首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater degradation from irrigated agriculture is of concern in semi-arid northern China. Data-scarcity often means the causes and extent of problems are not fully understood. An irrigated area in Inner Mongolia was studied, where abstraction from an unconfined Quaternary aquifer has increased threefold over 20 years to 20 million m3/year; groundwater levels are falling at up to 0.5 m/year; and groundwater is increasingly mineralised (TDS increase from 400 to 700–1,900 mg/L), with nitrate concentrations up to 137 mg/L N. Residence-time (chlorofluorocarbons), stable-isotope and hydrogeochemical indicators helped develop a conceptual model of groundwater system evolution, demonstrating a direct relationship between modern water proportion and the degree of groundwater mineralisation, indicating that irrigation-water recycling is reducing groundwater quality. The investigations suggest that before irrigation development, active recharge to the aquifer from wadis significantly exceeded groundwater inflow from nearby mountains, previously held to be the main groundwater input. Away from active wadis, groundwater is older with a probable pre-Holocene component. Proof-of-concept groundwater modelling supports geochemical evidence, indicating the importance of wadi recharge and irrigation return flows. Engineering works protecting the irrigated area from flooding have reduced good quality recharge; active recharge is now dominated by irrigation returns, which are degrading the aquifer.  相似文献   

2.
晋州地区是典型的农业井灌区,通过对该地区农作物生长季节降水量-农业地下水开采量-地下水埋深之间互动变化特征及其机制研究发现,枯水年份,农业地下水开采量的大小与小麦、玉米生长季节的降水量变化密切相关;平水年份,小麦生长季节的降水量变化对农业地下水开采量影响占主导,其次为玉米生长季节的降水量变化;丰水年,农业地下水开采量仅与小麦生长季节的降水量变化之间具有明显相关性,与玉米生长季节的降水量变化相关性明显弱化。不同水文年降水量变化,在影响农业地下水开采量增减的同时,对地下水的入渗补给量呈现与开采量逆向变化,二者叠加影响地下水位动态变化。平水年份或丰水年份,小麦生长季节地下水埋深增大,玉米生长季节降水量一般能满足玉米需水量,地下水埋深减小。因此,充分利用作物生长季节降水量,对减少地下水开采和高产农业的稳定发展有重要意义。  相似文献   

3.
Chittur block represents a mid-land region of Palakkad district, Kerala and the block differs from the rest of the blocks in its climate and availability of groundwater. About 75% of the people depend on agriculture for their livelihood. Results showed that groundwater salinity levels (up to 1,963 mg/L TDS),fluoride (up to 6.3 mg/L) and nitrate (up to 141 mg/L) contents have increased significantly in tandem with the increase in groundwater abstraction. Before human intervention the chemical weathering of gneisses and granites was the main process impinging on the chemical signature of groundwater. The initial chemical equilibrium conditions change with increasing groundwater withdrawal rates and fertilizer input, in a milieu of lower natural groundwater recharge. The appearance of higher levels of bicarbonate, linked to denitrification processes, and the decrease in calcium, due to calcite precipitation, can lead to increased content of sodium and fluoride in groundwater. In this scenario the use of groundwater resources for human consumption and agriculture represents a public health risk if water management actions do not change the trend in water use in the near future. The potential loss of fertile soil by groundwater salinization must also be considered when planning sustainable policies in a region with over dependence on groundwater resources.  相似文献   

4.
Seven large catchments, cleared progressively from 1912 to 1985, were studied to determine the groundwater conditions for salinization of both the pristine and disturbed environments. Detailed drilling was conducted to provide information on the nature and didtribution of the physical and chemical properties of these groundwater systems. First-order estimates of recharge and discharge rates were derived from the groundwater balance, chloride mass balance, and specific yield techniques. Recharge rates under pristine conditions estimated from the groundwater balance method were of the order of 0.02–0.14 mm/yr and 0.05–3.0 mm/yr using the chloride method. Recharge was greatest in the deep sandplain and arkosic-outcrop soil associations and least in the heavy textured midslope and valley soils. Higher rates were obtained from the specific yield technique, where recharge under current agricultural conditions was considered to be between 6 and 10 mm/yr. Recharge rates of up to 30 mm/yr were noted when flooding of the sandy-textured, valley floor soils occured. Clearing of the native vegatation for agriculture is estimated to have increased groundwater recharge by between one and three orders of magnitude. Equilibrium groundwater balance estimates suggest that discharge rates have only increased ten-fold. As a result of the changes to the water balance, 5–30% of particular catchments may need to become discharge areas to balance increased recharge of 6–10 mm/yr. Native woodlands and halophyte communities are considered to have played an important role in providing a complex discharge mechanism before clearing. The management of catchments to contain soil salinity should include improved recharge control systems using specialized crop rotations. To date, however, little evidence of the success of this method exists. Therefore, discharge enhancemnet should also become a part of catchment management systems. Discharge can be manipulated by planting phreatophytic vegetation and by pumping groundwater from basement aquifers to improve agricultural water supplies. The results presented in this paper suggest that discharge enhancement has an important role to play and, as a part of integrated catchment water management, has the potential to control and eventually reduce dryland salinity  相似文献   

5.
华北平原东部淡水资源短缺,旱涝碱成灾害限制了农业生产的可持续发展。海河的治理,解决了排洪排涝排咸出路。春季开发利用地下水包括微咸水和半咸水抗旱灌溉。夏季利用伏雨洗盐排咸,增大降雨入渗,减少径流流失,防治渍涝灾害,把降雨转化为地下水资源。秋冬引蓄河水,回灌地下水补源。以土壤与潜水的地层空间作为调节大气降水、土壤水、地下水、地表水的地下水库,以调控地下水埋深在临界动态为指标,最大限度地把时空分布不均的天然降雨转化为可持续利用的水资源。地表水地下水联合运用,促使水资源采补平衡,降雨灌溉淋洗脱盐强于干旱蒸发积盐过程,地下水淡化强于矿化过程。实现旱涝碱咸综合治理,水土资源可持续利用,经济社会可持续发展,生态环境良性循环。  相似文献   

6.
In many cases, the development of groundwater resources to boost agricultural production in dry areas has led to a continuous decline in groundwater levels; this has called into question the sustainability of such exploitation. In developing countries, limited budgets and scarce hydrological data often do not allow groundwater resources to be assessed through groundwater modeling. A case study is presented of a low-cost water-balance approach to groundwater resource assessments in a 1,550 km2 semi-arid region in northwestern Syria. The past development of irrigated agriculture and its effect on the groundwater system were studied by analysis of Landsat images and long-term groundwater level changes, respectively. All components of the groundwater balance were determined. Groundwater recharge was estimated using the chloride mass balance method. Over the past three decades, groundwater levels have declined, on average, 23 m, coinciding with a two-fold increase in the groundwater-irrigated area. Groundwater resources are currently depleted by a value that lies between 9.5×106 and 118×106 m3 year?1, which is larger than can be compensated for by a future decrease in natural discharge or changes in boundary conditions. However, groundwater resources are likely to be sufficient to supply domestic and livestock needs in the area.  相似文献   

7.
海原盆地地下水咸化特征和控制因素   总被引:1,自引:0,他引:1       下载免费PDF全文
地下水是海原盆地唯一的供水水源,近年来部分地区地下水溶解性总固体(TDS)增高,引起了有关部门和水文地质工作者的高度关注。通过分析69组地下水样品的水化学和氢氧稳定同位素数据,对地下水补给来源和咸化的水文地球化学过程进行了研究。结果表明:地下水TDS值198.2~6 436.4 mg/L,沿着地下水流向,咸化程度增加,水化学类型从基岩区的HCO3—Ca·Mg型演化至滞留—排泄区的SO4·Cl—Na·Mg型。地下水补给来源主要为大气降雨和基岩裂隙水侧向径流,补给源—对地下水咸化贡献较小。溶滤作用具空间差异,基岩区和补给区以碳酸盐、硅酸盐风化为主,径流区和滞留—排泄区则为蒸发岩风化,硫酸盐是地下水中阳离子的主要来源。补给水、溶滤和蒸发对第四系地下水TDS的贡献比率分别为4.8%~81.2%、11.9% ~85.9%、1.7%~29.5%,溶滤作用是控制海原盆地地下水咸化的首要因素。当地有关部门应加大对基岩泉水的综合利用,同时注意控制海原县和西安镇等地区地下水开采量,防止地下水进一步咸化。另外,在微咸水分布区可引进地下水去除硫酸盐技术,提高微咸水利用程度。  相似文献   

8.
Agricultural practices in semi-arid parts of southwestern Australia have increased recharge and raised groundwater levels. As a result, land salinization has occurred. Managers aim to address the problem by reducing recharge, but it is not known whether all recharge is regular and seasonal or whether a substantial component is episodic (i.e. occurs in irregular pulses). Approaches that reduce regular recharge may not be effective at reducing recharge that is episodic. Water balances were used to assess the potential for recharge to be episodic at 53 sites throughout Western Australia. The results show that, for the conditions modeled, a substantial proportion of the recharge in drier parts of the agricultural areas occurred episodically, and that direct episodic recharge could be as important in some semi-arid areas as in arid regions. Therefore, mean annual rainfall is not a strong predictor of the ratio of episodic to total recharge at a site. The model indicates that in agricultural areas, most significant and episodic recharge events occurred over just a few days in winter months, when rainfall was dominated by frontal systems. However, substantial episodic recharge also resulted from large storms during the months of January, February, and March. The implication is that it will be difficult to reduce recharge substantially, and thus control salinity, as long as agriculture relies heavily on shallow-rooted winter-growing plants. Electronic Publication  相似文献   

9.
黑河中游绿洲典型灌区地下水资源总均衡估算   总被引:6,自引:0,他引:6  
根据对研究区多年的水文地质观测资料的分析和研究,建立了黑河中游典型灌区地下水水资源总均衡模型,选取了黑河干流具有代表性的平川、板桥、鸭暖和蓼泉灌区,对地下水均衡模型中的补给项及排泄项的主要变量分别进行了估算,结果表明:各灌区均衡期内地下水动态资料计算的均衡期始末地下水储存量变化与模型计算的均衡差基本相近,其相对误差为-17.6%,说明均衡模型对于估算内陆绿洲灌区地下水资源均衡是比较准确的。  相似文献   

10.
The major ion hydrochemistry, sodium absorption ratio (SAR), sodium percentage, and isotopic signatures of Hammamet-Nabeul groundwaters were used to identify the processes that control the mineralization, irrigation suitability, and origin of different water bodies. This investigation highlights that groundwater mineralization is mainly influenced by water-rock interaction and pollution by the return flow of irrigation water. The comparison of groundwater quality with irrigation suitability standards proves that most parts of groundwater are unacceptable for irrigation and this long-term practice may result in a significant increase of the salinity and alkalinity in the soils. Based on isotopic signatures, the shallow aquifer groundwater samples were classified into (i) waters with depleted δ18O and δ2H contents, highlighting recharge by modern precipitation, and (ii) waters with enriched stable isotope contents, reflecting the significance of recharge by contaminated water derived from the return flow of evaporated irrigation waters. The deep-aquifer groundwater samples were also classified into (i) waters with relatively enriched isotope contents derived from modern recharge and mixed with shallow-aquifer groundwater and (ii) waters with depleted stable isotope contents reflecting a paleoclimatic origin. Tritium data permit to identify three origins of recharge, i.e., contemporaneous, post-nuclear, and pre-nuclear. Carbon-14 activities demonstrate the existence of old paleoclimatic recharge related to the Holocene and Late Pleistocene humid periods.  相似文献   

11.
Ras El Hekma area was chosen for the present study due to its special conditions; the area lacks water for human and agriculture proposes. This area represents one of the main headlands along the southern Mediterranean coast, where population growth and agricultural activities require the corresponding development of groundwater. The main objective of this paper is to monitor and record data about the current groundwater as well as to have a systematic understanding of the hydrogeological setting in the area of study. Also, one of the study objectives is to identify and assess the factors which affect the groundwater occurrence and quality. This assessment will contribute to groundwater protection. The study area has three aquifers: Holocene, Pleistocene, and Middle Miocene aquifers. The recharge to these aquifers comes from the direct infiltration of rainfall and from the surface runoff. Rock–water interaction and the effect of solution and leaching processes on the mineralization of groundwater are studied using the PHREEQC model. Seawater intrusion contributes effectively to the increase in water salinity. The present study clarifies the relationship between the depth to water, the sea level and salinity of water. The groundwater in the area of study is evaluated for drinking, domestic, livestock and agricultural purposes. The present study suggests some recommendations for developing the groundwater in the study area.  相似文献   

12.
黄河三角洲地下水咸化已成为区域最突出的生态环境问题之一。识别地下水补给及盐分来源是有效控制和改善地下水咸化问题的关键。本研究采集了研究区浅层地下水、地表水和海水等不同类型水样,利用离子比、Piper三线图、吉布斯图等方法对八大离子浓度、δD和δ18O 组成、Br和Sr 浓度等进行地下水补给研究与盐分来源辨析。结果表明:(1)黄河三角洲浅层地下水以总溶解性固体(TDS)为338 g/L的咸水为主,地下水水化学类型较为单一,主要为Cl-Na型。(2)三角洲区域地下水以大气降水补给为主,并且在补给过程中经历了不同程度的蒸发作用的影响,黄河现行流路区域地下水主要来源于河水侧渗补给,但浅层地下水含水层水平渗透性较差限制了黄河侧渗补给范围。(3)海洋是黄河三角洲浅层地下水盐分的主要来源,黄河现行流路区域及近岸地下水盐分来源于海水混合,三角洲北部刁口河等古河道区域地下水盐分主要来源于海相蒸发盐淋滤溶解。  相似文献   

13.
华北平原地下水补给量计算分析   总被引:3,自引:0,他引:3       下载免费PDF全文
采用溴示踪法研究华北平原山前冲积平原和中部平原有灌溉和无灌溉区域的地下水补给,得到研究区平均地下水补给量为126.10 mm,平均补给系数为0.185 2,有灌溉实验点的补给量和补给系数大于无灌溉实验点。同时对示踪剂运移深度和含水量分布、降雨灌溉量和地下水埋深等影响因素进行分析。将各实验点计算结果与国内有关学者采用示踪剂法所得到的补给系数进行对比分析,论证了研究结果的可靠性,此研究成果可为华北平原地下水资源分析提供重要参考。  相似文献   

14.

Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.

  相似文献   

15.
Groundwater flow in the Leon-Chinandega aquifer was simulated using transient and steady-state numerical models. This unconfined aquifer is located in an agricultural plain in northwest Nicaragua. Previous studies were restricted to determining groundwater availability for irrigation, overlooking the impacts of groundwater development. A sub-basin was selected to study the groundwater flow system and the effects of groundwater development using a numerical groundwater flow model (Visual MODFLOW). Hydrological parameters obtained from pumping tests were related to each hydrostratigraphic unit to assign the distribution of parameter values within each model layer. River discharge measurements were crucial for constraining recharge estimates and reducing the non-uniqueness of the model calibration. Steady-state models have limited usefulness because of the major variation of recharge and agricultural pumping during the wet and dry seasons. Model results indicate that pumping induces a decrease in base flow, depleting river discharge. This becomes critical during dry periods, when irrigation is highest. Transient modeling indicates that the response time of the aquifer is about one hydrologic year, which allows the development of management strategies within short time horizons. Considering further development of irrigated agriculture in the area, the numerical model can be a powerful tool for water resources management.  相似文献   

16.
Groundwater resources in some parts of the lower section of Shire River valley, Malawi, are not useable for rural domestic water supply due to high salinity. In this study, a combined assessment of isotopic (87Sr/86Sr, δ18O and δ2H) and major ion composition was conducted in order to identify the hydro-geochemical evolution of the groundwater and thereby the causes of salinity. Three major end-members (representing fresh- and saline groundwater, and evaporated recharge) were identified based on major ion and isotopic composition. The saline groundwater is inferred to result from dissolution of evaporitic salts (halite) and the fresh groundwater shows influence of silicate weathering. Conservative mixing models show that brackish groundwater samples result from a three component mixture comprising the identified end-members. Hence their salinity is interpreted to result from mixing of fresh groundwater with evaporated recharge and saline groundwater. On the other hand, the groundwater with low TDS, found at some distance from areas of high salinity, is influenced by mixing of evaporated recharge and fresh groundwater only. Close to the Shire marshes, where there is shallow groundwater, composition of stable isotopes of water indicates that evaporation may also be an important factor.  相似文献   

17.
作为低影响开发(Low Impact Developmet, LID)措施之一,城市雨水花园集中入渗雨水径流可增加对城区地下水的补给。根据一现场监测试验,研究了长期(监测期3年)及短期(降雨3天内)雨水花园入渗点及对照点地下水位与水质的变化,分析了集中入渗的效果和影响范围。结果表明:① 雨水花园对入渗区地下水位产生了显著影响(α=0.01);② 氨氮(NH4-N)在3年及雨后3日的观测值均显著小于对照值;总氮(TN)指标在短期增加显著,长期均值增加不显著。③ 硝态氮(NO3-N)浓度在降雨后有所升高,但不显著,几个观测点浓度有增有减;总磷(TP)浓度的短期值和长期均值有增有减。对于类似研究区地下水位在2~3 m的情况,集中入渗雨水径流可有效补给地下水,对氮素影响明显,对磷影响有限。  相似文献   

18.
地下水对气候变化的敏感性研究进展   总被引:4,自引:0,他引:4  
地下水是人类生活、生产、生态用水的重要水源。地下水含水层的补给及其开发利用是水资源可持续开发利用与管理的重要组成部分。浅层地下水的补给主要受制于气候变异与变化。气候变化影响研究从地表水扩展至地下水不仅有利于正确地评估可利用的淡水资源,而且对于改进气候模型,更完整的描写水文循环有重要的科学意义。自21世纪以来,欧美等国开始研究不同时空尺度的地下水补给的定量估算方法,并在气候变化对水资源影响的研究中,考虑了气候变化与人类活动对地下水补给的影响。目前在我国,无论对地下水观测资料的诊断分析,或对地下水补给模型的研制都尚属空白或起步阶段。本文对当前国际上研究地下水补给以及地下水对气候变化敏感性的研究现状予以综述,目的是为了推动我国关于气候变化对水资源影响的深入研究。  相似文献   

19.
Epigenic karst systems exhibit strong connectivity to surface recharge. In land use dominated by extensive agriculture and farming, epigenic karst aquifers are highly vulnerable to surface contaminants from point and nonpoint sources. Currently, the karstic landscapes of the southeastern Kentucky platform (USA) are impacted by agriculture and the rapid proliferation of concentrated-animal-feeding operations. Analysis of karst aquifer responses to storm events provides qualitative information regarding aquifer–recharge flow paths and groundwater residence time, and knowledge of spatial and temporal variations in recharge and flow is crucial to the understanding of the fate of surface contaminants. Time-series correlation analyses on long-term physicochemical data recorded at the outlet of Grayson Gunnar Cave, an epigenic karst system located along the Cumberland escarpment in southeastern Kentucky, revealed the existence of two separate conduit branches responding 4–8 h apart from each other. Recorded storm response times range from 4 h for flushing and dilution to 7 h for recovery. An estimated 6 million L of stored groundwater is discharged from both branches during major storms, and the fastest responding branch accounts for the majority (80%) of the groundwater reserve being discharged through the spring. As evidenced by groundwater residence time (7 days), recharge is likely characterized by localized infiltration of rain water from subsurface sinkholes to the conduit branches with no contribution of regional or lateral groundwater flow.  相似文献   

20.
The increased demands on water resources in northern China have had a significant impact on groundwater systems in the last three to four decades, including reductions in groundwater recharge capacity and overall water quality. These changes limit the potential for groundwater uses in this area. This paper discusses the issues surrounding groundwater system use in the eight basins of northern China as water resources have been developed. The results demonstrate that the recharge zone has shifted from the piedmont to the agricultural area, and that the total recharge rate in the basins tended to decrease. This decrease in arid inland basins was mainly caused by both the excessive use of water in the watershed area and irrigated channel anti-seepage. In semi-arid basins, the decrease observed in the groundwater recharge rate is related to an overall reduction in precipitation and increasing river impoundment. In addition, intensive exploitation of groundwater resources has resulted in disturbances to the groundwater flow regime in arid and semi-arid inland basins. Arid inland basins demonstrated fast falling groundwater levels in the piedmont plains resulting in declines of spring flow rates and movement of spring sites to lower locations. In the semi-arid basins, i.e. the North China Plain and the Song-nen Plain, groundwater depression cones developed and intersected regional groundwater flow. The semi-arid basins of the North China Plain and the Song-nen Plain have experienced significant hydrochemical evolution of groundwater characterized by changing water type including increase of TDS and pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号