首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acid mine drainage is a major source of water pollution in the Sarcheshmeh porphyry copper mine area. The concentrations of heavy metals and rare earth elements (REEs) in the host rocks, natural waters and acid mine drainage (AMD) associated with mining and tailing impoundments are determined. Contrary to the solid samples, AMDs and impacted stream waters are enriched in middle rare earth elements (MREEs) and heavy rare earth elements (HREEs) relative to light rare earth elements (LREEs). This behavior suggests that REE probably fractionate during sulfide oxidation and acid generation and subsequent transport, so that MREE and HREE are preferentially enriched. Speciation modeling predict that the dominant dissolved REE inorganic species are Ln3+, Ln(SO4)2, LnSO4+, LnHCO32+, Ln(CO3)2 and LnCO3+. Compared to natural waters, Sarcheshmeh AMD is enriched in REEs and SO42−. High concentrations of SO42− lead to the formation of stable LnSO4+, thereby resulting in higher concentrations of REEs in AMD samples. The model indicates that LnSO4+ is the dissolved form of REE in acid waters, while carbonate and dicarbonate complexes are the most abundant dissolved REE species in alkaline waters. The speciation calculations indicate that other factors besides complexation of the REE's, such as release of MREE from dissolution and/or desorption processes in soluble salts and poorly crystalline iron oxyhydroxy sulfates as well as dissolution of host rock MREE-bearing minerals control the dissolved REE concentrations and, hence, the MREE-enriched patterns of acid mine waters.  相似文献   

2.
Strontium isotopes and other geochemical signatures are used to determine the relationships between CO2-rich thermal (Chaves: 76 °C) and mineral (Vilarelho da Raia, Vidago and Pedras Salgadas: 17 °C) waters discharging along one of the major NNE–SSW trending faults in the northern part of mainland Portugal. The regional geology consists of Hercynian granites (syn-tectonic-310 Ma and post-tectonic-290 Ma) intruding Silurian metasediments (quartzites, phyllites and carbonaceous slates). Thermal and mineral waters have 87Sr/86Sr isotopic ratios between 0.716713 and 0.728035. 87Sr/86Sr vs. 1/Sr define three end-members (Vilarelho da Raia/Chaves, Vidago and Pedras Salgadas thermal and mineral waters) trending from rainfall composition towards that of the CO2-rich thermal and mineral waters, indicating different underground flow paths. Local granitic rocks have 87Sr/86Sr ratios of 0.735697–0.789683. There is no indication that equilibrium was reached between the CO2-rich thermal and mineral waters and the granitic rocks. The mean 87Sr/86Sr ratio of the thermal and mineral waters (0.722419) is similar to the Sr isotopic ratios of the plagioclases of the granitic rocks (0.71261–0.72087). The spatial distribution of Sr isotope and geochemical signatures of waters and the host rocks suggests that the thermal and mineral waters circulate in similar but not the same hydrogeological system. Results from this study could be used to evaluate the applicability of this isotope approach in other hydrogeologic investigations.  相似文献   

3.
Humic Ion-Binding Model V, which focuses on metal complexation with humic and fulvic acids, was modified to assess the role of dissolved natural organic matter in the speciation of rare earth elements (REEs) in natural terrestrial waters. Intrinsic equilibrium constants for cation-proton exchange with humic substances (i.e., pKMHA for type A sites, consisting mainly of carboxylic acids), required by the model for each REE, were initially estimated using linear free-energy relationships between the first hydrolysis constants and stability constants for REE metal complexation with lactic and acetic acid. pKMHA values were further refined by comparison of calculated Model V “fits” to published data sets describing complexation of Eu, Tb, and Dy with humic substances. A subroutine that allows for the simultaneous evaluation of REE complexation with inorganic ligands (e.g., Cl, F, OH, SO42−, CO32−, PO43−), incorporating recently determined stability constants for REE complexes with these ligands, was also linked to Model V. Humic Ion-Binding Model V’s ability to predict REE speciation with natural organic matter in natural waters was evaluated by comparing model results to “speciation” data determined previously with ultrafiltration techniques (i.e., organic acid-rich waters of the Nsimi-Zoetele catchment, Cameroon; dilute, circumneutral-pH waters of the Tamagawa River, Japan, and the Kalix River, northern Sweden). The model predictions compare well with the ultrafiltration studies, especially for the heavy REEs in circumneutral-pH river waters. Subsequent application of the model to world average river water predicts that organic matter complexes are the dominant form of dissolved REEs in bulk river waters draining the continents. Holding major solute, minor solute, and REE concentrations of world average river water constant while varying pH, the model suggests that organic matter complexes would dominate La, Eu, and Lu speciation within the pH ranges of 5.4 to 7.9, 4.8 to 7.3, and 4.9 to 6.9, respectively. For acidic waters, the model predicts that the free metal ion (Ln3+) and sulfate complexes (LnSO4+) dominate, whereas in alkaline waters, carbonate complexes (LnCO3+ + Ln[CO3]2) are predicted to out-compete humic substances for dissolved REEs. Application of the modified Model V to a “model” groundwater suggests that natural organic matter complexes of REEs are insignificant. However, groundwaters with higher dissolved organic carbon concentrations than the “model” groundwater (i.e., >0.7 mg/L) would exhibit greater fractions of each REE complexed with organic matter. Sensitively analysis indicates that increasing ionic strength can weaken humate-REE interactions, and increasing the concentration of competitive cations such as Fe(III) and Al can lead to a decrease in the amount of REEs bound to dissolved organic matter.  相似文献   

4.
The sparkling waters from the area of Kyselka near Karlovy Vary at the western slope of the Doupovske hory, Bohemia (Czech Republic), and CO2-poor waters from two underground boreholes at Jachymov, Krusne hory, Bohemia, have been studied with the aim of characterizing the distribution of rare earth elements, yttrium, and H, O, C, Sr, Nd, Pb isotopes during the low-temperature alteration processes of the host rocks. Additionally, leaching experiments were performed at pH 3 on the granitic and basaltic host rocks from Kyselka and the granite of Jachymov. All REE patterns of the granite- and the basalt-derived waters from the Kyselka area are different from those of their source rocks and the leachates of the latter. This elucidates the inhomogeneous distribution of REE and Y among the solid phases in the altered magmatic rocks. The Eu and Ce anomalies in granite-derived waters are inherited, the Y anomaly is achieved by fluid migration. Yttrium is always preferentially leached by mineral waters, whereas Y/Ho ratios of rocks and their leachates are very similar. The REE abundances in waters from the wells in Jachymov are derived from rocks intensely leached and depleted in easily soluble REE-bearing minerals, whereas the granites and basalts from Kyselka still contain soluble, REE-bearing minerals. A comparison of REE/Ca patterns of the experimental leachates with those of the mineral waters elucidate the high retention of REE in rocks during water–rock interaction. In strongly altered rocks Sr isotope ratios of mineral waters and rocks differ widely, whereas the corresponding Nd isotope ratios are very similar. 207Pb/208Pb, 206Pb/208Pb and 206Pb/207Pb ratios in mineral waters are independent from U/Th ratios in the rocks. 206Pb/208Pb and 206Pb/207Pb are lower in mineral waters than in their source rocks and their leachates, which indicates that Pb is primarily derived from solid phases that do not contain significant contents of leachable U and Th. Thus, mineral waters, although CO2 rich, only interact with surface films on minerals and not with the bulk of the minerals as in the leaching experiments.Calculation of mixing ratios of waters from the granitic and basaltic sources of the waters from the Kyselka area yield about 40% of water from the underlying granite in water recovered from the basalt, whereas the granite-derived water is mixed with only about 5% of the water from the basalt.  相似文献   

5.
In this study, the chemical and Sr isotopic compositions of shallow groundwater and rainwater in the Ordos Desert Plateau, North China, and river water from the nearby Yellow River, are investigated to determine the dissolved Sr source and water–rock interactions, and quantify the relative Sr contribution from each end-member. Three groundwater systems have been identified, namely, GWS-1, GWS-2 and GWS-3 according to the watershed distribution in the Ordos Desert Plateau. Ca2+ and Mg2+ are the most dominant cations in GWS-1, while Na+ is dominant in GWS-3. In addition, there is more SO42− and less Cl in GWS-1 than in GWS-3. The shallow groundwater in GWS-2 seems to be geochemically between that in GWS-1 and GWS-3. The 87Sr/86Sr ratios of the shallow groundwater are high in GWS-1 and GWS-2 and are low in GWS-3. By geochemically comparing the nearby Yellow River, local precipitation and deep groundwater, the shallow groundwater is recharged only by local precipitation. The ionic and isotopic ratios indicate that carbonate dissolution is an important process controlling the chemistry of the shallow groundwater. The intensity of the water–rock interactions varies among the three groundwater systems and even within each groundwater system. Three end-members controlling the groundwater chemistry are isotopically identified: (1) precipitation infiltration, (2) carbonate dissolution and (3) silicate weathering. The relative Sr contributions of the three end-members show that precipitation infiltration and carbonate dissolution are the primary sources of the shallow groundwater Sr in GWS-3 whereas only carbonate dissolution is responsible for the shallow groundwater Sr in GWS-1 and GWS-2. Silicate weathering seems insignificant towards the shallow groundwater's chemistry in the Ordos Desert Plateau. This study is helpful for understanding groundwater chemistry and managing water resources.  相似文献   

6.
《Applied Geochemistry》2002,17(3):163-183
The combined chemical composition, B and Sr isotopes, and the basic geologic setting of geothermal systems from the Menderes Massif in western Turkey have been investigated to evaluate the origin of the dissolved constituents and mechanisms of water–rock interaction. Four types of thermal water are present: (1) a Na–Cl of marine origin; (2) a Na–HCO3 type with high CO2 content that is associated with metamorphic rocks of the Menderes Massif; (3) a Na–SO4 type that is also associated with metamorphic rocks of the Menderes Massif with H2S addition; and (4) a Ca–Mg–HCO3–SO4 type that results from interactions with carbonate rocks at shallow depths. The Na–Cl waters are further subdivided based on Br/Cl ratios. Water from the Cumalı Seferihisar and Bodrum Karaada systems are deep circulated seawater (Br/Cl=sea water) whereas water from Çanakkale–Tuzla (Br/Cl<sea water) are from dissolution of Messinian evaporites. Good correlations between different dissolved salts and temperature indicate that the chemical composition of the thermal waters from non-marine geothermal systems is controlled by: (1) temperature dependent water–rock interactions; (2) intensification of reactions due to high dissolved CO2 and possibly HCl gasses; and (3) mixing with overlying cold groundwater. All of the thermal water is enriched in B. The B isotopic composition (δ11B=2.3‰ to 18.7‰; n=6) can indicate either leaching of B from the rocks, or B(OH)3 degassing flux from deep sources. The large ranges in B concentrations in different rock types as well as in thermal waters from different systems suggest the water-rock mechanism. 87Sr/86Sr ratios of the thermal water are used to differentiate between solutes that have interacted with metamorphic rocks (87Sr/86Sr ratio as high as 0.719479) and carbonate rocks (low 87Sr/86Sr ratio of 0.707864).  相似文献   

7.
The reservoir temperature and conceptual model of the Pasinler geothermal area, which is one of the most important geothermal areas in Eastern Anatolia, are determined by considering its hydrogeochemical and isotope properties. The geothermal waters have a temperature of 51 °C in the geothermal wells and are of Na–Cl–HCO3 type. The isotope contents of geothermal waters indicate that they are of meteoric origin and that they recharge on higher elevations than cold waters. The geothermal waters are of immature water class and their reservoir temperatures are calculated as 122–155 °C, and their cold water mixture rate is calculated as 32%. According to the δ13CVPDB values, the carbon in the geothermal waters originated from the dissolved carbon in the groundwaters and mantle-based CO2 gases. According to the δ34SCDT values, the sources of sulfur in the geothermal waters are volcanic sulfur, oil and coal, and limestones. The sources of the major ions (Na+, Ca2+, Mg2+, Cl?, and HCO3 ?) in the geothermal waters are ion exchange and plagioclase and silicate weathering. It is determined that the volcanic rocks in the area have effects on the water chemistry and elements like Zn, Rb, Sr, and Ba originated from the rhyolite, rhyolitic tuff, and basalts. The rare earth element (REE) content of the geothermal waters is low, and according to the normalized REE diagrams, the light REE are getting depleted and heavy REE are getting enriched. The positive Eu and negative Ce anomalies of waters indicate oxygen-rich environments.  相似文献   

8.
Determining the relative proportions of silicate vs. carbonate weathering in the Himalaya is important for understanding atmospheric CO2 consumption rates and the temporal evolution of seawater Sr. However, recent studies have shown that major element mass-balance equations attribute less CO2 consumption to silicate weathering than methods utilizing Ca/Sr and 87Sr/86Sr mixing equations. To investigate this problem, we compiled literature data providing elemental and 87Sr/86Sr analyses for stream waters and bedrock from tributary watersheds throughout the Himalaya Mountains. In addition, carbonate system parameters (PCO2, mineral saturation states) were evaluated for a selected suite of stream waters. The apparent discrepancy between the dominant weathering source of dissolved major elements vs. Sr can be reconciled in terms of carbonate mineral equilibria. Himalayan streams are predominantly Ca2+-Mg2+-HCO3 waters derived from calcite and dolomite dissolution, and mass-balance calculations demonstrate that carbonate weathering contributes ∼87% and ∼76% of the dissolved Ca2+ and Sr2+, respectively. However, calculated Ca/Sr ratios for the carbonate weathering flux are much lower than values observed in carbonate bedrock, suggesting that these divalent cations do not behave conservatively during stream mixing over large temperature and PCO2 gradients in the Himalaya.The state of calcite and dolomite saturation was evaluated across these gradients, and the data show that upon descending through the Himalaya, ∼50% of the streams evaluated become highly supersaturated with respect to calcite as waters warm and degas CO2. Stream water Ca/Mg and Ca/Sr ratios decrease as the degree of supersaturation with respect to calcite increases, and Mg2+, Ca2+, and HCO3 mass balances support interpretations of preferential Ca2+ removal by calcite precipitation. On the basis of patterns of saturation state and PCO2 changes, calcite precipitation was estimated to remove up to ∼70% of the Ca2+ originally derived from carbonate weathering. Accounting for the nonconservative behavior of Ca2+ during riverine transport brings the Ca/Sr and 87Sr/86Sr composition of the carbonate weathering flux into agreement with the composition of carbonate bedrock, thereby permitting consistency between elemental and Sr isotope approaches to partitioning stream water solute sources. These results resolve the dissolved Sr2+ budget and suggest that the conventional application of two-component Ca/Sr and 87Sr/86Sr mixing equations has overestimated silicate-derived Sr2+ and HCO3 fluxes from the Himalaya. In addition, these findings demonstrate that integrating stream water carbonate mineral equilibria, divalent cation compositional trends, and Sr isotope inventories provides a powerful approach for examining weathering fluxes.  相似文献   

9.
Rare earth element (REE) concentrations in alkaline lakes, circumneutral pH groundwaters, and an acidic freshwater lake were determined along with the free carbonate, free phosphate, and free sulfate ion concentrations. These parameters were used to evaluate the saturation state of these waters with respect to REE phosphate and carbonate precipitates. Our activity product estimates indicate that the alkaline lake waters and groundwaters are approximately saturated with respect to the REE phosphate precipitates but are significantly undersaturated with respect to REE carbonate and sulfate precipitates. On the other hand, the acidic lake waters are undersaturated with respect to REE sulfate, carbonate, and phosphate precipitates. Although carbonate complexes tend to dominate the speciation of the REEs in neutral and alkaline waters, our results indicate that REE phosphate precipitates are also important in controlling REE behavior. More specifically, elevated carbonate ion concentrations in neutral to alkaline natural waters tend to enhance dissolved REE concentrations through the formation of stable REE-carbonate complexes whereas phosphate ions tend to lead to the removal of the REEs from solution in these waters by the formation of REE-phosphate salts. Removal of REEs by precipitation as phosphate phases in the acid lake (pH=3.6) is inconsequential, however, due to extremely low [PO 4 3– ] F concentrations (i.e., 10–23 mol/kg).  相似文献   

10.
Rare earth element (REE) and strontium isotope data (87Sr/86Sr) are presented for hydromagnesite and surface waters that were collected from Dujiali Lake in central Qinghai-Tibet Plateau (QTP), China. The goal of this study is to constrain the solute sources of hydromagnesite deposits in Dujiali Lake. All lake waters from the area exhibit a slight LREE enrichment (average [La/Sm]PAAS = 1.36), clear Eu anomalies (average [Eu/Eu*]PAAS = 1.31), and nearly no Ce anomalies. The recharge waters show a flat pattern (average [La/Sm]PAAS = 1.007), clear Eu anomalies (average [Eu/Eu*] PAAS = 1.83), and nearly no Ce anomalies (average [Ce/Ce*]PAAS = 1.016). The REE+Y data of the surface waters indicate the dissolution of ultramafic rock at depth and change in the hydrogeochemical characteristics through fluid-rock interaction. These data also indicate a significant contribution of paleo-groundwater to the formation of hydromagnesite, which most likely acquired REE and Sr signatures from the interaction with ultramafic rocks. The 87Sr/86Sr data provide additional insight into the geochemical evolution of waters of the Dujiali Lake indicating that the source of Sr in the hydromagnesite does not directly derive from surface water and may have been influenced by both Mg-rich hydrothermal fluids and meteoric water. Additionally, speciation modeling predicts that carbonate complexes are the most abundant dissolved REE species in surface water. This study provides new insights into the origins of hydromagnesite deposits in Dujiali Lake, and contributes to the understanding of hydromagnesite formation in similar modern and ancient environments on Earth.  相似文献   

11.
12.
《Chemical Geology》2004,203(1-2):139-151
Aragonite is precipitated by a new CO2-diffusion technique from a Ca2+–Mg2+–Cl solution between 10 and 50 °C. Crystallisation of aragonite instead of calcite occurs by maintaining a [Mg2+]/[Ca2+] ratio of 2 in the fluid. The dissolved inorganic carbon (DIC) is received by diffusion of CO2 through a polyethylene membrane (diffusion coefficient: DCO2=10−6.4 cm2 s−1 at 19 °C). It is suggested that significant amounts of DIC may be transferred by diffusion of CO2 in natural systems if the CO2 gradient is high. The CO2-diffusion technique is used as a kind of simple mixed flow reactor for the co-precipitation of barium and strontium with aragonite. The distribution coefficients of Ba2+ and Sr2+ decrease from 10 to 50 °C according to DBa,a*=2.42−0.03595T (°C) and DSr,a*=1.32−0.005091T (°C). At 25 °C, the distribution coefficients are DBa,a*=1.5±0.1 and DSr,a*=1.19±0.03. The effect of temperature on DBa,a* is about one order of magnitude higher versus that on DSr,a*. Thus, Ba2+ may be a potential paleotemperature indicator if the composition of the solution is known.  相似文献   

13.
The isotopic composition of water and dissolved Sr as well as other geochemical parameters at the 2516 m deep Outokumpu Deep Drill Hole, Finland were determined. The drill hole is hosted by Palaeoproterozoic turbiditic metasediments, ophiolite-derived altered ultramafic rocks and pegmatitic granitoids. Sodium–Ca–Cl and Ca–Na–Cl-rich waters (total dissolved solids up to ca. 70 g L−1) containing significant amounts of gas, mainly CH4 (up to 32 mmol L−1), N2 (up to 10 mmol L−1), H2 (up to 3.1 mmol L−1) and He (up to 1.1 mmol L−1) discharge from fracture zones into the drill hole. This water is distinct from the shallow fresh groundwater of the area, and has an isotopic composition typical of shield brines that have been modified during long-term water–rock interaction. Based on water stable isotopes and geochemistry, the drill hole water profile can be divided into five water types, each discharging from separate fracture systems and affected by the surrounding rocks. The δ2H varies from −90‰ to −56‰ (VSMOW) and δ18O from −13.5‰ to −10.4‰ (VSMOW), plotting clearly above the Global and Local Meteoric Water Lines on a δ2H vs. δ18O diagram. The 87Sr/86Sr ratios range between 0.72423 and 0.73668. Simple two-component mixing between 2H and 18O rich end-member brine and meteoric water cannot explain the water stable isotopic composition and trends observed. Instead, hydration of silicates by ancient groundwaters recharged under different climatic conditions, warmer than at present, is the most likely mechanism to have caused the variation of the δ2H and δ18O values. Water types correlate with changes in microbial communities implying that different ecosystems occur at different depths. The different water types and microbial populations have remained isolated from each other and from the surface for long periods of time, probably tens of millions of years.  相似文献   

14.
Rare earth element (REE) adsorption onto sand from a well characterized aquifer, the Carrizo Sand aquifer of Texas, has been investigated in the laboratory using a batch method. The aim was to improve our understanding of REE adsorption behavior across the REE series and to develop a surface complexation model for the REEs, which can be applied to real aquifer-groundwater systems. Our batch experiments show that REE adsorption onto Carrizo sand increases with increasing atomic number across the REE series. For each REE, adsorption increases with increasing pH, such that when pH >6.0, >98% of each REE is adsorbed onto Carrizo sand for all experimental solutions, including when actual groundwaters from the Carrizo Sand aquifer are used in the experiments. Rare earth element adsorption was not sensitive to ionic strength and total initial REE concentrations in our batch experiments. It is possible that the differences in experimental ionic strength conditions (i.e., 0.002-0.01 M NaCl) chosen were insufficient to affect REE adsorption behavior. However, cation competition (e.g., Ca, Mg, and Zn) did affect REE adsorption onto Carrizo sand, especially for light rare earth elements (LREEs) at low pH. Rare earth element adsorption onto Carrizo sand can be successfully modeled using a generalized two-layer surface complexation model. Our model calculations suggest that REE complexation with strong surface sites of Carrizo sand exceeds the stability of the aqueous complexes LnOH2+, LnSO4+, and LnCO3+, but not that of Ln(CO3)2- or LnPO4o in Carrizo groundwaters. Thus, at low pH (<7.3), where major inorganic ligands did not effectively compete with surface sites for dissolved REEs, free metal ion (Ln3+) adsorption was sufficient to describe REE adsorption behavior. However, at higher pH (>7.3) where solution complexation of the dissolved REEs was strong, REEs were adsorbed not only as free metal ion (Ln3+) but also as aqueous complexes (e.g., as Ln(CO3)2- in Carrizo groundwaters). Because heavy rare earth elements (HREEs) were preferentially adsorbed onto Carrizo sand compared to LREEs, original HREE-enriched fractionation patterns in Carrizo groundwaters from the recharge area flattened along the groundwater flow path in the Carrizo Sand aquifer due to adsorption of free- and solution-complexed REEs.  相似文献   

15.
Thermodynamic numerical simulations were carried out to determine the principal simple and complex migration species of Ca, Mg, Na, K, Al, B, Mn, Mo, Sr, and U with Cl, OH, SO4?2, HCO3?, and CO32? in waters at the Lomonosov diamond deposit and to estimate the saturation indexes with respect to kaolinite, Na- and Mg-montmorillonite, Mg- and Na-saponite, muscovite and paragonite, biotite, phlogopite, chromite, pyrite, plagioclase (anorthite, labradorite, and andesine), olivine (forsterite and fayalite), diopside, pyrope, gypsum, anhydrite, barite, magnesite, calcite, dolomite, talc, chrysotile, chlorite, goethite, quartz, microcline, and albite. The waters are proved not to be saturated with respect to the primary (hydrothermal) minerals. The saturation of certain water samples with uranophane suggests that this mineral is of secondary genesis. The ascent of highly mineralized deep waters shall result in the dissolution of minerals whose concentrations are near the saturation ones. To maintain the ecological standards of the discharged waters, they should be diluted and/or purified by adsorbing dissolved U on a reducing reactive barrier.  相似文献   

16.
When mineral solutions of different compositions are mixed, the molalities and activities of individual ions in the mixture are often non-linear functions of their end-member values. This non-linearity is particularly significant in determining mineral saturation levels. Mixtures of saturated solutions may be either undersaturated or supersaturated depending on the end-member compositions and the physical conditions in which end-members and their mixtures exist. In carbonate solutions important non-linear effects occur due to redistribution of carbonate species. In extreme cases this causes mixture pH to be below both the end-member pH values. A simple but precise computer program (WATMIX) has been developed for calculating mixture composition for closed and open system mixing of arbitrary end-members. A number of mixing examples are considered which allow one to isolate three important processes leading to non-linear behaviour: the algebraic effect, the δPCO2 effect, and the ionic strength effect.  相似文献   

17.
The Eocene (ca. 55–38 Ma) Bear Lodge alkaline complex in the northern Black Hills region of northeastern Wyoming (USA) is host to stockwork-style carbonatite dikes and veins with high concentrations of rare earth elements (e.g., La: 4140–21000 ppm, Ce: 9220–35800 ppm, Nd: 4800–13900 ppm). The central carbonatite dike swarm is characterized by zones of variable REE content, with peripheral zones enriched in HREE including yttrium. The principle REE-bearing phases in unoxidized carbonatite are ancylite and carbocernaite, with subordinate monazite, fluorapatite, burbankite, and Ca-REE fluorocarbonates. In oxidized carbonatite, REE are hosted primarily by Ca-REE fluorocarbonates (bastnäsite, parisite, synchysite, and mixed varieties), with lesser REE phosphates (rhabdophane and monazite), fluorapatite, and cerianite. REE abundances were substantially upgraded (e.g., La: 54500–66800 ppm, Ce: 11500–92100 ppm, Nd: 4740–31200 ppm) in carbonatite that was altered by oxidizing hydrothermal and supergene processes. Vertical, near surface increases in REE concentrations correlate with replacement of REE(±Sr,Ca,Na,Ba) carbonate minerals by Ca-REE fluorocarbonate minerals, dissolution of matrix calcite, development of Fe- and Mn-rich gossan, crystallization of cerianite and accompanying negative Ce anomalies in secondary fluorocarbonates and phosphates, and increasing δ18O values. These vertical changes demonstrate the importance of oxidizing meteoric water during the most recent modifications to the carbonatite stockwork. Scanning electron microscopy, energy dispersive spectroscopy, and electron probe microanalysis were used to investigate variations in mineral chemistry controlling the lateral complex-wide geochemical heterogeneity. HREE-enrichment in some peripheral zones can be attributed to an increase in the abundance of secondary REE phosphates (rhabdophane group, monazite, and fluorapatite), while HREE-enrichment in other zones is a result of HREE substitution in the otherwise LREE-selective fluorocarbonate minerals. Microprobe analyses show that HREE substitution is most pronounced in Ca-rich fluorocarbonates (parisite, synchysite, and mixed syntaxial varieties). Peripheral, late-stage HREE-enrichment is attributed to: 1) fractionation during early crystallization of LREE selective minerals, such as ancylite, carbocernaite, and Ca-REE fluorocarbonates in the central Bull Hill dike swarm, 2) REE liberated during breakdown of primary calcite and apatite with higher HREE/LREE ratios, and 3) differential transport of REE in fluids with higher PO43−/CO32− and F/CO32− ratios, leading to phosphate and pseudomorphic fluorocarbonate mineralization. Supergene weathering processes were important at the stratigraphically highest peripheral REE occurrence, which consists of fine, acicular monazite, jarosite, rutile/pseudorutile, barite, and plumbopyrochlore, an assemblage mineralogically similar to carbonatite laterites in tropical regions.  相似文献   

18.
In this study, eight organic-rich rivers that flow through the Brazilian craton in the southwestern Amazon rainforest are investigated. This investigation is the first of its type in this area and focuses on the effects of lithology, long-term weathering, thick soils, forest cover and hydrological period on the dissolved load compositions in rivers draining cratonic terrain. The major dissolved ion concentrations, alkalinity (TAlk), SiO2, trace element concentrations, and Sr isotope contents in the water were determined between April 2009 and January 2010. In addition, the isotopic values of oxygen and hydrogen were determined between 2011 and 2013. Overall, the river water is highly dilute and dominated by the major dissolved elements TAlk, SiO2 and K+ and the major dissolved trace elements Al, Fe, Ba, Mn, P, Zn and Sr, which exhibit large temporal and spatial variability and are closely correlated with the silicatic bedrock and hydrology. Additionally, rainwater and recycled water vapor and the size of the basin contribute to the geochemistry of the waters. The total weathering flux estimated from our results is 2–4 t km−2.yr−1, which is one of the lowest fluxes in the world. The CO2 consumption rate is approximately 21–61 103 mol km−2 yr−1, which is higher than expected given the stability of the felsic to basic igneous and metamorphic to siliciclastic basement rocks and the thick tropical soil cover. Thus, weathering of the cratonic terrain under intertropical humid conditions is still an important consumer of CO2.  相似文献   

19.
The dissolution kinetics of carbonate rocks sampled from the Keg River Formation in Northeast British Columbia were measured at 50 bar pCO2 and 105 °C, in both natural and synthetic brines of 0.4 M ionic strength. Natural brines yielded reaction rates of −12.16 ± 0.11 mol cm−2 s−1 for Log RCa, and −12.64 ± 0.05 for Log RMg. Synthetic brine yielded faster rates of reaction than natural brines. Experiments performed on synthetic brines, spiked with 10 mmol of either Sr or Zn, suggest that enhanced reaction rates observed in synthetic brines are due to a lack of trace ion interaction with mineral surfaces. Results were interpreted within the surface complexation model framework, allowing for the discrimination of reactive surface sites, most importantly the hydration of the >MgOH surface site. Dissolution rates extrapolated from experiments predict that CO2 injected into the Keg River Formation will dissolve a very minor portion of rock in contact with affected formation waters.  相似文献   

20.
《Geochimica et cosmochimica acta》1999,63(19-20):3357-3372
Lac Pavin is a volcanic crater lake in the Massif Central (France), characterized by a permanent vertical density stratification resulting from a strong and persistent chemocline between about 60 and 70 m depth. The deep water below the chemocline forms the monimolimnion, in which most dissolved ions as well as helium, carbon dioxide, and methane are strongly enriched. The 3He/4He isotope ratio of the excess helium is (9.09 ± 0.01) · 10−6, or (6.57 ± 0.01) Ra. These findings clearly indicate a flux of mantle-derived magmatic gases into the monimolimnion.In order to derive the fluxes of magmatic volatiles into Lac Pavin, it is essential to understand the hydrologic characteristics of the lake. Previously published two-box models have assumed groundwater input at the lake bottom, a short residence time in the monimolimnion, and biogenic origin of the CO2. We propose an alternative model with a flux of magmatic gases, but not of water, into the monimolimnion, and a weak diffusive coupling between the monimolimnion and the overlying mixolimnion which leads to a long deep-water residence time (≈ 70 yr). We reassess the carbon budget of the lake and conclude that the major part of the accumulated CO2 in the monimolimnion is of magmatic origin. From the model-derived water exchange rates, we calculated a mantle 4He flux of (6 ± 2) · 1011 atoms m−2 s−1. This value lies near the lower end of the range found in comparable volcanic lakes. The flux of magmatic CO2 is estimated as (1.2 ± 0.4) · 10−7 mol m−2 s−1, which is also comparatively low. The monimolimnion appears to be in steady state with respect to these fluxes, therefore no further, potentially hazardous, accumulation of CO2 takes place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号