首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Landslide deposits dam Lake Oeschinen (Oeschinensee), located above Kandersteg, Switzerland. However, past confusion differentiating deposits of multiple landslide events has confounded efforts to quantify the volume, age, and failure dynamics of the Oeschinensee rock avalanche. Here we combine field and remote mapping, topographic reconstruction, cosmogenic surface exposure dating, and numerical runout modeling to quantify salient parameters of the event. Differences in boulder lithology and deposit morphology reveal that the landslide body damming Oeschinensee consists of debris from both an older rock avalanche, possibly Kandertal, as well as the Oeschinensee rock avalanche. We distinguish a source volume for the Oeschinensee event of 37 Mm3, resulting in an estimated deposit volume of 46 Mm3, smaller than previous estimates that included portions of the Kandertal mass. Runout modeling revealed peak and average rock avalanche velocities of 65 and 45 m/s, respectively, and support a single-event failure scenario. 36Cl surface exposure dating of deposited boulders indicates a mean age for the rock avalanche of 2.3 ± 0.2 kyr. This age coincides with the timing of a paleo-seismic event identified from lacustrine sediments in Swiss lakes, suggesting an earthquake trigger. Our results help clarify the hazard and geomorphic effects of rare, large rock avalanches in alpine settings.  相似文献   

2.
The sandy deposits produced by tsunamis and liquefaction share many sedimentary features, and distinctions between the two are important in seismically active coastal zones. Both types of deposits are present in the wetlands bordering Puget Sound, where one or more earthquakes about 1100 years ago caused both tsunami flooding and sediment venting. This co‐occurrence allows an examination of the resulting deposits and a comparison with tsunami and liquefaction features of modern events. Vented sediments occur at four of five wetland field localities and tsunami deposits at two. In comparison with tsunami deposits, vented sediments in this study and from other studies tend to be thicker (although they can be thin). Vented sediments also have more variable thickness at both outcrop and map scale, are associated with injected dykes and contain clasts derived from underlying deposits. Further, vented sediments tend to contain a greater variety of sedimentary structures, and these structures vary laterally over metres. Tsunami deposits compared with vented sediments are commonly thinner, fine and thin landward more consistently, have more uniform thickness on outcrop and map scales, and have the potential of containing coarser clasts, up to boulders. For both tsunami deposits and vented sediments, the availability and grain size of source material condition the characteristics of the deposit. In the cases presented in this paper, both foraminifera and diatom assemblages within tsunami deposits and vented sediments consisted of brackish and marine species, and no distinction between processes could be made based on microfossils. In summary, this study indicates a need for more careful analysis and mapping of coastal sediments associated with earthquakes to avoid misidentification of processes and misevaluation of hazards.  相似文献   

3.
Onshore tsunami deposits may consist of inflow and backflow deposits. Grain sizes can range from clay to boulders of several metres in diameter. Grain‐size distributions reflect the mode of deposition and may be used to explore the hydrodynamic conditions of transport. The absence of unique sedimentary features identifying tsunami deposits makes it difficult in some cases to distinguish inflow from backflow deposits. On Isla Mocha off central Chile, the 27 February 2010 tsunami left behind inflow and backflow deposits of highly variable character. Tsunami inflow entrained sands, gravels and boulders in the upper shoreface, beach, and along coastal terraces. Boulders of up to 12 t were transported up to 300 m inland and 13 m above sea‐level. Thin veneers of coarse sand were found up to the maximum runup at 600 m inland and 19 m above sea‐level. Backflow re‐mobilized most of the sands and gravels deposited during inflow. The orientation of erosional structures indicates that significant volumes of sediment were entrained also during backflow. A major feature of the backflow deposits are widespread prograding fans of coarse sediment developed downcurrent of terrace steps. Fan sediments are mostly structureless but include cross‐bedding, imbrication and ripples, indicating deposition from bedload traction currents. The sediments are poorly sorted, grain sizes range between medium to coarse sand to gravel and pebbles. An assessment of the backflow transport conditions of this mixed material suggests that bedload transport at Rouse numbers >2·5 was achieved by supercritical flows, whereas deposition occurred when currents had decelerated sufficiently on the low‐gradient lower coastal plain. The sedimentary record of the February 2010 tsunami at Isla Mocha consists of backflow deposits to more than 90%. Due to the lack of sedimentary structures, many previous studies of modern tsunami sediments found that most of the detritus was deposited during inflow. This study demonstrates that an uncritical use of this assumption may lead to erroneous interpretations of palaeotsunami magnitudes and sedimentary processes if unknowingly applied to backflow deposits.  相似文献   

4.
Under the WCoE/IPL project, Landsat Enhanced Thematic Mapper plus (ETM+) and ASTER GDEM data were used to analyze factors associated with frequent debris flow and rock-debris avalanche on the Nigeria-Cameroon mountain range. Detailed processing of the ETM+ imageries of the vulnerable portions on the western part of Adamawa plateau was carried out to identify structural trends relatable to the slope failures. The processing identified the structural characteristics of the study area and clearly distinguished the lineaments associated with the debris flow and rock-debris avalanches. The strongly weathered and fragmented gneissic rocks, shallow groundwater table, as well as the distribution of faults and joint sets were significant factors predisposing the slopes to rapid movements. Recent landslides occurred at the locations with high lineament density and in areas close to major faults and long lineaments. The interaction among the moving mass, slope geometry, local geology, topography, and drainage then resulted in a long runout and a high degree of spreading. Analysis of the ASTER–GDEM delineated landforms, slope morphology, and drainage patterns, which was not possible with conventional mapping techniques. Integration of these results yielded reasonable interpretation of the predisposing factors for the long runout failures and provided logical basis for future landslide susceptibility analysis in the area. Accurate investigation of the predisposing factors and characteristics of landslides in environments that have experienced past failures is therefore important in understanding areas that may be susceptible to landsliding in future.  相似文献   

5.
Coastal boulder fields provide clues to long-term frequency-magnitude patterns of coastal flooding events and have the potential to play an important role in coastal hazard assessment. Mapping boulders in the field is time and labour-intensive, and work on intertidal reef platforms, as in the present study, is physically challenging. By addressing coastal scientists who are not specialists in remote sensing, this contribution reports on the possibilities and limitations of digital applications in boulder mapping in Eastern Samar, Philippines, where recent supertyphoons Haiyan and Hagupit induced high waves, coastal flooding and boulder transport. It is demonstrated how satellite imagery of sub-metre resolution (from Pléiades and WorldView-3 imagery) enables efficient analysis of transport vectors and distances of larger boulders, reflecting variation in latitudes of both typhoon tracks and approaching angles of typhoon-generated waves. During the investigated events, boulders with a-axes of up to 8 m were clearly identified to have been shifted for up to 32 m, mostly along the seaward margin of the boulder field. It is, however, hard to keep track of smaller boulders, and the length of a-axes and b-axes including their orientation is often impossible to map with sufficient accuracy. Orthophotographs and digital surface models created through the application of an unmanned aerial vehicle and the ‘Structure from Motion’ technique provide ultra-high-resolution data, and have the potential to not only improve the results of satellite image analysis, but also those from field mapping and may significantly reduce overall time in the field. Orthophotographs permit unequivocal mapping of a-axes and b-axes including their orientation, while precise values for c-axes can be derived from the respective digital surface models. Volume of boulders is best inferred from boulder-specific Structure from Motion-based three-dimensional models. Battery power, flight speed and altitude determine the limits of the area covered, while patches shielded by the boulders are difficult to resolve. For some tasks, field mapping remains mandatory and cannot be replaced by currently available remote sensing tools: for example, sampling for rock type, density and age dating, recording of lithological separation of boulders from the underlying geological unit and of geomorphic features on a millimetre to decimetre-scale, or documentation of fine-grained sediment transport in between the boulders in supratidal settings. In terms of future events, the digital products presented here will provide a valuable reference to track boulder transport on a centimetre to decimetre-scale and to better understand the hydrodynamics of extreme-wave events on a fringing reef coastline.  相似文献   

6.
A history and conception of glacial events for the central Karakoram Himalaya, proposed some 80 years ago by Giotto Dainelli, are largely accepted today. However, certain deposits identified as terminal moraine complexes marking glacial episodes were actually emplaced by rock avalanches. In the Skardu and Shigar intermontane basins of Baltistan, at least 15 rock avalanche events were previously mapped as moraine or till. Criteria used for distinguishing these catastrophic landslide deposits emphasize homogeneous lithology of rubble and matrix, clast shape, facies characteristics, the large scale unity of emplacement, and morphological relations to valley topography. The deposits of three events, at Katzarah, Satpura, and the north end of Shigar Valley, have been reconstructed in detail. Thick supraglacial debris does not result in similar deposits. Extensive valley fills, river terraces, large sediment fans, and lacustrine sediments formerly attributed to late-glacial conditions are reinterpreted as postglacial events involving rock avalanches that interrupted fluvial development. Existing reconstructions of glaciations are left in doubt, especially late-glacial events in the central Karakoram, as are the roles assigned to Karakoram, main Indus Valley, and western Himalayan ice.  相似文献   

7.
Catastrophic volcanic debris avalanches reshape volcanic edifices with up to half of pre-collapse cone volumes being removed. Deposition from this debris avalanche deposit often fills and inundates the surrounding landscape and may permanently change the distribution of drainage networks. On the weakly-incised Mt. Taranaki ring-plain, volcanic debris avalanche deposits typically form a large, wedge shape (in plan view), over all flat-lying fans. Following volcanic debris avalanches a period of intense re-sedimentation commonly begins on ring-plain areas, particularly in wet or temperate climates. This is exacerbated by large areas of denuded landscape, ongoing instability in the scarp/source region, damming of river/stream systems, and in some cases inherent instability of the volcanic debris avalanche deposits. In addition, on Mt. Taranaki, the collapse of a segment of the cone by volcanic debris avalanche often generates long periods of renewed volcanism, generating large volumes of juvenile tephra onto unstable and unvegetated slopes, or construction of new domes with associated rock falls and block-and-ash flows. The distal ring-plain impact from these post-debris avalanche conditions and processes is primarily accumulation of long run-out debris flow and hyperconcentrated flow deposits with a variety of lithologies and sedimentary character. Common to these post-debris avalanche units is evidence for high-water-content flows that are typically non-cohesive. Hence sedimentary variations in these units are high in lateral and longitudinal exposure in relation to local topography. The post-collapse deposits flank large-scale fans and hence similar lithological and chronological sequences can form on widely disparate sectors of the ring plain. These deposits on Mt. Taranaki provide a record of landscape response and ring-plain evolution in three stages that divide the currently identified Warea Formation: 1) the deposition of broad fans of material adjacent to the debris avalanche unit; 2) channel formation and erosion of Stage 1 deposits, primarily at the contact between debris avalanche deposits and the Stage 1 deposits and the refilling of these channels; and 3) the development of broad tabular sheet flows on top of the debris avalanche, leaving sediments between debris avalanche mounds. After a volcanic debris avalanche, these processes represent an ever changing and evolving hazard-scape with hazard maps needing to be regularly updated to take account of which stage the sedimentary system is in.  相似文献   

8.
Six years of intensive study of the shallow water sediments of the northwestern Gulf of Mexico have indicated that there are many criteria by which ancient sediments deposited under similar conditions can be recognized. Thus the presence of echinoid fragments and of glauconite-filled Foraminifera tests favors marine shelf deposition over bay deposits; calcareous aggregates and grains of gypsum suggest high salinity bay deposits; abundance of wood fibers, high mica content, ferruginous aggregates, and well laminated sediments all are suggestive of deposition near river mouths; greater roundness distinguishes dunes from adjacent beach sands; and coarser grain size distinguishes beach sands from shallow shelf sands in the vicinity.Faunal assemblages of Foraminifera, Ostracoda, and Mollusca all serve to distinguish between bay and shelf deposits. Within the bays the faunas show a close relationship to salinity conditions whereas on the shelf the faunas are arranged in bands parallel to the shore and to the depth contours. Certain generalizations concerning the relation of faunas to environment can be made without detailed knowledge of the species.Contribution from the Scripps Institution of Oceanography, New Series No. 997. Investigation supported by a grant from American Petroleum Institute, Project 51.  相似文献   

9.
The Sumatra–Andaman Tsunami left distinctive sedimentological and geomorphological signatures in the area of Khao Lak. Fine-grained sediments, predominantly layers of cohesive, carbonate-rich, fine-sandy silt with thicknesses of 1–10 cm, erosionally overlying pre-tsunami sandy soils and sediments, represent the most common tsunami deposits in the study area. Petrographically, they differ significantly from other coastal sediments and affiliated soils. Due to their grain size and corresponding clay mineral content, muddy shelf sediments (sub-wave base) are indicated as a main source. The present results suggest that indications of shelf influence, although varying regionally, might contribute to the identification of fine-grained tsunami sediments and their differentiation from storm sediments. However, the observed differences of tsunami sediments to soils and other coastal sediments, especially with respect to carbonate mineralogy, might disappear in short geological time under conditions of intensive weathering and bioturbation. At Cape Pakarang, hundreds of boulders with up to 24 tons were deposited on the foreshore and upper shoreface. Applying Nott’s (Earth Planet Sci Lett 210:269–276, 2003) formulas, minimum flow velocities of 3.9 m/s are required to transport the largest boulders. The devastating tsunami effect of both, onshore flow and backflow, is documented by damaged human constructions. Geomorphological effects include intensive widening of estuary mouths and the development of erosional channels. Now, estuary mouths are reduced, and erosional channels cut off from the sea due to the formation of a post-tsunami beach ridge.  相似文献   

10.
湘西黔东寒武纪深水碳酸盐重力沉积   总被引:11,自引:2,他引:11  
湘西黔东武陵山地区位于江南寒武纪边缘海的西北边缘[1],自早寒武世清墟洞期开始,本区主要表现为一呈北东-南西向展布的深水碳酸盐斜坡。其东南侧为深水盆地。西北侧为广阔的扬子碳酸盐台地。台地边缘区发育有以表附藻、葛万藻为主要造礁生物的蓝绿藻礁和鲕粒滩、砂屑滩。由于台地边缘的快速堆积及其向海推进,造成了台地边缘极大的不稳定性,在重力作用下,发生了大规模的沉积物横向位移。因此,自中寒武世开始,在斜坡带及盆地边缘形成了类型繁多的重力沉积物。  相似文献   

11.
Caveman sites retained to date are overlain almost everywhere by loose sediments. Of particular interest is the fact that a part of these archeological objects was conserved by eolian flows ascending upward the slopes rather than descending gravitation processes (deluvial washout, mudflows, landslides, avalanches, and others). These lithoflows were promoted at first by wave-cut activity of a lake (water body → beach) and then by wind (beach → coastal plain). We studied such lithoflows and caveman sites overlain by sediments in the western Baikal region and on Lake Baikal. Archeological data on these sites were used for establishing the age of eolian sands. Mineral and chemical compositions of sandy sediments and the dynamics of eolian processes have received much attention. Investigation of eolian sands is important because they can overlie and protect caveman sites and some mineral deposits from destruction.  相似文献   

12.
A 500‐m‐long road cutting in the Lower Devonian Snowy River Volcanics (SRV), eastern Victoria, Australia, exposes phreatomagmatic units and volcaniclastic sediments. Based on bed geometry, sorting and sedimentary structures, it was possible to distinguish base‐surge deposits from ephemeral fluvial deposits in this relatively well‐exposed ancient succession. Where the base‐surge deposits infill irregular topography, bed sets mantle the pre‐existing surface but thicken into topographic lows. In contrast, where the fluvial deposits infill topographic depressions, beds onlap laterally against channel walls. In addition, curvi‐planar slide surfaces within the base‐surge deposits generated by inter‐eruptive slumping indicate rapid emplacement as a constructional tuff rampart (? maar). The base‐surge deposits are always poorly sorted and commonly contain accretionary lapilli, reflecting their deposition from turbulent, low‐particle‐concentration, steam‐rich pyroclastic currents. In contrast, the fluvial deposits are relatively well‐sorted, reflecting hydraulic sorting and winnowing during tractional transport and deposition. There are significant differences in the types of sedimentary structures present. (1) Bedding in the base‐surge deposits is entirely tabular, and beds can be traced laterally to the limits of the outcrop. In contrast, the fluvial deposits have abundant internal scour surfaces that result in beds/bedding intervals lensing out laterally over intervals of the order of 5–10 m. (2) Cross‐beds with relatively high‐angle foresets are restricted to the fluvial deposits. (3) Laterally persistent tabular beds that contain abundant, densely packed accretionary lapilli are restricted to the base‐surge deposits. In summary, although base‐surge deposits and ephemeral fluvial deposits can appear superficially similar, it is possible to apply facies models carefully to distinguish between them, even in ancient successions.  相似文献   

13.
The sediments of the upper Swartkops River are almost exclusively gravels and boulder beds derived from the Cretaceous Uitenhage Group and the Paleozoic Cape Supergroup rocks. Many of the cobbles and boulders are second-cycle clasts, the great majority of which are quartzitic in composition. Pebble size and shape were examined and fabric analysis was performed on samples from 22 sites in the study area. Pebble imbrication planes dip consistently upstream at angles of 20? to 50? and pebble long axes generally are aligned normal to the flow direction. Clasts in the braid-plain deposits range from a few millimeters to tens of centimeters (large boulders over a meter in diameter are not uncommon). Pebble roundness ranges from 0.2 to 0.9 (averaging 0.43) and sphericity values range from 0.3 to 0.9 (averaging 0.59). The gravel clasts are angular to well-rounded, but are predominantly subrounded. Zingg diagram plots show a majority of discoidal pebbles, but there is a diversity of shapes reflecting the complex source area from which some resedimented clasts originated.

Channel and bar morphology is complex, with gravel bars often merging laterally and longitudinally with main and secondary channels. Both channels and bars are terraced stepwise downstream and across the braid plain. Bar tops are armored by both small and large clasts, whereas channels may be lined with cobbles or boulders, but often exhibit small pebble lags. Algal mats occur as fresh curtains in all standing pools of water and dried crusty deposits on pebbly substrates in inactive channels.

Imbrication studies demonstrate conclusively that pebble imbrication is the most meaningful indicator of flow direction in a gravel deposit and is far more reliable than rare cross-bedding encountered in bar-top sands, where bedforms often migrate laterally rather than downstream. The Swartkops braid-plain gravels resemble the ancient deposits of the Ventersdorp Contact Reef, both deposits being characterized by boulder-rich gravels, poor clast sorting, resedimented pebbles from a proximal fault-bounded source, and algal mats. Although heavy minerals are lacking in the Swartkops, trapping of fines by algal filaments appears to occur during low-flow conditions.  相似文献   

14.
Sedimentary indicators of catastrophic glacial megafloods—plane-bedded angular gravel, cobbles, and boulders—are described in several sections of the high terraces of the Chuya River valley. The principal difference of these sediments from typical alluvium of this area is demonstrated. The clast roundness, grain size of clasts, and sedimentary structures of the high-terrace deposits of the Chuya and Katun’ valleys indicate the same facies originated through megaflood deposition. These results are at odds with ideas of alluvial, glacial, or glaciofluvial genesis of the high-terrace deposits of the Chuya River.  相似文献   

15.
In an active fold-and-thrust belt, sediment is commonly transported in the form of debris and colluviums, and the ages of such deposits can be important for seismic hazard assessment. These sediments are mainly transported by high concentration flows that travel very short distances before burial, and therefore have very few opportunities for daylight exposure and bleaching, which limits the application of luminescence dating in such environments. Luminescence studies on modern debris flow deposits and channel sediments in central Taiwan indicate a mixed population of bleached and unbleached grains. The well bleached grains constitute a small proportion of the sediments and could only be identified using the single grain dating technique; doing single aliquot analysis may result in overestimation of the age of such sediments by 3–25 ka. The data reveal that outwash sediments are better bleached than debris flow sediments. Our results show that quartz that has experienced partial resetting can be used for luminescence dating only through the use of the single grain technique.  相似文献   

16.
《Earth》2002,57(1-2):1-35
Landslides have been a key process in the evolution of the western Canary Islands. The younger and more volcanically active Canary Islands, El Hierro, La Palma and Tenerife, show the clearest evidence of recent landslide activity. The evidence includes landslide scars on the island flanks, debris deposits on the lower island slopes, and volcaniclastic turbidites on the floor of the adjacent ocean basins. At least 14 large landslides have occurred on the flanks of the El Hierro, La Palma and Tenerife, the majority of these in the last 1 million years, with the youngest, on the northwest flank of El Hierro, as recent as 15 thousand years in age. Older landslides undoubtedly occurred, but are difficult to quantify because the evidence is buried beneath younger volcanic rocks and sediments. Landslides on the Canary Island flanks can be categorised as debris avalanches, slumps or debris flows. Debris avalanches are long runout catastrophic failures which typically affect only the superficial part of the island volcanic sequence, up to a maximum thickness of 1 to 2 km. They are the commonest type of landslide mapped. In contrast, slumps move short distances and are deep-rooted landslides which may affect the entire thickness of the volcanic edifice. Debris flows are defined as landslides which primarily affect the sedimentary cover of the submarine island flanks. Some landslides are complex events involving more than one of the above end-member processes.Individual debris avalanches have volumes in the range of 50–500 km3, cover several thousand km2 of seafloor, and have runout distances of up to 130 km from source. Overall, debris avalanche deposits account for about 10% of the total volcanic edifices of the small, relatively young islands of El Hierro and La Palma. Some parameters, such as deposit volumes and landslide ages, are difficult to quantify. The key characteristics of debris avalanches include a relatively narrow headwall and chute above 3000 m water depth on the island flanks, broadening into a depositional lobe below 3000 m. Debris avalanche deposits have a typically blocky morphology, with individual blocks up to a kilometre or more in diameter. However, considerable variation exists between different avalanche deposits. At one extreme, the El Golfo debris avalanche on El Hierro has few large blocks scattered randomly across the avalanche surface. At the other, Icod on the north flank of Tenerife has much more numerous but smaller blocks over most of its surface, with a few very large blocks confined to the margins of the deposit. Icod also exhibits flow structures (longitudinal shears and pressure ridges) that are absent in El Golfo. The primary controls on the block structure and distribution are inferred to be related to the nature of the landslide material and to flow processes. Observations in experimental debris flows show that the differences between the El Golfo and Icod landslide deposits are probably controlled by the greater proportion of fine grained material in the Icod landslide. This, in turn, relates to the nature of the failed volcanic rocks, which are almost entirely basalt on El Hierro but include a much greater proportion of pyroclastic deposits on Tenerife.Landslide occurrence appears to be primarily controlled by the locations of volcanic rift zones on the islands, with landslides propagating perpendicular to the rift orientation. However, this does not explain the uneven distribution of landslides on some islands which seems to indicate that unstable flanks are a ‘weakness’ that can be carried forward during island development. This may occur because certain island flanks are steeper, extend to greater water depths or are less buttressed by the surrounding topography, and because volcanic production following a landslide my be concentrated in the landslide scar, thus focussing subsequent landslide potential in this area. Landslides are primarily a result of volcanic construction to a point where the mass of volcanic products fails under its own weight. Although the actual triggering factors are poorly understood, they may include or be influenced by dyke intrusion, pore pressure changes related to intrusion, seismicity or sealevel/climate changes. A possible relationship between caldera collapse and landsliding on Tenerife is not, in our interpretation, supported by the available evidence.  相似文献   

17.
Alternative, established models for the deglaciation of the midlands of Ireland are tested against an interpretation of a suite of deglacial sediments covering an area of 600 km2 in the east central midland area. Interpretation of the sediments is based on geomorphological mapping, lithostratigraphic characterization of exposures and geotechnical data supported by electrical resistivity tomography (ERT) and ground penetrating radar (GPR). GPR depicted small‐scale sedimentological and deformational structures within low‐conductivity soft sediments, such as cross‐bedding, planar bedding, channel‐like features and faulting planes, and revealed the internal architecture of eskers, glaciodeltas, subaqueous fans and raised bogs. ERT data permitted the detection of depth to bedrock and the lithological characterization of unconsolidated sediments. The ten sites presented were surveyed by traditional mapping methods and/or geophysical techniques. This allowed the construction of a local model of the deglaciation of the area which recognized five main stages. An ice sheet covering most of Ireland withdrew as a single body as far as the midlands. At this stage, two main directions of ice retreat are identified from the spatial distribution of meltwater/overflow channels, esker and morainic ridges, and ice‐marginal glaciolacustrine deposits. A pattern of deglacial sedimentation into an expanding ice‐marginal glacial lake is depicted. The glacial lake was dammed to the west by two ice dome fronts, one decaying to the north‐west and another to the south‐west, and by the Shannon Basin watershed to the east. Glacial lake outlets identified along the watershed and the altitude of the topset/foreset interface zone depicted in glaciodeltaic deposits allowed the identification of three lake water levels. The highest level is at 87–89 m Ordnance Datum (OD), the second lake level at 84 m OD and the third at 78 m OD. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
An elucidation of the background levels of heavy metals, including certain toxic elements, is very essential to accomplish an important environmental assessment. A regional geochemical mapping in Hokkaido, Japan was undertaken by the Geological Survey of Japan, AIST as part of a nationwide geochemical mapping for this purpose. There were 692 stream sediments collected from the active channel (1 sample) / (100 km2) in Hokkaido and the fine fraction sieved through a 180 μm screen was analyzed using the AAS, ICP-AES, and ICP-MS techniques. The regional geochemical maps for 51 elements were created as a 2000 m mesh map using the geographic information system software. Spatial distribution patterns of elemental concentrations in stream sediments, particularly Neogene–Quaternary volcanic and pyroclastic rocks, are primarily determined by surface geology. The correspondence of elemental concentrations in stream sediments to parent lithology is clearly indicated by ANOVA and a multiple comparison. Sediment samples supplied from mafic volcanic and felsic–mafic pyroclastic rocks are significantly rich in MgO, Al2O3, P2O5, CaO, Sc, TiO2, V, MnO, Total (T)-Fe2O3, Co, Zn, Sr, and heavy rare earth elements (REEs) (Y and Eu–Lu), but significantly lacking in alkali elements, Be, Nb, light REEs (La–Nd), Ta, Tl, Th, and U. Accretionary complexes with sedimentary rocks derived from sediments are in stark contrast to volcanic and pyroclastic rocks. Accretionary complexes with mafic–ultramafic rock have significantly elevated Nb, Ta, and Th abundances in sediments besides MgO, Cr, Ni, Co, and Cu. This inexplicable result is caused by the mixed distributions of granite and ultramafic–mafic rocks.The watersheds with mineral deposits relate to the high concentrations of certain elements such as Zn, As, and Hg. The geochemically anomalous pattern, which is a map of the regional anomalies, and a scatter diagram were applied to examine the contribution of mineral deposits to MnO, T-Fe2O3, Cr, Cu, Zn, As, Cd, Sb, Hg, Pb, and Bi concentrations. Consequently, they were grouped into four types: 1) Mineral deposits with no outliers resulting from mineralization (MnO, T-Fe2O3, and Cr), 2) sediments supplied from watersheds without metal deposits conceal high metal inputs from known mineral deposits (Cu), 3) deposits from a geochemically anomalous area that closely relates to the presence of mineral deposits (As, Sb, and Hg), and 4) deposits from the widely altered zone associated with the Kuroko as well as hydrothermal deposits corresponding to geochemically anomalous patterns (Zn, Cd, and Pb). This study provides an important regional geochemical database for a young island-arc setting and interpretational problems, such as complicated geology and active erosion, that are unique to Japan.  相似文献   

19.
Lateroglacial valleys and landforms in the Karakoram Mountains (Pakistan)   总被引:1,自引:0,他引:1  
Lasafam Iturrizaga 《GeoJournal》2001,54(2-4):397-428
Lateroglacial landforms play a major role in the geomorphological landscape assemblage of the Karakoram Mountains. Nevertheless, in the past they have received only little attention in the glacial-geomorphological literature. In this article, the lateroglacial landscape will be presented as a geomorphological landscape unit. The Karakoram glaciers with lengths of up to 60 km are accompanied by lateroglacial sediment complexes over tens of kilometers. Besides their large horizontal distribution, they are spread over a considerable vertical range and occur between 2500 m–5000 m.The traditional view is that primary processes of rock disintegration such as ice avalanches and freeze-thaw processes as well as glaciofluvial sediments are the main debris suppliers for the formation of lateroglacial sediment complexes. However, the investigation of the lateroglacial sediment landscape of the Karakoram glaciers showed, that firstly the secondary debris supply in form of reworking of older glacigenic deposits (Late glacial slope moraines) represents a major debris source. Secondly, the lateroglacial sediments are composed to a major part of debris supplies from the tributary valleys. In this regard, the sediment input by mudflow events accords a prominent role. Therefore a considerable proportion of the lateroglacial sediments is of non-glacial origin. This fact has to be taken into consideration regarding glacier reconstruction in recent unglaciated mountain valleys. Further on, resedimented mudflow deposits could be identified as important parent material for recent lateral moraine formation. The distribution of lateroglacial valleys (`lateral moraine valleys') was traditionally closely linked to differences in insolation, which are in the subtropical latitude very high (`ablation valleys'). Therefore the S-faced valley flank was seen as the favourable location for lateroglacial valleys. However, field observations on more than 20 glaciers in the Karakoram Mountains proved that lateroglacial valleys occur in all exposures, and can be even absent in S-exposure. Topographical factors seem to be more important than insolation differences for the distribution pattern. Only the distribution of `true ablation valleys' can be regarded as a result of insolation differences. In fact, they can act as initial form for the formation of lateral moraine valleys.  相似文献   

20.
Rip currents as a geological tool   总被引:2,自引:0,他引:2  
This paper considers the nature and sedimentary significance of rip currents. Rip currents are the main factor responsible for the transport of coarse sediments from the littoral zone to greater depths. Such sediments, deposited outside the zone of wave deformation, may be identified as storm rip current increments within sediments deposited during fair weather. Composite beds deposited during a given wave cycle by storm rip currents are closely similar to ‘turbidites’ and many so called ‘fluxo-turbidites’ described from flysch deposits. Using data gathered in studies conducted on the modern Baltic coast, supplemented by experimental work and theoretical considerations, a sedimentary model is proposed. The model may be used to interpret possible rip current deposits among shallow water ‘turbidites’, and both modern storm sediments and ancient ‘tempestites’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号