首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
We have analysed the halogen concentrations and chlorine stable isotope composition of fluid inclusion leachates from three spatially associated Fe-oxide ± Cu ± Au mineralising systems in Norrbotten, Sweden. Fluid inclusions in late-stage veins in Fe-oxide–apatite deposits contain saline brines and have a wide range of Br/Cl molar ratios, from 0.2 to 1.1 × 10−3 and δ37Cl values from −3.1‰ to −1.0‰. Leachates from saline fluid inclusions from the Greenstone and Porphyry hosted Cu–Au prospects have Br/Cl ratios that range from 0.2 to 0.5 × 10−3 and δ37Cl values from −5.6‰ to −1.3‰. Finally, the Cu–Au deposits hosted by the Nautanen Deformation Zone (NDZ) have Br/Cl molar ratios from 0.4 to 1.1 × 10−3 and δ37Cl values that range from −2.4‰ to +0.5‰, although the bulk of the data fall within 0‰ ± 0.5‰.The Br/Cl ratios of leachates are consistent with the derivation of salinity from magmatic sources or from the dissolution of halite. Most of the isotopic data from the Fe-oxide–apatite and Greenstone deposits are consistent with a mantle derived source of the chlorine, with the exception of the four samples with the most negative values. The origin of the low δ37Cl values in these samples is unknown but we suggest that there may have been some modification of the Cl-isotope signature due to fractionation between the mineralising fluids and Cl-rich silicate assemblages found in the alteration haloes around the deposits. If such a process has occurred then a modified crustal source of the chlorine for all the samples cannot be ruled out although the amount of fractionation necessary to generate the low δ37Cl values would be significantly larger.The source of Cl in the NDZ deposits has a crustal signature, which suggests the Cl in this system may be derived from (meta-) evaporites or from input from crustal melts such as granitic pegmatites of the Lina Suite.  相似文献   

2.
The Changkeng Au and Fuwang Ag deposits represent an economically significant and distinct member of the Au–Ag deposit association in China. The two deposits are immediately adjacent, but the Au and Ag orebodies separated from each other. Ores in the Au deposit, located at the upper stratigraphic section and in the southern parts of the orefield, contain low Ag contents (< 11 ppm); the Ag orebodies, in the lower stratigraphic section, are Au-poor (< 0.2 ppm). Changkeng is hosted in brecciated cherts and jasperoidal quartz and is characterized by disseminated ore minerals. Fuwang, hosted in the Lower Carboniferous Zimenqiao group bioclastic limestone, has vein and veinlet mineralization associated with alteration comprised of quartz, carbonate, sericite, and sulfides. Homogenization temperatures of fluid inclusions from quartz veinlets in the Changkeng and Fuwang deposits are in the range of 210 ± 80 °C and 230 ± 50 °C, respectively. Salinities of fluid inclusions from the two deposits range from 1.6 to 7.3 wt.% and 1.6 to 2.6 wt.% equiv. NaCl, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of the fluid inclusions from the Changkeng deposit range from − 80‰ to − 30‰, − 7.8‰ to − 3.0‰, − 16.6‰ to − 17.0‰ and 0.0100 to 0.0054 Ra, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of fluid inclusions from the Fuwang deposit range from − 59‰ to − 45‰, − 0.9‰ to 4.1‰, − 6.7‰ to − 0.6‰ and 0.5930 to 0.8357 Ra, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of the fluid inclusions suggest the ore fluids of the Changkeng Au-ore come from the meteoric water and the ore fluids of the Fuwang Ag-ore are derived from mixing of magmatic water and meteoric water. The two deposits also show different Pb-isotopic signatures. The Changkeng deposit has Pb isotope ratios (206Pb/204Pb: 18.580 to 19.251, 207Pb/204Pb: 15.672 to 15.801, 208Pb/204Pb: 38.700 to 39.104) similar to those (206Pb/204Pb: 18.578 to 19.433, 207Pb/204Pb: 15.640 to 15.775, 208Pb/204Pb: 38.925 to 39.920) of its host rocks and different from those (206Pb/204Pb: 18.820 to 18.891, 207Pb/204Pb: 15.848 to 15.914, 208Pb/204Pb: 39.579 to 39.786) of the Fuwang deposit. The different signatures indicate different sources of ore-forming material. Rb–Sr isochron age (68 ± 6 Ma) and 40Ar–39Ar age (64.3 ± 0.1 Ma) of the ore-related quartz veins from the Ag deposit indicate that the Fuwang deposit formed during the Cenozoic Himalayan tectonomagmatic event. Crosscutting relationships suggests that Au-ore predates Ag-ore. The adjacent Changkeng and Fuwang deposits could, however, represent a single evolved hydrothermal system. The ore fluids initially deposited Au in the brecciated siliceous rocks, and then mixing with the magmatic water resulted in Ag deposition within fracture zones in the limestone. The deposits are alternatively the product of the superposition of two different geological events. Age evidence for the Fuwang deposit, together with the Xiqiaoshan Tertiary volcanic-hosted Ag deposit in the same area, indicates that the Pacific Coastal Volcanic Belt in the South China Fold Belt has greater potential for Himalayan precious metal mineralization than previous realized.  相似文献   

3.
The Daduhe gold field comprises several shear-zone-controlled Tertiary lode gold deposits distributed at the eastern margin of the Tibetan Plateau. The deposits are hosted in a Precambrian granite–greenstone terrane within the Yangtze Craton. The gold mineralization occurs mainly as auriferous quartz veins with minor sulphide minerals. Fluid inclusions in pyrite have 3He/4He ratios of 0.16 to 0.86 Ra, whereas their 40Ar/36Ar ratios range from 298 to 3288, indicating a mixing of fluids of mantle and crust origins. The δ34S values of pyrite are of 0.7–4.2‰ (n = 12), suggesting a mantle source or leaching from the mafic country rocks. δ18O values calculated from hydrothermal quartz are between − 1.5‰ and + 6.0‰ and δD values of the fluids in the fluid inclusions in quartz are − 39‰ and − 108‰. These ranges demonstrate a mixing of magmatic/metamorphic and meteoric fluids. The noble gas isotopic data, along with the stable isotopic data suggest that the ore-forming fluids have a dominantly crustal source with a significant mantle component.  相似文献   

4.
The Cobre–Babilonia vein system formed during a single major hydrothermal stage and is part of the Taxco district in Guerrero, southern Mexico. Homogenization and ice melting temperatures range from 160 to 290 °C and from − 11.6 to − 0.5 °C, respectively. We determined an approximate thermal gradient of 17 to 20 °C per 100 m using fluid inclusions. A thermal peak marked by the 290 °C isotherm is interpreted as a major feeder channel to the veins. The highest content of Zn + Pb in ore coincides with the 220 and 240 °C isotherms. Salinities of mineralizing fluids range from 0.8 to 15.6 wt.% NaCl equiv, and are distributed in two populations that can be related with barren or ore-bearing vein sections, with 0.8 to 6 wt.% NaCl equiv and 7 to 15.6 wt.% NaCl equiv, respectively. δ13C and δ18O water values from calcite from the Cobre–Babilonia vein system and the Esperanza Vieja and Guadalupe mantos range − 5.4‰ to − 10.4‰ and 9.9‰ to 13.4‰, respectively. δ34S values range from 0‰ to 3.2‰ and − 0.7‰ to − 4.3‰ in sphalerite, − 4‰ to 0.9‰ in pyrite, and − 1.4‰ to − 5.5‰ in galena. Both fluid inclusion and stable isotope data are compatible with magmatic and meteoric sources for mineralizing fluids. Also, sulfur isotope compositions suggest both magmatic and sedimentary sources for sulfur.  相似文献   

5.
Located at western portion of northern margin of North China craton, the Baotou–Bayan Obo district is one of the most important Fe–REE–Nb and Au metallogenic provinces in China. Presently, about 52 gold deposits and prospects have been discovered, explored and mined, among which Shibaqinhao, Laoyanghao, Houshihua, Saiyinwusu, Wulashan and Donghuofang are the most important ones. All these gold occurrences can be subdivided into three groups (or types) according to its host rocks: (1) hosted by Archean high-grade metamorphic rocks; (2) hosted by Proterozoic sedimentary rocks; (3) hosted by or related to Hercynian alkaline intrusive rocks. The first group contains the Shibaqinhao, Laoyanghao and Houshihua gold deposits. Gold mineralization at these three deposits occurs within Archean amphibolite, gneiss and granulite as gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite and chalcopyrite. The Saiyinwusu deposit belongs to the second group, and occurs within Proterozoic sandstone, quartzite and carbonaceous slate as quartz veins and replacement bodies along the fracture zones. Pyrite, marcasite, arsenopyrite, native gold and electrum are identified. The third group includes the Wulashan, Donghuofang and Luchang deposits. Gold mineralization at these three deposits occurs predominantly within the Hercynian alkaline syenite or melagabbro stocks and dyke swarms or along their contacts with Archean metamorphic wall rocks as K-feldspar–quartz veins, dissemination and veinlets. Pyrite, galena, chalcopyrite, native gold and calaverite are major metallic minerals.δ34S value of sulfides (pyrite, galena and pyrrhotite) separates from groups 1 and 2 varies from −4.01‰ to −0.10‰ and −3.01‰ to 2.32‰, respectively. δ34S values of Archean and Proterozoic metamorphic wall rocks for groups 1 and 2 deposits range from −20.2‰ to −17.0‰ and −15.8‰ to −16.2‰, respectively. The values are much lower than their hosted gold deposits. All these pyrite separates from Hercynian alkaline intrusions associated with the gold deposits show positive δ34S values of 1.3‰ to 4.8‰, which is higher than those Precambrian metamorphic wall rocks and their hosted gold deposits. δ34S values of the sulfides (pyrite and galena) from the Donghuofang and Wulashan deposits (group 3) increase systematically from veins (−14.8‰ to −2.4‰) to the Hercynian alkaline igneous wall rocks (2.8‰ to 4.8 ‰). All of these deposits in groups 1, 2 and 3 show relatively radiogenic lead isotopic compositions compared to mantle or lower crust curves. Most lead isotope data of sulfides from the gold ores plot between the Hercynian alkaline intrusions and Precambrian metamorphic wall rocks. Data are interpreted as indicative of a mixing of lead from mantle-derived alkaline magma with lead from Precambrian metamorphic wall rocks.Isotopic age data, geological and geochemical evidence suggest that the ore fluids for the groups 1 and 2 deposits were generated during the emplacement of the Hercynian alkaline syenite and mafic intrusions. The Hercynian alkaline magma may provide heat, volatiles and metals for these groups 1 and 2 deposits. Evolved metamorphic fluids produced by the devolatilization, which circulated the wall rocks, were also progressively involved in the alkaline magmatic hydrothermal system, and may have dominate the ore fluids during late stage of ore-forming processes. Most of these gold deposits hosted by Archean high-grade metamorphic rocks occur at or near the intersections of the NE- and E–W-trending fracture systems. The ore fluid of the group 3 deposits may have resulted from the mixing of Hercynian alkaline magmatic fluids and evolved meteoric waters. The deposits are believed to be products of Hercynian alkaline igneous processes along deep-seated fault zones within Archean terrain.  相似文献   

6.
The Alkaline porphyries in the Beiya area are located east of the Jinshajiang suture, as part of a Cenozoic alkali-rich porphyry belt in western Yunnan. The main rock types include quartz-albite porphyry, quartz-K-feldspar porphyry and biotite–K-feldspar porphyry. These porphyries are characterised by high alkalinity [(K2O + Na2O)% > 10%], high silica (SiO2% > 65%), high Sr (> 400 ppm) and 87Sr/86Sr (> 0.706)] ratio and were intruded at 65.5 Ma, between 25.5 to 32.5 Ma, and about 3.8 Ma, respectively. There are five main types of mineral deposits in the Beiya area: (1) porphyry Cu–Au deposits, (2) magmatic Fe–Au deposits, (3) sedimentary polymetallic deposits, (4) polymetallic skarn deposits, and (5) palaeoplacers associated with karsts. The porphyry Cu–Au and polymetallic skarn deposits are associated with quartz–albite porphyry bodies. The Fe–Au and polymetallic sedimentary deposits are part of an ore-forming system that produced considerable Au in the Beiya area, and are characterised by low concentrations of La, Ti, and Co, and high concentrations of Y, Yb, and Sc.The Cenozoic porphyries in western Yunnan display increased alkalinity away from the Triassic Jinshajiang suture. Distribution of both the porphyries and sedimentary deposits in the Beiya area are interpreted to be related to partial melting in a disjointed region between upper mantle lithosphere of the Yangtze Plate and Gondwana continent, and lie within a shear zone between buried Palaeo-Tethyan oceanic lithosphere and upper mantle lithosphere, caused by the subduction and collision of India and Asia.  相似文献   

7.
The Itacaiúnas Belt of the highly mineralised Carajás Mineral Province comprises ca. 2.75 Ga volcanic rocks overlain by sedimentary sequences of ca. 2.68 Ga age, that represent an intracratonic basin rather than a greenstone belt. Rocks are generally at low strain and low metamorphic grade, but are often highly deformed and at amphibolite facies grade adjacent to the Cinzento Strike Slip System. The Province has been long recognised for its giant enriched iron and manganese deposits, but over the past 20 years has been increasingly acknowledged as one of the most important Cu–Au and Au–PGE provinces globally, with deposits extending along an approximately 150 km long WNW-trending zone about 60 km wide centred on the Carajás Fault. The larger deposits (approx. 200–1000 Mt @ 0.95–1.4% Cu and 0.3–0.85 g/t Au) are classic Fe-oxide Cu–Au deposits that include Salobo, Igarapé Bahia–Alemão, Cristalino and Sossego. They are largely hosted in the lower volcanic sequences and basement gneisses as pipe- or ring-like mineralised, generally breccia bodies that are strongly Fe- and LREE-enriched, commonly with anomalous Co and U, and quartz- and sulfur-deficient. Iron oxides and Fe-rich carbonates and/or silicates are invariably present. Rhenium–Os dating of molybdenite at Salobo and SHRIMP Pb–Pb dating of hydrothermal monazite at Igarapé-Bahia indicate ages of ca. 2.57 Ga for mineralisation, indistinguishable from ages of poorly-exposed Archean alkalic and A-type intrusions in the Itacaiúnas Belt, strongly implicating a deep magmatic connection.A group of smaller, commonly supergene-enriched Cu–Au deposits (generally < 50 Mt @ < 2% Cu and < 1 g/t Au in hypogene ore), with enrichment in granitophile elements such as W, Sn and Bi, spatially overlap the Archean Fe-oxide Cu–Au deposits. These include the Breves, Águas Claras, Gameleira and Estrela deposits which are largely hosted by the upper sedimentary sequence as greisen-to ring-like or stockwork bodies. They generally lack abundant Fe-oxides, are quartz-bearing and contain more S-rich Cu–Fe sulfides than the Fe-oxide Cu–Au deposits, although Cento e Dezoito (118) appears to be a transitional type of deposit. Precise Pb–Pb in hydrothermal phosphate dating of the Breves and Cento e Dezoito deposits indicate ages of 1872 ± 7 Ma and 1868 ± 7 Ma, respectively, indistinguishable from Pb–Pb ages of zircons from adjacent A-type granites and associated dykes which range from 1874 ± 2 Ma to 1883 ± 2 Ma, with 1878 ± 8 Ma the age of intrusions at Breves. An unpublished Ar/Ar age for hydrothermal biotite at Estrela is indistinguishable, and a Sm–Nd isochron age for Gameleira is also similar, although somewhat younger. The geochronological data, combined with geological constraints and ore-element associations, strongly implicate a magmatic connection for these deposits.The highly anomalous, hydrothermal Serra Pelada Au–PGE deposit lies at the north-eastern edge of the Province within the same fault corridor as the Archean and Paleoproterozoic Cu–Au deposits, and like the Cu–Au deposits is LREE enriched. It appears to have formed from highly oxidising ore fluids that were neutralised by dolomites and reduced by carbonaceous shales in the upper sedimentary succession within the hinge of a reclined synform. The imprecise Pb–Pb in hydrothermal phosphate age of 1861 ± 45 Ma, combined with an Ar/Ar age of hydrothermal biotite of 1882 ± 3 Ma, are indistinguishable from a Pb–Pb in zircon age of 1883 ± 2 Ma for the adjacent Cigano A-type granite and indistinguishable from the age of the Paleoproterozoic Cu–Au deposits. Again a magmatic connection is indicated, particularly as there is no other credible heat or fluid source at that time.Finally, there is minor Au–(Cu) mineralisation associated with the Formiga Granite whose age is probably ca. 600 Ma, although there is little new zircon growth during crystallisation of the granite. This granite is probably related to the adjacent Neoproterozoic (900–600 Ma) Araguaia Fold Belt, formed as part of the Brasiliano Orogeny.Thus, there are two major and one minor period of Cu–Au mineralisation in the Carajás Mineral Province. The two major events display strong REE enrichment and strongly enhanced LREE. There is a trend from strongly Fe-rich, low-SiO2 and low-S deposits to quartz-bearing and more S-rich systems with time. There cannot be significant connate or basinal fluid (commonly invoked in the genesis of Fe-oxide Cu–Au deposits) involved as all host rocks were metamorphosed well before mineralisation: some host rocks are at mid- to high-amphibolite facies. The two major periods of mineralisation correspond to two periods of alkalic to A-type magmatism at ca. 2.57 Ga and ca. 1.88 Ga, and a magmatic association is compelling.The giant to world-class late Archean Fe-oxide Cu–Au deposits show the least obvious association with deep-seated alkaline bodies as shown at Palabora, South Africa, and implied at Olympic Dam, South Australia. The smaller Paleoproterozoic Cu–Au–W–Sn–Bi deposits and Au–PGE deposit show a more obvious relationship to more fractionated A-type granites, and the Neoproterozoic Au–(Cu) deposit to crustally-derived magmas. The available data suggest that magmas and ore fluids were derived from long-lived metasomatised lithosphere and lower crust beneath the eastern margin of the Amazon Craton in a tectonic setting similar to that of other large Precambrian Fe-oxide Cu–Au deposits.  相似文献   

8.
The Late Middle Permian ( 260 Ma) Emeishan large igneous province in SW China contains two magmatic series, one comprising high-Ti basalts and Fe-rich gabbroic and syenitic intrusions, the other low-Ti basalts and mafic–ultramafic intrusions. The Fe-rich gabbros are spatially and temporally associated with syenites. Each series is associated with a distinctive type of mineralization, the first with giant Fe–Ti–V oxide ore deposits such as Panzhihua and Baima, the second with Ni–Cu–(PGE) sulfide deposits such as Jinbaoshan, Limahe and Zhubu. New SHRIMP zircon U–Pb isotopic data yielded 263 ± 3 Ma for the Limahe intrusion, 261 ± 2 Ma for the Zhubu intrusion and 262 ± 2 Ma for a syenitic intrusion. These new age dates, together with previously reported SHRIMP zircon U–Pb ages, suggest that all these intrusions are contemporaneous with the Emeishan flood basalts and formed during a major igneous event at ca. 260 Ma.The oxide-bearing intrusions have higher Al2O3, FeO (as total iron) and total alkalis (Na2O + K2O) but lower MgO than the sulfide-bearing intrusions. All intrusions are variably enriched in LREE relative to HREE. The oxide-bearing intrusions display positive Nb- and Ti-anomalies and in certain cases negative Zr–Hf anomalies, whereas the sulfide-bearing intrusions have obvious negative Nb- and Ti-anomalies, a feature of crustal contamination. Individual intrusions have relatively small ranges of Nd(t) values. All the intrusions, however, have Nd(t) values ranging from − 3.9 to + 4.6, and initial 87Sr/86Sr ratios from 0.7039 to 0.7105. The syenites have very low MgO (< 2 wt.%) but highly variable Fe2O3 (2.5 to 13 wt.%) with initial 87Sr/86Sr ratios ranging from 0.7039 to 0.7089. Magmas from both series could have derived by melting of a heterogeneous mantle plume: the high-Ti series from a Fe-rich, more fertile source and the low-Ti series from a Fe-poor, more refractory source. In addition, the low-Ti series underwent significant crustal contamination. The two magma series evolved along different paths that led to distinct mineralization styles.  相似文献   

9.
Groundwaters and surface water in the Shihongtan sandstone-hosted U ore district, Xinjiang, NW China, were sampled and analyzed for their major-, and trace element concentrations and oxygen, hydrogen, boron and strontium isotope compositions in order to assess the possible origins of the waters and water–rock interactions that occurred in the deep aquifer system. The waters in the study district have been grouped into three hydrochemical facies: Facies 1, potable spring-water, is a pH neutral (7.0), Na–Ca–HCO3 type water with low total dissolved solids (TDS; 0.2 g/l, fresh) and has δ18O of − 8.3‰, δD of − 48.2‰,δ11B of 1.5‰, and 87Sr/86Sr of 0.70627. Facies 2 groundwaters are mildly acidic to mildly alkaline (pH of 6.5–8.0, mean 7.3), Na–Ca–Mg–Cl–SO4 type waters with moderate TDS (8.2 g/l–17.2 g/l, mean 9.3 g/l, brackish) and haveδ18O values in the − 5.8‰ to − 9.3‰ range (mean − 8.1‰), δD values in the − 20.8‰ to − 85.5‰ range (mean − 47.0‰),δ11B values in the + 9.5‰ to + 39.1‰ range (mean + 17.1‰), and 87Sr/86Sr values in the 0.70595 to 0.70975 range (mean 0.70826). Facies 3, Aiting Lake water, is a mildly alkaline (pH = 7.4), Na–Ca–Mg–Cl–SO4 type water with the highest TDS (249.1 g/l, brine) and has δ18O of − 2.8‰, δD of − 45.8‰,δ11B of 21.2‰, and 87Sr/86Sr of 0.70840. The waters from the study district show a systematic increase in major, trace element and TDS concentrations and δ11B values along the pathway of groundwater migration which can only be interpreted in terms of water–rock interaction at depth and strong surface evaporation. The hydrochemical and isotopic data presented here confirm that the groundwaters in the Shihongtan ore district are the combined result of migration, water–rock interaction and mixing of meteoric water with connate waters contained in sediments.  相似文献   

10.
The calcite cement in the Lower Ordovician Majiagou Formation in the Ordos basin in northern China can be subdivided into three groups based on preliminary results of oxygen and carbon isotopes and fluid inclusion microthermometry. Group 1 has low oxygen isotopes (− 14‰ to − 18‰), low Th values (92–103 °C), and low salinities (1.7–4.9 wt.% NaCl equivalent) and is interpreted to have precipitated during early burial from porewater influenced by meteoric water. Group 2 has much higher oxygen isotope values (− 5‰ to − 8‰), which, coupled with the higher Th values (136–151 °C), suggest that the calcite was precipitated from fluids that were significantly enriched in 18O, possibly resulting from fluid–rock reaction during burial. Group 3 occurring along fractures is characterized by high salinities (21–28 wt.% NaCl equivalent) and is interpreted to have been precipitated from locally preserved residual evaporitic brines. The occurrence of primary hydrocarbon inclusions and its low carbon isotopes (− 11‰ to − 15‰) suggest that precipitation of group 3 calcite took place in the presence of hydrocarbons.  相似文献   

11.
The Qingchengzi orefield in northeastern China, is a concentration of several Pb–Zn, Ag, and Au ore deposits. A combination of geochronological and Pb, Sr isotopic investigations was conducted. Zircon SHRIMP U–Pb ages of 225.3 ± 1.8 Ma and 184.5 ± 1.6 Ma were obtained for the Xinling and Yaojiagou granites, respectively. By step-dissolution Rb–Sr dating, ages of 221 ± 12 Ma and 138.7 ± 4.1 Ma were obtained for the sphalerite of the Zhenzigou Zn–Pb deposit and pyrargyrite of the Ag ore in the Gaojiabaozi Ag deposit, respectively. Pb isotopic ratios of the Ag ore at Gaojiabaozi (206Pb/204Pb = 18.38 to 18.53) are higher than those of the Pb–Zn ores (206Pb/204Pb = 17.66 to 17.96; Chen et al. [Chen, J.F., Yu, G., Xue, C.J., Qian, H., He, J.F., Xing, Z., Zhang, X., 2005. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, northeastern China. Science in China Series D 48, 467–476.]). Triassic granites show low Pb isotopic ratios (206Pb/204Pb = 17.12 to 17.41, 207Pb/204Pb = 15.47 to 15.54, 208Pb/204Pb = 37.51 to 37.89) and metamorphic rocks of the Liaohe Group have high ratios (206Pb/204Pb = 18.20 to 24.28 and 18.32 to 20.06, 207Pb/204Pb = 15.69 to 16.44 and 15.66 to 15.98, 208Pb/204Pb = 37.29 to 38.61 and 38.69 to 40.00 for the marble of the Dashiqiao Formation and schist of the Gaixian Formation, respectively).Magmatic activities at Qingchengzi and in adjacent regions took place in three stages, and each contained several magmatic pulses: ca. 220 to 225 Ma and 211 to 216 Ma in the Triassic; 179 to 185 Ma, 163 to 168 Ma, 155 Ma and 149 Ma in the Jurassic, as well as ca. 140 to 130 Ma in the Early Cretaceous. The Triassic magmatism was part of the Triassic magmatic belt along the northern margin of the North China Craton produced in a post-collisional extensional setting, and granites in it formed by crustal melting induced by mantle magma. The Jurassic and Early Cretaceous magmatism was related to the lithospheric delamination in eastern China. The Triassic is the most important metallogenic stage at Qingchengzi. The Pb–Zn deposits, the Pb–Zn–Ag ore at Gaojiabaozi, and the gold deposits were all formed in this stage. They are temporally and spatially associated with the Triassic magmatic activity. Mineralization is very weak in the Jurassic. Ag ore at Gaojiabaozi was formed in the Early Cretaceous, which is suggested by the young Rb–Sr isochron age, field relations, and significantly different Pb isotopic ratios between the Pb–Zn–Ag and Ag ores. Pb isotopic compositions of the Pb–Zn ores suggest binary mixing for the source of the deposits. The magmatic end-member is the Triassic granites and the other metamorphic rocks of the Liaohe Group. Slightly different proportions of the two end-members, or an involvement of materials from hidden Cretaceous granites with slightly different Pb isotopic ratios, is postulated to interpret the difference of Pb isotopic compositions between the Pb–Zn–(Ag) and Ag ores. Sr isotopic ratios support this conclusion. At the western part of the Qingchengzi orefield, hydrothermal fluid driven by the heat provided by the now exposed Triassic granites deposited ore-forming materials in the low and middle horizons of the marbles of the Dashiqiao Formation near the intrusions to form mesothermal Zn–Pb deposits. In the eastern part, hydrothermal fluids associated with deep, hidden Triassic intrusions moved upward along a regional fault over a long distance and then deposited the ore-forming materials to form epithermal Au and Pb–Zn–Ag ores. Young magmatic activities are all represented by dykes across the entire orefield, suggesting that the corresponding main intrusion bodies are situated in the deep part of the crust. Among these, only intrusions with age of ca. 140 Ma might have released sufficient amounts of fluid to be responsible for the formation of the Ag ore at Gaojiabaozi.Our age results support previous conclusions that sphalerite can provide a reliable Rb–Sr age as long as the fluid inclusion phase is effectively separated from the “sulfide” phase. Our work suggests that the separation can be achieved by a step-resolution technique. Moreover, we suggest that pyrargyrite is a promising mineral for Rb–Sr isochron dating.  相似文献   

12.
Several methods were evaluated and compared for the estimation of pyrite oxidation rates (POR) in waste rock at Mine Doyon, Quebec, Canada. Methods based on data collected in situ, such as the interpretation of temperature and oxygen concentration profiles (TOP) measured in the waste rock pile and pyrite mass balance (PMB) on solid phase samples were compared with the oxygen consumption measurements (OCM) in closed chamber in the laboratory. A 1-D analytical solution to a gas and heat transport equation used temperature and oxygen profiles (TOP) measured in the pile for the preliminary POR estimates at a site close to the slope of the pile (Site 6) and in the core of the pile (Site 7). Resulting POR values were 1.1 × 10− 9 mol(O2) kg− 1 s− 1 and 1.0 × 10− 10 mol(O2) kg− 1 s− 1 for the slope site and the core site, respectively. Oxidation rates based on pyrite mass balance (PMB) calculations for solid samples were 2.21 × 10− 9 mol(O2) kg− 1 s− 1 and 2.03 × 10− 9 mol(O2) kg− 1 s− 1, respectively, for the same slope and core sites, but the difference between sites was within the error margin. The OCM measurements in the laboratory on fresh waste rock samples yielded higher POR values than field methods, with average oxidation rate of 6.7 × 10− 8 mol(O2) kg− 1 s− 1. However, the OCM results on weathered and decomposed material from the rock stockpile (average oxidation rate 3.4 × 10− 9 mol(O2) kg− 1 s− 1) were consistent with results from the field-based estimates. When POR values based on fresh material are excluded, the remaining POR values for all methods range from 1.0 × 10− 10 to 3.4 × 10− 9 mol(O2) kg− 1 s− 1. The lowest estimated value (1.0 × 10− 10 mol(O2) kg− 1 s− 1) was based on TOP estimates in the interior of the pile where oxygen transport was limited by diffusion from the surface. These results suggest that small-scale OCM laboratory experiments may provide relatively representative values of POR in the zones of waste rock piles in which oxygen transport is not dominated by diffusion.  相似文献   

13.
SW Iberia is interpreted as an accretionary magmatic belt resulting from the collision between the South Portuguese Zone and the autochthonous Iberian terrane in Variscan times (350 to 330 Ma). In the South Portuguese Zone, pull-apart basins were filled with a thick sequence of siliciclastic sediments and bimodal volcanic rocks that host the giant massive sulphides of the Iberian Pyrite Belt. Massive sulphides precipitated in highly efficient geochemical traps where metal-rich but sulphur-depleted fluids of dominant basinal derivation mixed with sulphide-rich modified seawater. Massive sulphides formed either in porous/reactive volcanic rocks by sub-seafloor replacement, or in dark shale by replacement of mud or by exhalation within confined basins with high biogenic activity. Crustal thinning and magma intrusion were responsible for thermal maturation and dehydration of sedimentary rocks, while magmatic fluids probably had a minor influence on the observed geochemical signatures.The Ossa Morena Zone was a coeval calc-alkaline magmatic arc. It was the site for unusual mineralization, particularly magmatic Ni–(Cu) and hydrothermal Fe-oxide–Cu–Au ores (IOCG). Most magmatism and mineralization took place at local extensional zones along first-order strike-slip faults and thrusts. The source of magmas and IOCG and Ni–(Cu) deposits probably lay in a large mafic–ultramafic layered complex intruded along a detachment at the boundary between the upper and lower crust. Here, juvenile melts extensively interacted with low-grade metamorphic rocks, inducing widespread anatexis, magma contamination and further exsolution of hydrothermal fluids. Hypersaline fluids (δ18Ofluid > 5.4‰ to 12‰) were focused upward into thrusts and faults, leading to early magnetite mineralization associated with a high-temperature (> 500 °C) albite–actinolite–salite alteration and subsequent copper–gold-bearing vein mineralization at somewhat lower temperatures. Assimilation of sediments by magmas led in turn to the formation of immiscible sulphide and silicate melts that accumulated in the footwall of the layered igneous complex. Further injection of both basic and sulphide-rich magmas into the upper crust led to the formation of Ni–(Cu)-rich breccia pipes.Younger (330 to 280 Ma?) peraluminous granitoids probably reflect the slow ascent of relatively dry and viscous magmas formed by contact anatexis. These granitoids have W–(Sn)- and Pb–Zn-related mineralization that also shows geochemical evidence of major mantle–crust interaction. Late epithermal Hg–(Cu–Sb) and Pb–Zn–(Ag) mineralization was driven by convective hydrothermal cells resulting from the high geothermal gradients that were set up in the zone by intrusion of the layered igneous complex. In all cases, most of the sulphur seems to have been derived from leaching of the host sedimentary rocks (δ34S = 7‰ to 20‰) with only limited mixing with sulphur of magmatic derivation.The metallogenic characteristics of the two terranes are quite different. In the Ossa Morena Zone, juvenile magmatism played a major role as the source of metals, and controlled the styles of mineralization. In the South Portuguese Zone, magmas only acted as heat sources but seem to have had no major influence as sources of metals and fluids, which are dominated by crustal signatures. Most of the magmatic and tectonic features related to the Variscan subduction and collision seem to be masked by those resulting from transpressional deformation and deep mafic intrusion, which led to the development of a metallogenic belt with little resemblance to other accretionary magmatic arcs.  相似文献   

14.
The carbonate-hosted Kabwe Pb–Zn deposit, Central Zambia, has produced at least 2.6 Mt of Zn and Pb metal as well as minor amounts of V, Cd, Ag and Cu. The deposit consists of four main epigenetic, pipe-like orebodies, structurally controlled along NE–SW faults. Sphalerite, galena, pyrite, minor chalcopyrite, and accessory Ge-sulphides of briartite and renierite constitute the primary ore mineral assemblage. Cores of massive sulphide orebodies are surrounded by oxide zones of silicate ore (willemite) and mineralized jasperoid that consists largely of quartz, willemite, cerussite, smithsonite, goethite and hematite, as well as numerous other secondary minerals, including vanadates, phosphates and carbonates of Zn, Pb, V and Cu.Galena, sphalerite and pyrite from the Pb–Zn rich massive orebodies have homogeneous, negative sulphur isotope ratios with mean δ34SCDT permil (‰) values of − 17.75 ± 0.28 (1σ), − 16.54 ± 0.0.27 and − 15.82 ± 0.25, respectively. The Zn-rich and Pb-poor No. 2 orebody shows slightly heavier ratios of − 11.70 ± 0.5‰ δ34S for sphalerite and of − 11.91 ± 0.71‰ δ34S for pyrite. The negative sulphur isotope ratios are considered to be typical of sedimentary sulphides produced through bacterial reduction of seawater sulphate and suggest a sedimentary source for the sulphur.Carbon and oxygen isotope ratios of the host dolomite have mean δ13CPDB and δ18OSMOW values of 2.89‰ and 27.68‰, respectively, which are typical of marine carbonates. The oxygen isotope ratios of dolomite correlate negatively to the SiO2 content introduced during silicification of the host dolomite. The depletion in 18O in dolomite indicates high temperature fluid/rock interaction, involving a silica- and 18O-rich hydrothermal solution.Two types of secondary fluid inclusions in dolomite, both of which are thought to be related to ore deposition, indicate temperatures of ore deposition in the range of 257 to 385 and 98 to 178 °C, respectively. The high temperature fluid inclusions contain liquid + vapour + solid phases and have salinities of 15 to 31 eq. wt.% NaCl, whereas the low temperature inclusions consist of liquid + vapour with a salinity of 11.5 eq. wt.% NaCl.Fluid transport may have been caused by tectonic movements associated with the early stages of the Pan-African Lufilian orogeny, whereas ore deposition within favourable structures occurred due to changes in pressure, temperature and pH in the ore solution during metasomatic replacement of the host dolomite. The termination of the Kabwe orebodies at the Mine Club fault zone and observed deformation textures of the ore sulphides as well as analysis of joint structures in the host dolomite, indicate that ore emplacement occurred prior to the latest deformation phase of the Neoproterozoic Lufilian orogeny.  相似文献   

15.
Tin-polymetallic greisen-type deposits in the Itu Rapakivi Province and Rondônia Tin Province, Brazil are associated with late-stage rapakivi fluorine-rich peraluminous alkali-feldspar granites. These granites contain topaz and/or muscovite or zinnwaldite and have geochemical characteristics comparable to the low-P sub-type topaz-bearing granites. Stockworks and veins are common in Oriente Novo (Rondônia Tin Province) and Correas (Itu Rapakivi Province) deposits, but in the Santa Bárbara deposit (Rondônia Tin Province) a preserved cupola with associated bed-like greisen is predominant. The contrasting mineralization styles reflect different depths of formation, spatial relationship to tin granites, and different wall rock/fluid proportions. The deposits contain a similar rare-metal suite that includes Sn (±W, ±Ta, ±Nb), and base-metal suite (Zn–Cu–Pb) is present only in Correas deposit. The early fluid inclusions of the Correas and Oriente Novo deposits are (1) low to moderate-salinity (0–19 wt.% NaCl eq.) CO2-bearing aqueous fluids homogenizing at 245–450 °C, and (2) aqueous solutions with low CO2, low to moderate salinity (0–14 wt.% NaCl eq.), which homogenize between 100 and 340 °C. In the Santa Bárbara deposit, the early inclusions are represented by (1) low-salinity (5–12 wt.% NaCl eq.) aqueous fluids with variable CO2 contents, homogenizing at 340 to 390 °C, and (2) low-salinity (0–3 wt.% NaCl eq.) aqueous fluid inclusions, which homogenize at 320–380 °C. Cassiterite, wolframite, columbite–tantalite, scheelite, and sulfide assemblages accompany these fluids. The late fluid in the Oriente Novo and Correas deposit was a low-salinity (0–6 wt.% NaCl eq.) CO2-free aqueous solution, which homogenizes at (100–260 °C) and characterizes the sulfide–fluorite–sericite association in the Correas deposit. The late fluid in the Santa Bárbara deposit has lower salinity (0–3 wt.% NaCl eq.) and characterizes the late-barren-quartz, muscovite and kaolinite veins. Oxygen isotope thermometry coupled with fluid inclusion data suggest hydrothermal activity at 240–450 °C, and 1.0–2.6 kbar fluid pressure at Correas and Oriente Novo. The hydrogen isotope composition of breccia-greisen, stockwork, and vein fluids (δ18Oquartz from 9.9‰ to 10.9‰, δDH2O from 4.13‰ to 6.95‰) is consistent with a fluid that was in equilibrium with granite at temperatures from 450 to 240 °C. In the Santa Bárbara deposit, the inferred temperatures for quartz-pods and bed-like greisens are much higher (570 and 500 °C, respectively), and that for the cassiterite-quartz-veins is 415 °C. The oxygen and hydrogen isotope composition of greisen and quartz-pods fluids (δ18Oqtz-H2O=5.5–6.1‰) indicate that the fluid equilibrated with the albite granite, consistent with a magmatic origin. The values for mica (δ18Omica-H2O=3.3–9.8‰) suggest mixing with meteoric water. Late muscovite veins (δ18Oqtz-H2O=−6.4‰) and late quartz (δ18Omica-H2O=−3.8‰) indicate involvement of a meteoric fluid. Overall, the stable isotope and fluid inclusion data imply three fluid types: (1) an early orthomagmatic fluid, which equilibrated with granite; (2) a mixed orthomagmatic-meteoric fluid; and (3) a late hydrothermal meteoric fluid. The first two were responsible for cassiterite, wolframite, and minor columbite–tantalite precipitation. Change in the redox conditions related to mixing of magmatic and meteoric fluids favored important sulfide mineralization in the Correas deposit.  相似文献   

16.
The isotopic composition of Fe was determined in water, Fe-oxides and sulfides from the Tinto and Odiel Basins (South West Spain). As a consequence of sulfide oxidation in mine tailings both rivers are acidic (1.45 < pH < 3.85) and display high concentrations of dissolved Fe (up to 420 mmol l− 1) and sulphates (up to 1190 mmol l− 1).The δ56Fe of pyrite-rich samples from the Rio Tinto and from the Tharsis mine ranged from − 0.56 ± 0.08‰ to + 0.25 ± 0.1‰. δ56Fe values for Fe-oxides precipitates that currently form in the riverbed varied from − 1.98 ± 0.10‰ to 1.57 ± 0.08‰. Comparatively narrower ranges of values (− 0.18 ± 0.08‰ and + 0.21 ± 0.14‰) were observed in their fossil analogues from the Pliocene–Pleistocene and in samples from the Gossan (the oxidized layer that formed through exposure to oxygen of the massive sulfide deposits) (− 0.36 ± 0.12‰ to 0.82 ± 0.07‰). In water, δ56Fe values ranged from − 1.76 ± 0.10‰ to + 0.43 ± 0.05‰.At the source of the Tinto River, fractionation between aqueous Fe(III) and pyrite from the tailings was less than would be expected from a simple pyrite oxidation process. Similarly, the isotopic composition of Gossan oxides and that of pyrite was different from what would be expected from pyrite oxidation. In rivers, the precipitation of Fe-oxides (mainly jarosite and schwertmannite and lesser amounts of goethite) from water containing mainly (more than 99%) Fe(III) with concentrations up to 372 mmol l− 1 causes variable fractionation between the solid and the aqueous phase (− 0.98‰ < Δ56Fesolid–water < 2.25‰). The significant magnitude of the positive fractionation factor observed in several Fe(III) dominated water may be related to the precipitation of Fe(III) sulphates containing phases.  相似文献   

17.
The 1.27 Ga old Ivigtut (Ivittuut) intrusion in South Greenland is world-famous for its hydrothermal cryolite deposit [Na3AlF6] situated within a strongly metasomatised A-type granite stock. This detailed fluid inclusion study characterises the fluid present during the formation of the cryolite deposit and thermodynamic modelling allows to constrain its formation conditions.Microthermometry revealed three different types of inclusions: (1) pure CO2, (2) aqueous-carbonic and (3) saline-aqueous inclusions. Melting temperatures range between − 23 and − 15 °C for type 2 and from − 15 to − 10 °C for type 3 inclusions. Most inclusions homogenise between 110 and 150 °C into the liquid.Stable isotope compositions of CO2 and H2O were measured from crushed inclusions in quartz, cryolite, fluorite and siderite. The δ13C values of about − 5‰ PDB are typical of mantle-derived magmas. The differences between δ18O of CO2 (+ 21 to + 42‰ VSMOW) and δ18O of H2O (− 1 to − 21.7‰ VSMOW) suggest low-temperature isotope exchange. δD (H2O) ranges from − 19 to − 144‰ VSMOW. The isotopic composition of inclusion water closely follows the meteoric water line and is comparable to Canadian Shield brines. Ion chromatography revealed the fluid's predominance in Na, Cl and F. Cl/Br ratios range between 56 and 110 and may imply intensive fluid–rock interaction with the host granite.Isochores deduced from microthermometry in conjunction with estimates for the solidification of the Ivigtut granite suggest a formation pressure of approximately 1–1.5 kbar for the fluid inclusions. Formation temperatures of different types of fluid inclusions vary between 100 and 400 °C. Thermodynamic modelling of phase assemblages and the extraordinary high concentration in F (and Na) may indicate that the cryolite body and its associated fluid inclusions could have formed during the continuous transition from a volatile-rich melt to a solute-rich fluid.  相似文献   

18.
The Huize Pb–Zn deposit of Yunnan Province, China, is located in the center of the Sichuan–Yunnan–Guizhou Pb–Zn–Ag district. Four primary orebodies (orebody No. 1, No. 6, No. 8 and No. 10), with Pb + Zn reserves from 0.5 Mt to 1 Mt, have been found at depth in this deposit. This paper provides new data on the sulfur isotopic compositions of the four orebodies. The data show that the principal sulfide minerals (galena, sphalerite and pyrite) in the four orebodies are enriched in heavy sulfur, the δ34S values between 10.9‰ and 17.7‰ and where δ34Spyrite > δ34Ssphalerite > δ34Sgalena. The δ34S values of sulfide are close to that of the sulfates from the carbonate strata within the region. The similarity in sulfur isotope composition between sulfides and sulfates indicates the sulfur in the ore-forming fluids was likely derived by thermochemical sulfate reduction of sulfates contained within carbonate units.  相似文献   

19.
Porphyry-type Cu (Mo, Au) deposits have been discovered along the Gangdese magmatic arc in the southern Tibetan Plateau. Extensive field investigations and systematic studies of geochemistry, S–Pb isotopic tracing, together with Re–Os and 40Ar/39Ar isotopic dating indicate that the mineralisation of the copper belt is genetically related to emplacement of late orogenic granitic porphyries during the post-collisional crustal relaxation period of the Late Himalayan epoch. These porphyries are petrochemically K-enriched and belong to shoshonitic to high-K calc-alkaline series. They display enrichment of large ion lithophile elements (LILE) Rb, K, U, Th, Sr, Pb and depletion of high field strength elements (HFSE) Nb, Ta, Ti and the heavy rare earth elements (HREE) and Y without Eu anomalies. These characteristics demonstrate that subduction played a dominant role in their petrogenesis and residual garnet was left in the magma sources. Pb isotope data show a linear correlation in the plumbotectonic framework diagram ranging from orogenic Pb in the eastern segment of the copper belt to mantle Pb in the western segment. These constitute a mixing line of the Indian Oceanic MORB with Indian Oceanic sediments and suggest that the porphyry magmas were dominantly derived from partial melting of subducted oceanic crusts mixed with a minor quantity of sediments and mantle wedge components.The Gangdese porphyry copper polymetallic belt has alteration characteristics and zonation typical of porphyry-type copper deposits which include potassic alteration (K-feldspathisation and biotitisation), silicification, sericitisation, and propylitisation. Mineralisation mainly occurs in strongly altered granitic cataclasite at the exo-contact with veinlet-disseminated textures. The porphyries themselves are weakly mineralised with disseminated pyrite and chalcopyrite. The copper deposits contain simple ore mineral associations consisting of chalcopyrite, pyrite, bornite, molybdenite, sphalerite and oxidised minerals of malachite, covellite and molybdite. During supergene oxidation, primary ores underwent secondary enrichment to form economic orebodies with Cu grade ranging from 1% to 5%.Ore sulphides of the copper belt display S and Pb isotopic compositions identical to the ore-bearing porphyries. Their δ34S values vary between − 3.8‰ and + 2.4‰ and are typical of mantle sulphur. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios vary in the ranges: 18.106 to 18.752, 15.501 to 15.638, and 37.394 to 39.058, respectively, and yielded radiogenetic lead-enriched signatures. Twelve molybdenite samples from the copper belt yielded isochron ages of 14.76 ± 0.22 Ma and 13.99 ± 0.16 Ma for the Nanmu and Chongjiang deposits and model ages of 13.5 to 13.6 Ma for the Lakang'e deposit. Meanwhile, 40Ar/39Ar isotopic dating of two biotite phenocrysts from the Chongjiang and Lakang'e deposits give plateau ages of 13.5 ± 1.0 Ma and 13.42 ±0.10 Ma, respectively. During the geodynamic evolution of the Gangdese collision-orogenic belt, intrusion of the ore-bearing porphyries took place just before the rapid uplift and E–W extension of the southern Plateau. And the ore-forming process may have occurred simultaneously with the uplift and extension (14 ± 0.1 Ma).  相似文献   

20.
The lower valley of Changjiang, from Wuhan of the Hubei Province in the west to Zhenjiang of the Jiangsu Province in the east, contains more than 200 polymetallic (Cu–Fe–Au, Mo, Zn, Pb, Ag) deposits and is one of the most important metallogenic belts in China. This metallogenic belt, situated at the northern margin of the Yangzi craton and bordered by the Dabieshan ultrahigh pressure metamorphic belt to the north, consists mainly of Cambrian–Triassic marine clastic sedimentary rocks and carbonate and evaporite rocks, which overlay a Precambrian basement and are intruded by Yanshanian (205 to 64 Ma) granitoid intrusions and subvolcanic complexes. Repeated tectonism from Late Proterozoic to Triassic resulted in extensively developed networks of faults and folds involving the Cambrian–Triassic sedimentary strata and the Precambrian basement. The Yanshanian granitoid intrusions and subvolcanic complexes in the Lower Changjiang metallogenic belt are characterized by whole-rock δ18O of +8‰ to +10‰, initial 87Sr/86Sr of 0.704 to 0.708, and εNdt from −10 to −17 and have been interpreted to have originated from mixing between juvenile mantle and old crustal materials. Also, the Yanshanian granitoids exhibit eastward younging and increase in alkalinity (i.e., from older calc–alkaline in the west to younger subalkaline–alkaline in the east), which are related to oblique collision between the Yangzi and Sino-Korean cratons and tectonic evolution from early compressional to late extensional or rifting regimes. Most polymetallic deposits in the Lower Changjiang metallogenic belt are clustered in seven districts where the Yanshanian magmatism is particularly extensive: from west to east, Edong, Jiurui, Anqing–Guichi, Luzhong, Tongling, Ningwu and Ningzhen. Mineralization is characterized by the occurrence of three distinct types of orebodies in individual deposits: orebodies in Yanshanian granitoid intrusions, skarn orebodies at the contact zones between the Yanshanian intrusions and Late Paleozoic–Early Mesozoic sedimentary rocks, and stratabound massive sulfide orebodies in the Late Paleozoic–Early Mesozoic sedimentary strata. The most important host sedimentary strata are the Middle Carboniferous Huanglong Formation, Lower Permian and Lower–Middle Triassic carbonate and evaporite rocks. The intrusion-hosted and skarn orebodies exhibit well-developed zonation in alteration assemblages, metal contents, and isotopic compositions within individual deposits, and apparently formed from hydrothermal activities related to the Yanshanian magmatism. The stratabound massive sulfide orebodies in the Late Paleozoic–Early Mesozoic sedimentary strata have long been suggested to have formed from sedimentary or volcano-sedimentary exhalative processes in shallow marine environments. However, extensive research over the last 40 years failed to produce unequivocal evidence for syngenetic mineralization. On the basis of geological relationships and isotope geochemical characteristics, we propose a carbonate-hosted replacement deposit model for the genesis of these stratabound massive sulfide orebodies and associated skarn orebodies. This model suggests that epigenetic mineralization resulted from interactions between magmatic fluids evolved from the Yanshanian intrusions with carbonate and evaporite wall rocks. Mineralization was an integral but distal part of the larger hydrothermal systems that formed the proximal skarn orebodies at the contact zones and the intrusion-hosted orebodies. The stratabound massive sulfide deposits of the Lower Changjiang metallogenic belt share many features with the well-studied, high-temperature, carbonate-hosted replacement deposits of northern Mexico and western United States, particularly with respect to association with small, shallow granitoid complexes, structural and stratigraphic controls on mineralization, alteration assemblages, geometry of orebodies, metal association, metal zonation and isotopic systematics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号