首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 171 毫秒
1.
库车坳陷东部油气地质条件复杂,天然气成因与油气充注时间存在争议,油气充注史不明,制约其油气勘探进程。利用天然气组分、碳同位素组成、流体包裹体岩相学与均一温度等分析测试数据,结合沉积埋藏史及构造演化史,研究了库车坳陷东部吐格尔明地区天然气地球化学特征、天然气成因类型及油气充注时间,分析了油气充注成藏过程。结果表明:吐格尔明地区天然气组分以甲烷为主,甲烷含量为75.56%~90.11%,干燥系数为0.79~0.93;δ13C1δ13C2值为-35.73‰~-33.80‰和-26.41‰~-25.30‰,天然气成因类型属于成熟阶段的煤成气。吐格尔明地区侏罗系砂岩储层发育两类流体包裹体,分别为黄色液态烃包裹体和蓝白色荧光的气液烃包裹体、灰色的气烃包裹体,表明该区存在两期油气充注,第一期为13~7 Ma的原油充注,第二期为2.6 Ma以来的天然气充注。康村组早中期,吐格尔明地区烃源岩形成的原油充注至宽缓背斜圈闭中保存;库车组晚期,侏罗系克孜勒努尔组与阳霞组发育良好的源储组合,天然气近距离充注成藏。  相似文献   

2.
震旦纪—寒武纪转折期是地球演化的关键节点,这一时期的碳-氧同位素记录在塔里木保留完整却关注较少。选取苏盖特布拉克露头震旦系与寒武系交界地层实测采样,并开展了古生物、镜下鉴定、碳同位素漂移事件的综合分析,探讨了N1(BACE)、P1(ZHUCE)等碳同位素漂移事件的成因机制。样品的δ13Ccarbδ18Ocarb相关系数(R2=0.05)、δ18Ocarb和Mn/Sr相关系数(R2=0.09)及岩石学特征表明,后期成岩改造并未导致碳-氧同位素的显著分馏,原始碳同位素特征得以基本保留。由下至上,在该剖面识别出P-1事件(δ13Ccarb峰值1.9‰2.4‰)、N1事件(-6.8‰-10.3‰)、P1事件(1.4‰4.1‰)、N2a-c事件(-0.4‰-2.8‰)、P2a-c事件(0.2‰0.6‰)和N3事件(-3.4‰)。综合碳同位素演化特征与古生物、年代学数据,确认了玉尔吐斯组底部硅质页岩与奇格布拉克组顶部藻云岩的分界面为塔里木震旦系与寒武系的分界线,并实现了该露头与老林、肖滩、三峡、西伯利亚、阿曼和摩洛哥剖面的地层对比。分析认为,塔里木北缘震旦纪—寒武纪转折期的碳漂移事件,更多受控于古海洋氧气含量变化引起的固碳率forg的波动。玉尔吐斯组早期海侵背景下的大规模缺氧事件导致的初级生产力和固碳率降低,是N1负漂移事件(BACE)的主因;随后海退中氧气含量的增加引起生产力重建和固碳率增加,形成了P1正漂移事件(ZHUCE)。这一成果性认识有助于塔里木盆地寒武纪古环境研究与深层超深层油气远景资源评价。  相似文献   

3.
小河金矿是近年来在南秦岭中带发现的中型金矿床,矿石类型为微细浸染型,矿床受地层和构造双重控制。在野外工作基础上,根据矿物组合及穿插关系划分了4个成矿阶段:Ⅰ,成矿早期少硫化物石英脉成矿阶段;Ⅱ,石英脉、黄铁矿、毒砂成矿主阶段;Ⅲ,石英脉-多金属硫化物成矿主阶段;Ⅳ,方解石、石英脉成矿晚阶段。其中Ⅱ、Ⅲ阶段是主要金矿化阶段。不同阶段样品的原位硫同位素结果显示:成矿早阶段石英脉期的黄铁矿δ34S值为20.80‰~25.77‰,均值为23.59‰;主成矿期II阶段中黄铁矿、毒砂δ34S值为15.46‰~19.12‰,均值为17.5‰;主成矿期Ⅲ阶段中方铅矿、闪锌矿δ34S值为11.35‰~16.78‰,均值为13.88‰。硫同位素特征指示硫以沉积硫为主,成矿过程可能存在低δ34S值热液的持续加入。金属硫化物Pb同位素测试结果显示206Pb/204Pb为17.882 1~18.367 4,207Pb/204Pb为15.614 0~15.674 1,208Pb/204Pb为38.016 3~38.934 2,指示小河金矿铅主要源于地壳,同时伴随幔源铅的混入。综合矿床地质特征及硫、铅同位素地球化学特征,认为小河金矿成矿过程可能存在流体混合作用。  相似文献   

4.
内蒙古大井铜锡多金属矿床是大兴安岭成矿带代表性矿床之一,矿区位于内蒙古东部林西县境内,成矿地质条件良好。矿床矿石中同位素特征及与成矿的关系研究薄弱。本文通过对矿体中黄铜矿Cu同位素,黄铜矿、黄铁矿S同位素和Pb同位素的研究表明:黄铜矿δ65Cu 值总体范围为 -0.46‰+0.32‰,平均值为0 ‰,2σ误差平均值约为0.03‰;黄铜矿、黄铁矿δ34S值总体范围为 +0.076 ‰+3.00‰,平均值为+1.83‰,且δ34S值分散程度也较小,整体较均一,属于岩浆硫的同位素特征;Pb同位素数据整体变化很小,具体为206Pb/204Pb=18.29118.353,207Pb/204Pb =15.50115.574,208Pb/204Pb =38.05138.265。结合区域前人的研究表明,大井矿Cu同位素的变化是由于硫化物-岩浆分异过程导致,大井矿矿石黄铜矿δ65Cu的变化可能指示了矿化阶段成矿硫化物的演化方向,δ65Cu逐渐降低的方向可能存在隐伏矿体,研究区域东部生产区域与外围预测未生产区域具有一致的Cu同位素特征,Cu同位素证据表明大井矿外围预测区可能存在深部隐伏矿体。  相似文献   

5.
三官庙金矿床位于秦岭造山带南秦岭北部逆冲推覆构造带内,为断裂构造控矿的热液型矿床。热液成矿期划分为成矿早阶段(S1)、主阶段(S2)和晚阶段(S3)。成矿主阶段流体包裹体的完全均一温度Th为150~420 ℃,盐度为2.1%~24.1%;成矿晚阶段Th为81~190 ℃,盐度为5.6%~22.2%。包裹体研究显示,在成矿主阶段温度>250 ℃时,以流体混合作用为主而导致矿物沉淀;在成矿主阶段温度<250 ℃及成矿晚阶段,以流体沸腾作用为主而导致矿物沉淀。成矿主阶段成矿流体的δDV-SMOW为-84.4‰~-77.0‰,δ18${{\text{O}}_{{{\text{H}}_{2}}\text{O}}}$为5.0‰~5.7‰,成矿流体来源以岩浆水为主,同时混入了外来流体。成矿流体的δ13CΣC为-13.5‰~-5.2‰,反映碳为岩浆来源并受到低温蚀变的影响。黄铁矿单矿物δ34SCDT为-2.73‰~-1.31‰;毒砂单矿物δ34SCDT为-3.36‰~0.03‰,反映成矿物质硫为典型的单一岩浆来源。综上分析,认为三官庙金矿床为岩浆热液成因,其成矿机制为:印支期末,在钠长(角砾)岩形成过程中,含金热液流体沿断裂构造运移,在距离钠长(角砾)岩较远地段的层间破碎带内,成矿流体发生混合及沸腾作用,促使成矿物质发生沉淀,最终形成三官庙金矿床。  相似文献   

6.
丁坤  王瑞廷  刘凯  王智慧  申喜茂 《现代地质》2021,35(6):1622-1632
为了研究柞水—山阳矿集区夏家店金矿床成因,采用LA-ICP-MS和LA-MC-ICP-MS技术分析夏家店金矿床矿体及围岩样品中黄铁矿原位微量元素及氢、氧、硫同位素组成特征。结果表明,该矿床黄铁矿的Co/Ni 比值为0.11~0.76,说明其与沉积作用有关。矿石中黄铁矿的δ34S值(-9.40‰~7.16‰)与围岩碳质板岩的δ34S值(-8.84‰~10.64‰)接近,黄铁矿的δ34S均值(2.47‰)基本落在岩浆硫的范围内,指示矿石硫可能由地层硫和岩浆硫混合而成。氢、氧同位素测试结果表明,夏家店矿床成矿流体可能主要来自岩浆水,成矿后期有大气降水的加入。综合矿床地质特征、成矿温度、金赋存状态等特征和黄铁矿微量元素、硫同位素组成可知,夏家店金矿床属于卡林型金矿,其成矿流体主要来自岩浆水,成矿后期有大气降水加入;其成矿物质是由深部岩浆与地层混合而成。  相似文献   

7.
地表微细粒土壤地球化学测量是国内研究较多的深穿透地球化学方法之一,判断地表异常与深部隐伏矿体的关系是未来该方法广泛应用的理论基础。以已知的隐伏矿床——紫金山罗卜岭铜钼矿床为研究对象,利用铜同位素示踪覆盖区地表土壤的异常来源。结果显示:(1)矿石单矿物的δ65Cu变化范围较小(-0.04‰~0.56‰),指示较高的成矿温度(250~300 ℃);钻孔由深至浅,矿石的δ65Cu值具有明显升高的趋势,符合斑岩型成矿系统早期至晚期铜同位素的变化特征,流体分馏是造成不同阶段形成的矿石铜同位素存在差异的主要原因。(2)背景区地表土壤铜含量的平均值(59.4 μg/g)显著低于异常区(131.0 μg/g)。背景区土壤δ65Cu变化范围为-1.94‰~-0.82‰,平均值为-1.38‰;异常区土壤δ65Cu变化范围为-5.01‰~1.05‰,平均值为-1.40‰,背景区和异常区铜同位素组成相差不大。(3)本次利用铜同位素组成判别地表介质铜异常来源的效果不理想,可能因为矿石本身的铜同位素组成存在差异,地表土壤本身的铜同位素信息覆盖了来自深部与隐伏铜矿体有关的信息,或从深部原生环境迁移至地表氧化环境的过程中,因氧化还原反应发生了铜同位素的分馏。  相似文献   

8.
海洋沉积物有机质碳氮稳定同位素(δ13C、δ15N)广泛用于有机质来源示踪、古生产力和古海洋环境重建。日本海沉积物δ13C和δ15N值一个显著特征是在末次冰盛期(LGM)同步负偏,但是对这一现象产生的原因以及他们的演化过程的认识仍然存在明显不足。在本研究中,我们详细调查了37 ka以来日本海中部LV53-23-1岩心沉积物δ13C和δ15N演化历史。结果显示,沉积物δ13C和δ15N分别介于-26.3‰至-22.5‰和1.6‰至6.1‰,低值出现在LGM(26.5~17 ka)暗色层状泥发育时期,指示较强的陆源输入贡献。在Heinrich冰阶1时期(17~14.5 ka),δ13C和δ15N快速正偏,表明日本海海洋环境发生了明显的转换,对应于对马海峡淹没及对马暖流入侵。14.5 ka之后,沉积物δ15N值恢复到5‰,与开阔大洋海水硝酸盐的δ15N值近似。我们采用二端员混合模型粗略地估算了有机质来源的相对贡献。LGM时期陆源有机质贡献介于65%至80%,14.5 ka以后海源有机质贡献介于60%至80%。除了增加的陆源有机质贡献以外,LGM时期沉积物δ15N亏损还涉及如下过程:(1)较高的含Fe沙尘供给提高日本海表层海洋生物固氮效率;(2)缺氧环境盛行减弱成岩作用对沉积物δ15N影响。37 ka以来,日本海沉积物δ13C和δ15N变化与有机质来源、营养盐的供给、表层生产力和沉积物氧化还原条件相关,实际受海平面和全球气候制约。  相似文献   

9.
龙泉山是具备油气生储盖组合的含油气构造,出露侏罗系和白垩系非煤系地层,有7个构造高点,节理裂隙发育,是浅层天然气有利聚集区,沙溪庙组砂岩是浅层天然气主要储层。已建达成铁路炮台山隧道和成-简快速通道龙泉山2#隧道在施工中都出现浅层天然气燃烧和爆炸现象。拟建的成洛大道东延线、成安渝高速公路和成渝客专又将以隧道方式通过龙泉山含油气构造,故研究浅层天然气对隧道危害有重要意义。通过现场8座隧道共20个钻孔天然气浓度测试,发现8座隧道均有浅层天然气显示,天然气最高浓度8.654%,最低浓度0.081%, 8座隧道均受到天然气危害。研究表明,隧道所处构造位置和地层岩性是隧道受浅层天然气危害大小的主要影响因素,隧道离含油气构造高点越近,在穿越裂隙发育的地层时,其钻孔天然气浓度越高,隧道受浅层天然气危害越大。  相似文献   

10.
高银虎  尹刚  龚泽强  郭明春 《现代地质》2021,35(6):1523-1535
甘肃两当湘潭子金矿位于西秦岭造山带东段,金矿体主要受北西西向断裂控制,与区内发育的中酸性岩脉空间关系密切。显微观察和电子探针分析表明,Au主要赋存在黄铁矿和毒砂中,矿体中黄铁矿Co/Ni特征显示黄铁矿的成因与岩浆作用有关。通过稀土元素分析发现,矿石的稀土元素特征与岩体的稀土元素特征基本一致,而与地层围岩有明显差异。对矿石中的黄铁矿进行硫同位素测试,硫化物δ34S值介于-5.7‰~2.0‰之间,均值为0.38‰,δ34S值频数分布比较集中,具有以近零为中心的塔式分布特征,表明矿石中硫的来源与岩浆作用有关。通过氢氧同位素分析,湘潭子金矿区矿石的δ18${{\text{O}}_{{{\text{H}}_{2}}\text{O}}}$值介于3.44‰~9.65‰之间,均值为6.29‰,δD介于-120.10‰~-79.00‰之间,均值为-100.47‰,表明本区成矿流体主要来自岩浆水。铅同位素特征显示湘潭子金矿区铅的演化与岩浆作用和造山运动关系密切。通过对比研究可知湘潭子金矿的主成矿时代为印支晚期。湘潭子金矿是印支晚期含成矿物质和流体的岩浆上侵,受浅部断裂系统控制的脉状矿体。湘潭子金矿的发现及成因研究对西秦岭地区找矿方向具有重要的意义。  相似文献   

11.
阿扎哈达石英脉型铜铋矿床位于二连—东乌旗多金属成矿带中段。铜铋热液矿化过程从早到晚可以分为3个阶段,分别为石英-黄铁矿-黄铜矿阶段(Ⅰ)、石英-黄铁矿-黄铜矿-辉铜矿-辉铋矿-自然铋-萤石阶段(Ⅱ)和晚期石英-方解石阶段(Ⅲ)。铜铋矿化主要产于Ⅱ阶段石英脉中。流体包裹体类型主要为气液两相包裹体。测温结果显示Ⅰ阶段富气相包裹体均一温度变化范围为224~427 ℃,盐度(w(NaCleq)为16.0%~22.4%;富液相包裹体均一温度为229~410 ℃,盐度为9.2%~22.2%。Ⅱ阶段富气相包裹体均一温度为245~343 ℃,盐度为17.8%~20.5%;富液相包裹体均一温度为180~361 ℃,盐度为10.5%~21.3%。Ⅲ阶段富液相包裹体均一温度为132~262 ℃,盐度为3.4%~19.4%。成矿热液整体上属于中温、中等盐度流体。单个包裹体激光拉曼分析表明气液相成分主要是H2O,含少量CH4,指示成矿流体属于NaCl-H2O±CH4体系。C-O同位素数据(δ13CV-PDB值范围为-6.7‰~-1.4‰,δ18OV-SMOW值为-2.4‰~+11.5‰)表明成矿流体主要来源于岩浆水,晚阶段有大气降水的混入。黄铁矿S同位素组成(1.3‰~9.5‰)指示成矿物质主要来源于岩浆热液,并有部分地层物质加入。黄铁矿Pb同位素组成208Pb/204Pb、207Pb/204Pb和206Pb/204Pb值变化范围分别为38.081~38.229、15.561~15.602和18.270~18.383,所有数据点均落在造山带铅范围内,表明成矿物质主要来源于侵位的花岗岩,同时地层提供了部分成矿物质。结合流体包裹体和同位素地球化学研究,文章认为温度下降及水岩反应是导致矿质沉淀的重要机制。  相似文献   

12.
地球卤素元素含量相对稀少,相对而言氯为最常见的卤素元素。氯是一种挥发性元素,具有强烈的亲水性。自然界氯两个稳定同位素35Cl和37Cl,其相对丰度分别为75.76%和24.24%。文章综述了氯在各个地质储库的特征、稳定氯同位素分馏的控制因素以及氯同位素的地质应用三大方面的研究进展。地球主要储库中蒸发岩、海水、岩浆岩、沉积物、变质岩、地幔的氯同位素组成分别为-0.5‰~+0.8‰、0.00±0.05‰、-1.12‰~+0.79‰、-3.0‰~+2.0‰、-3.6‰~0、-1.9‰~+7.2‰。地外(月球、火星及其他小行星4-Vesta)氯同位素组成变化范围分别为-4‰~+81.1‰、-5.6‰~+8.6‰、-3.8‰~+7.7‰。相对地球上氯同位素(δ37Cl)的变化范围(-14‰~+16‰),月球和火星δ37Cl的变化范围可达-5.6‰~+81‰,表明挥发分氯在地内和地外迁移循环过程中有显著不同同位素分馏主控机制。已经探明氯同位素分馏受控于物理过程(如扩散、离子过滤、沉淀溶解作用、火山作用)和化学作用(如水岩作用、变质作用,尤其是蛇纹石化作用)等。扩散作用、淋滤作用和火山作用富集重同位素,沉淀作用结晶盐δ37Cl先减小后上升,而蛇纹石化过程中多种因素共同影响。与其他指标结合,氯同位素地球化学可用于有效指示钾盐矿床远景区,评估示踪地下水的来源和演化路径、示踪污染物源区和量化生物修复、探究矿化流体来源、指示行星演化岩浆海洋脱气等过程。  相似文献   

13.
郭云成  刘家军  尹超  郭梦需 《现代地质》2021,35(6):1536-1550
小秦岭地区位于华北克拉通南缘,赋存许多大型-超大型的金矿床,大湖金钼矿床位于小秦岭北矿带。大湖金钼矿床成矿具有多期多阶段特点,包括热液期和表生期,根据矿脉穿切关系、矿石的矿物组成以及结构、构造研究,热液期分为4个成矿阶段,即石英-钾长石-辉钼矿阶段(Ⅰ)、石英-黄铁矿-自然金阶段(Ⅱ)、石英-多金属硫化物-自然金阶段(Ⅲ)和石英-碳酸盐阶段(Ⅳ)。流体包裹体岩相学、激光拉曼成分分析和冷热台测温结果表明,大湖金钼矿的初始成矿流体属H2O-CO2-NaCl体系,包裹体分为三种类型,即CO2-H2O型包裹体(C型)、水溶液型包裹体(W型)和纯CO2型包裹体(PC型)。成矿Ⅰ、Ⅱ、Ⅲ和Ⅳ阶段包裹体均一温度范围分别为275.3~350.0 ℃、260.0~312.7 ℃、245.3~287.6 ℃和237~251 ℃,流体盐度范围为5.2%~16.7%,密度为0.777~1.108 g/cm3,为中-高温、中-低盐度、低密度流体,与变质流体特征一致。均一温度从Ⅰ阶段→Ⅳ阶段呈逐渐下降趋势,盐度从Ⅰ阶段→Ⅲ阶段逐渐降低,Ⅳ阶段沸腾作用使流体中的气体组分逸出,导致剩余流体的浓缩盐度增高。流体成矿压力范围为58.0~196.3 MPa,对应成矿深度范围为3.0~7.1 km。矿区普遍存在的围岩蚀变表明水岩反应强烈,氢同位素δD为-90‰~-44‰,成矿流体氧同位素δ18O范围为2.1‰~5.9‰,属于变质热液范围;在δ18O-δD组成图解投图中落在变质水范围左下侧,Ⅱ、Ⅲ阶段样品的δ18O较Ⅰ阶段整体左移,表明高温变质流体与围岩(斜长角闪岩等变质岩)发生水岩反应,导致同位素互换平衡。大湖金钼矿床受区域近东西向断裂构造控制,属典型的断控脉状矿床,成矿流体以变质水为主,矿床主要特征与典型的造山型金矿特征相符。  相似文献   

14.
田飞  王永  袁路朋  汤文坤 《地学前缘》2022,29(2):317-326
本文选择浑善达克沙地南缘濒临干涸的碱湖为研究对象,综合分析湖泊及流域表层沉积物的粒度、总有机碳(TOC)及其同位素(δ13CTOC)指标的空间分布特征及环境指示意义。结果表明,湖泊水域区及滩地区的黏土与粉砂组分含量高,TOC含量多低于1%,而东缘的盐生草甸砂组增加,同时TOC含量升高至10.75%;δ13CTOC值表现为从西向东,即水域区(-24.88‰)、滩地区(-25.17‰)、盐生草甸(-27.93‰)呈逐渐偏负的趋势。水域区表层沉积物粒度端员组分分析表明,粗粒端员(近源风成组分及洪积组分)含量的增加指示湖泊退缩及流域植被退化;水域区低TOC指示水生植物基本消失,陆源C3植物成为湖泊沉积物有机质的主要来源,控制了δ13CTOC的波动。当湖泊彻底干涸,裸露滩地的粒度初始以细粒组分(黏土、粉砂)为主,而后强烈的风蚀作用将富盐细粒带走,沉积物的粒度变粗,盐度降低,盐生植被入侵。此后沉积物的TOC含量显著增加,而δ13CTOC值逐渐偏负可能与上覆盐生植被演替过程中C3植物生物量增加有关。因此,乌日图音淖尔现代沉积过程及机理的研究,加深了对浑善达克沙地碱湖干涸过程中沉积及生态演化过程的认识,也为古环境的重建提供了重要依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号