首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg?1 h?1 with a mean value 59.7 mBq kg?1 h?1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg?1 with a mean value 41.6 Bq kg?1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg?1 h?1 (granite) with a mean value of 59.94 mBq kg?1 h?1.  相似文献   

2.
对长约70 km引水工程洞线上进行的地面伽马能谱测量、陆地伽马剂量率测量、土壤氡浓度测量、岩石表面氡析出率测量以及钻孔岩芯样品的放射性元素U、Ra、Th、K含量分析的综合放射性地质调查,并对获得的测量数据进行分析研究。结果表明,测区引水沿线地质体放射性核素当量含量平均值为:U 1.56×10-6,Th 14.12×10-6,K 2.16×10-2;钻孔岩芯放射性元素分析含量平均值为:U 32.34 Bq/kg,Ra 35.68 Bq/kg,Th 35.29 Bq/kg,K 865.65 Bq/kg。陆地伽马剂量率为90.42 nGy/h;土壤氡浓度平均值为4 272.1 Bq/m3;岩石表面析出率平均值为4.01×10-2 Bq/m2·s。根据测量结果,利用内照射和外照射辐射剂量计算了对施工人员造成的辐照剂量为0.759 mSv,低于国家对公众的剂量限值1 mSv/a,表明引水工程输水隧洞的施工在安全辐射范围内。  相似文献   

3.
The gaseous state and chemical inert behavior of radon make it important tracer for the radon transport study through the building materials. The radon resistant property of building construction materials is important parameter to control the indoor radon levels in living and workplaces. The materials with higher radium content can be made less severe by the use of some building materials of low diffusion coefficient and diffusion length. This makes the study of radon diffusion through building material more important along with the study of exhalation and radioactivity content. Keeping this in mind the radon diffusion study was carried out through different building construction materials used for wall and floor by active and passive techniques. The diffusion coefficient from these building materials measured by passive methods varied from (0.9 ± 0.5) × 10?7 to (22.95 ± 13.19) × 10?6 m2s?1 and radon diffusion length varied from 0.21 to 3.31 m for cement, soil, sand, wall putty and plaster of Paris (POP) etc. The radon diffusion coefficient measured by active technique varied from 1.93 × 10?10 to 1.36 × 10?7 m2s?1 for samples with definite geometry like paper, polyethylene, marble, granite etc. The radon diffusion coefficient and diffusion length depend upon the porosity and density of materials for powder samples.  相似文献   

4.
Soil gas radon measurements were made in Chamba and Dharamshala regions of Himachal Pradesh, India, to study the correlation, if any, between the soil gas radon, radium activity concentration of soil, and the geology/active tectonics of the study region. Soil gas radon surveys were conducted around the local fault zones to check their tectonic activities using the soil gas technique. Soil gas radon activity concentration at thirty-five different locations in Dharamshala region has been found to be varying from 13.2 ± 1.5 to 110.8 ± 5.0 kBq m?3 with a geometrical mean of 35.9 kBq m?3 and geometrical standard deviation of 1.8. Radon activity concentration observed in the thirty-seven soil gas samples collected from the Chamba region of Himachal Pradesh varies from 5.2 ± 1.0 to 35.6 ± 2.5 kBq m?3, with geometrical mean of 15.8 kBq m?3 and geometrical standard deviation of 1.6. Average radium activity concentrations in thirty-four soil samples collected from different geological formations of Dharamshala region and Chamba region are found to be 40.4 ± 17 and 38.6 ± 1.7 Bq kg?1, respectively. It has been observed that soil gas radon activity concentration has a wide range of variation in both Dharamshala and Chamba regions, while radium activity concentrations in soil samples are more or less same in both the regions. Moreover, soil gas radon activity concentration has a better positive correlation with the radium activity concentration in soil samples collected from Chamba region as compared to Dharamshala region.  相似文献   

5.
Due to the widespread use of granites as building and ornamental materials, measurements of natural radioactivity for a total 27 selected samples of commercial granites used in Egypt were carried out by using a high pure germanium detector. The activity concentrations of 226Ra, 232Th and 40K of commercial granites ranged from 25 to 356, 5 to 161, and 100 to 1,796?(Bq?kg?1), respectively. The concentrations of these radionuclides are compared with the international recommended values. To evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity, the absorbed dose rate, the effective dose rate, and the hazard index have been calculated. The radium equivalent activity Raeq varied from 41 to 669?(Bq?kg?1) which exceeds the permitted value (370?Bq?kg?1) and the internal hazard index H in varied from 0.2 to 2.8 which is higher than 1. The absorbed dose rate due to the natural radioactivity in the samples under investigation ranged from 19 to 310?(nGy?h?1). The total effective dose rates per person indoors were determined to be 0.09 to 1.5?(mSv?year?1).  相似文献   

6.
Groundwater constitutes the major source of utility water in Ekiti State with the majority of the population depending on groundwater for drinking and other household uses. Soil in the area is commonly used as a component of building materials, which may produce radon in the indoor environment. Excessive concentrations of radon in water and soil can cause radiological health risks to human as witnessed by the increased cases of lung cancer among non-smokers in Nigeria, which may be traceable to the ingestion and inhalation 222Rn in drinking water and indoor air. In the present study, comparative in situ measurements of radon in groundwater and soil gas were carried out at one hundred selected locations across the Ekiti State in southwest Nigeria, using a RAD7 radon detector to generate a radon distribution map and to estimate radiation hazards due to radon. The concentrations of radon in groundwater ranged from 0.9 to 472 Bq L?1 with a mean of 34.7?±?4.4 Bq L?1, while those of soil gas ranged from 0.1 to 315 kBq L?1 with a mean of 38.9?±?1.4 kBq L?1. The total annual effective dose due to inhalation and ingestion of radon in groundwater amounted to 94.7 µSv year?1, which is lower than the reference dose of 100 µSv year?1 recommended by the World Health Organization (WHO). The radon map generated for groundwater and soil gas identified three distinct areas with radon levels ranging from low to high. The results of this study show that some locations (Emure, Gbonyin, Ijero and Ikole) show mean total annual effective doses which are higher than the recommended limit. It can then be inferred that the groundwater samples pose significant radiological hazards to the population and that the noticed increase in lung cancer cases may be attributed to the consumption of groundwater in the area.  相似文献   

7.
Tailings resulted from sulphuric acid leaching process of uranium from sedimentary rocks contain high concentrations of 226Ra and its daughters, the most important of which is 222Rn. Movement of radon gas out of the tailings is strongly influenced by the physicochemical characteristics of these tailings especially their radium content and the grain size. So, the tailing samples were size fractionated into four sizes (>?250, 250–125, 125–74 and <?74 µm). The natural radioactivity was investigated using hyper-pure germanium detector and solid-state nuclear track detectors (CR-39) for bulk size and after size fractionation. The activity concentrations of different radionuclides in size-fractionated tailing samples have been shown to be strongly dependent on the size of the particles. In the range of >?250 and <?74 µm, the activity concentrations of 230Th, 226Ra, 214Pb, 214Bi, 210Pb, 232Th and 40K increased throughout with decreasing particle size, while that of 238U, 234U and 235U have an opposite effect. The results revealed an inverse relationship between the radon exhalation rate and size fractionation. Also, the results showed a good correlation between radium activity concentration and radon mass exhalation rate.  相似文献   

8.
Radon and its progenies have been ranked second of being responsible for lung cancer in humans. Hong Kong has four major groups of uranium-rich plutonic and volcanic rocks and is suffering from radon emanated therefrom. However, there is a lack of radon potential maps in Hong Kong to resolve the spatial distribution of radon-prone areas. A ten-point radon potential system was developed in Germany (2005) to predict radon potential using both the in situ geogenic and geographic parameters under hierarchical ranking. Primarily, the ten-point system requires the desk study of the geological environment of sampling sites, which has an advantage of saving resources and manpower in extensive radon potential mapping over the traditional soil radon concentration sampling method. This paper presents a trial of radon potential mapping in Hong Kong to further verify the system. Despite some slight departures, the system demonstrates an acceptable correlation with soil radon concentrations (R 2 = 0.62–0.66) from 768 samples of mainly intermediate radon potential. Hong Kong has a mean soil radon concentrations of 58.9 kBqm?3, while the radon potential from the ten-point system achieves an average of 4.93 out of 10 over the territory. The vicinity of fault zone showed high soil radon concentrations and potentials, which were conducive to uranium enrichment and rapid soil-gas diffusion near faults. High uranium-238 content in soil was found to cause high soil radon concentration with a large R 2, 0.84. The Jurassic granite and volcanic crystal tuff cover more than 85 % of the whole Hong Kong area, and they show relatively high radon concentrations (Geometric mean 83 and 49 kBqm?3, respectively) which are associated with their high uranium contents (Geometric mean 234 and 197 Bqkg?1, respectively). While indoor radon concentration is an important factor for radon risk assessment, this study has not considered the correlation between indoor radon concentration and radon potential. The reason is that almost all buildings in Hong Kong are high-rise buildings where indoor radon concentrations are governed only by the radium content in the building materials and the ventilation conditions.  相似文献   

9.
Naturally occurring isotopes of radon (222Rn) and radium isotopes (223,224,226,228Ra) were used as tracers to assess submarine groundwater discharge (SGD) into Little Lagoon, AL (USA), a site of recurring harmful algal blooms (HABs). The radium isotopic data suggests that there are two groundwater sources of these tracers to the lagoon, a shallow (A1) and deeper (A2) aquifer. We estimated the fraction of each source via a three-end-member mixing model consisting of Gulf of Mexico seawater, shallow and deep groundwater. The estimated lagoonwide SGD rates based on a radium mass balance and the mixing model were 1.22?±?0.53 and 1.59?±?0.20 m3 s-1 for the shallow and deep groundwater discharges, respectively. To investigate temporal variations in SGD, we performed several radon surveys from 2010 through 2012, a period of generally declining groundwater levels due to a drought in the southeastern USA. The total SGD rates based on a radon mass balance approach were found to vary from 0.60 to 2.87 m3 s-1. We observed well-defined relationships between nutrients and chlorophyll-a in lagoon waters during a period when there was an intense diatom bloom in April 2010 and when no bloom existed in March 2011. A good correlation was also found between radium (groundwater-derived) and nutrients during the April 2010 period, while there was no clear relationship between the same parameters in March 2011. Based on multivariate analysis of chemical and environmental factors, we suggest that nutrient-rich inputs during high SGD may be a significant driver of algal blooms, but during low SGD periods, multiple drivers are responsible for the occurrence of algal blooms.  相似文献   

10.
Extensive export quality reserves of granite, dolerite and marbles which are used for interior decorations as wall facing, paving floors, kitchen counter tops, etc., are available in Azad Kashmir. Since these stones contain radium in trace amounts, therefore, its use as a building material may be a potential source of indoor radon. In order to assess health hazards due to the use of these stones as a building material, samples were collected from different mining sites. After processing, these samples were placed in plastic containers and box type radon detectors were installed in it at the height of 25 cm above the surface of the samples. The containers were then hermetically sealed. After 60 days of exposure to radon, CR-39 detectors were etched in 6 M NaOH at 70 °C for 9 h and measured track densities were related to radon concentration. Radon exhalation rate form the studied granites, marble and dolerite samples varied from 87 ± 26 to 353 ± 36 mBq m?2h?1, 79 ± 25 to 650 ± 42 mBq m?2h?1 and 90 ± 26 to 324 ± 36 mBq m?2h?1, respectively. These decorative stones are therefore used in buildings and for export purposes as the observed radon exhalation values are smaller than that of the EPA recommended-action level.  相似文献   

11.
The activity concentrations and the gamma-absorbed dose rates of the primordial naturally occurring radionuclides 226Ra, 232Th and 40K were determined for sand samples collected from the Baoji Weihe Sands Park, China, using γ-ray spectrometry. The natural radioactivity concentration of sand ranges from 10.2 to 38.3 Bq kg−1 for 226Ra, 27.0 to 48.8 Bq kg−1 for 232Th and 635.8 to 1,126.7 Bq kg−1 for 40K with mean values of 22.1, 39.0 and 859.1 Bq kg−1, respectively. The concentrations of these radionuclides are compared with the typical world values and the average activity of Chinese soil. The measured activity concentration of 226Ra and 232Th in sand is lower than the world average while that of 40K is higher. . To evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity, the external hazard index, the absorbed dose rate, and the effective dose rate have been calculated and compared with internationally approved values. The radium equivalent activity values of all sand samples are lower than the limit of 370 Bq kg−1. The values of the external hazard index are less than unity. The mean outdoor air absorbed dose rate is 69.6 nGy h−1 and the corresponding outdoor effective dose rate is 0.085 mSv y−1.  相似文献   

12.
In order to examine the fluxes of methane (CH4) from the Indian estuaries, measurements were carried out by collecting samples from 26 estuaries along the Indian coast during high discharge (wet) and low water discharge (dry) periods. The CH4 concentrations in the estuaries located along the west coast of India were significantly higher (113?±?40 nM) compared to the east coast of India (27?±?6 nM) during wet and dry periods (88?±?15 and 63?±?12 nM, respectively). Supersaturation of CH4 was observed in the Indian estuaries during both periods ((0.18 to 22.3?×?103 %). The concentrations of CH4 showed inverse relation with salinity indicating that freshwater is a significant source. Spatial variations in CH4 saturation were associated with the organic matter load suggesting that its decomposition may be another source in the Indian estuaries. Fluxes of CH4 ranged from 0.01 to 298 μmol m?2 day?1 (mean 13.4?±?5 μmol m?2 day?1) which is ~30 times lower compared to European estuaries (414 μmol m?2 day?1). The annual emission from Indian estuaries, including Pulicat and Adyar, amounted to 0.39?×?1010 g CH4?year?1 with the surface area of 0.027?×?106 km2 which is significantly lower than that in European estuaries (2.7?±?6.8?×?1010 g CH4?year?1 with the surface area of 0.03?×?106 km2). This study suggests that Indian estuaries are a weak source for atmospheric CH4 than European estuaries and such low fluxes were attributed to low residence time of water and low decomposition of organic matter within the estuary. The CH4 fluxes from the Indian estuaries are higher than those from Indian mangroves (0.01?×?1010 g CH4?year?1) but lower than those from Indian inland waters (210?×?1010 g CH4?year?1).  相似文献   

13.
The natural radioactivity levels and magnetic measurements in sediment samples of Bharathapuzha river for the first time have been determined. Bottom sediments from 33 locations were collected to determine 226Ra, 232Th and 40K using a HPGe detector based on the high-resolution gamma spectrometry system, and magnetic susceptibility by using Bartington MS2 magnetic susceptibility meter. The calculated activity concentrations of 226Ra, 232Th and 40K have been found to vary from 21.21 to 66.03 Bq kg?1, 33.49 to 93.10 Bq kg?1 and 232.25 to 899.66 Bq kg?1, respectively. The results have been compared with worldwide recommended values and also with radioactivity measurements in river sediments of India and other parts of the world. The air-absorbed dose rate, indoor and outdoor annual effective dose rates and radium equivalent activity are calculated with an aim to access the radiation hazards arising due to the use of these materials in the construction of buildings and their mean values obtained are 74.83 nGy h?1, 367.08 μSv y?1, 91.77 μSv y?1 and 157.09 Bq kg?1, respectively. The mass-specific magnetic susceptibility values ranged widely from 35.4 to 2,160.5 × 10?8 m3 kg?1 and compared with other rivers in South India. Multivariate statistical analyses were performed to describe the magnetic and radioactivity relevance of the different groups of samples. The data obtained in the present study may be useful for radiological and magnetic mapping of the study area in the future.  相似文献   

14.
In this study, the environmental radioactivity measurements for Tokat and Sivas provinces in the northeast of Turkey were performed. Using gamma ray spectrometry, the activity concentrations of natural radionuclides in soil and travertine samples (232Th, 226Ra, and 40K) were determined. The annual effective dose equivalent, the absorbed doses rate in air, the radium equivalent, and the external hazard index were obtained from these activities. The activity concentrations vary from 9.09 to 17.04 Bq kg?1 for 232Th, from 36.53 to 76.95 Bq kg?1 for 226Ra, and from 216.56 to 576.59 Bq kg?1 for 40K in soil samples. The activity concentrations in travertines vary from 15.99 to 21.01 Bq kg?1 for 232Th, from 19.89 to 67.71 Bq kg?1 for 226Ra, and from 179.89 to 314.43 Bq kg?1 for 40K. The average dose rate in air for soil and travertine samples was 43.41 and 41.05 nGy h?1 respectively. The obtained results are presented and compared with other studies, and the results of this study are lower than the international recommended value (55 nGy h?1) given by UNSCEAR ( 2000). The results show that the region has a background radiation level within the natural limits.  相似文献   

15.
 Generalized geologic province information and data on house construction were used to predict indoor radon concentrations in New Hampshire (NH). A mixed-effects regression model was used to predict the geometric mean (GM) short-term radon concentrations in 259 NH towns. Bayesian methods were used to avoid over-fitting and to minimize the effects of small sample variation within towns. Data from a random survey of short-term radon measurements, individual residence building characteristics, along with geologic unit information, and average surface radium concentration by town, were variables used in the model. Predicted town GM short-term indoor radon concentrations for detached houses with usable basements range from 34 Bq/m3 (1 pCi/l) to 558 Bq/m3 (15 pCi/l), with uncertainties of about 30%. A geologic province consisting of glacial deposits and marine sediments was associated with significantly elevated radon levels, after adjustment for radium concentration and building type. Validation and interpretation of results are discussed. Received: 20 October 1997 · Accepted: 18 May 1998  相似文献   

16.
The main focus of this study was to assess radiation exposure to human and non-human biota due to natural radionuclides in soil of the Serbian capital. For the first time, ERICA tool was employed for calculation of gamma dose rates to non-human biota in this area. In analyzed soils, the mean values of 226Ra, 232Th and 40K specific activities were found to be 35, 43 and 490 Bq kg?1, respectively. The distribution of analyzed natural radionuclides in soils was discussed in respect to its statistically significant correlations with sand, silt, clay, carbonates, cation exchange capacity and pH value. The annual outdoor effective dose rates to the population varied from 48 to 98 μSv, and the total dose rates to terrestrial biota, calculated by ERICA tool, varied from 9.84?×?10?2 μGy h?1 (for tree) to 5.54?×?10+0 μGy h?1 (for lichen and bryophytes). The results obtained could serve as a baseline data for the assessment of possible anthropogenic enhancement of the total dose rate to human and non-human biota of the study area.  相似文献   

17.
Some of the rocks and soil-originated materials used in building construction are the serious natural radiation sources. Soil-originated bricks and roof-tiles and their raw material in the Salihli-Turgutlu area were tested in situ for natural radiation levels using a gamma-ray spectrometer. The concentrations of the radioelements 40K, 238U and 232Th and air-absorbed radiation rates were measured for soil, raw material heaps, brick and roof-tile stacks and waste brick heaps. The radium-equivalent activity Raeq of the raw material varied between 187.9 and 216.4 Bq kg?1. The external radiation hazard index Hex values ranged between 0.51 and 0.58. For building material and its products, recommended Raeq and Hex levels are 370 Bq kg-1 and 1.0, respectively. On the other hand, both Raeq and Hex values for waste brick heaps, containing broken brick pieces, coal pieces and ash, were higher than the recommended levels, i.e. Raeq values varied from 473.8 to 651.0 Bq kg-1 and Hex values were within the range 1.15–1.76. The annual dose rate and radium-equivalent activity values of the brick and roof-tiles were below the level of criteria. Annual dose rate ranged between 0.42 and 0.62 mSv y?1 and radium equivalent activity was in the range 172.9–245.2 Bq kg?1. The external and internal radiation hazard indices were all below the value of 1.0 for the Salihli-Turgutlu area bricks and roof-tiles. Results of this study were compared with results of previous studies. Natural radiation levels of construction raw material of study area are generally higher than of those of previous studies.  相似文献   

18.
This work presents the results of a soil erosion study using the 7Be technique. This technique estimates the water erosion/deposition from the comparison between 7Be soil content of a reference site and an eroded or sedimented site. The soil samples were collected from an agricultural area of the semiarid region of Argentina near San Luis City, which has a marked rainfall season. The area has been used for crop cultivation, being subjected to plowing practices. The 7Be in the Reference Site was in the first centimeter of soil, showing the typical exponential decreasing of 7Be soil content with depth, with the 7Be inventories value being 340?±?50 Bq m?2 for the dry season and 571?±?48 Bq m?2 for the rainy season. The 7Be technique was applied to a potential eroded site subjected to traditional tillage practices (plowing). A net soil erosion value of 13.5 t ha?1 (1.35 kg m?2) was obtained. From the assumptions of the applied technique, we can draw the inference that this erosion was caused by rains produced in the month prior to the date of soil sampling.  相似文献   

19.
Gamma activity from the naturally occurring radionuclides namely, 226Ra, 232Th, the primordial radionuclide 40K was measured in the soil of Cuihua Mountain National Geological Park, China using γ-ray spectrometry technique. The mean activity of 226Ra, 232Th and 40K were found to be 27.2 ± 6.5, 43.9 ± 6.2 and 653.1 ± 127.6 Bq kg−1, respectively. The concentrations of these radionuclides were compared with the typical world values and the average activities of Chinese soil. The radium equivalent activity, the air absorbed dose rate, the annual effective dose rate, and the external hazard index were evaluated and compared with the internationally approved values. All the soil samples have Raeq lower than the limit of 370 Bq kg−1 and H ex less than unity. The overall mean outdoor terrestrial gamma dose rate is 66.3 nGy h−1 and the corresponding outdoor annual effective dose is 0.081 mSv.  相似文献   

20.
Indoor radon measurements were carried out in a total of 420 dwellings and 17 schools in Hail region of Saudi Arabia, using NTDs based radon dosimeters. The duration of the measurements was one year, from April 2008 to April 2009. The indoor radon concentrations varied from 4 to 513 Bq/m3 with an overall average of 45 Bq/m3 for all surveyed dwellings. These passive measurements were confirmed by the active measurements. The anomalous concentrations above 200 Bq/m3 were observed in 13 dwellings, representing 3.1 % of the total surveyed dwellings. In Inbowan village alone, it was found that 7.6 % of the dwellings have indoor radon concentration above 200 Bq/m3. The highest average indoor radon concentration of 64 Bq/m3 was found in Inbowan village while the lowest average of 24 Bq/m3 was found in Majasah village. The city of Hail showed an average indoor radon concentration of 49 Bq/m3. The average indoor radon concentration in one area located at the edge of the Aja Mountain in Hail city was 111 Bq/m3. The elevated indoor radon concentrations in many dwellings in the Hail region, prompted us to measure outdoor ground radon in such locations using gas monitor. It was found that radon concentrations at a depth of 0.5 m varied significantly from place to place ranging from 1.2 to 177 kBq/m3. The outdoor radon concentrations are generally correlated with the indoor radon measurements. Radon exhalations from construction materials and soil samples from the Hail region were also measured. It was found that radon exhalations from soil samples are higher than that of construction materials by a factor of at least 3 and reaching up to 11. These results indicate that soil is the main source of indoor radon. Geological interpretations of the results are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号