α0(b): α0(c) = 1 : 1.55 : 1.77. The β angle increases continuously with T, with βT(°) = βT0 + 2.5(1) × 10−4 T + 1.3(7) × 10−8 T 2. A comparison between the thermo-elastic parameters of epidote and clinozoisite is carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号