首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Columnar inclusion is one of the effective and widely used methods for improving the engineering properties of soft clay ground. This article investigates the consolidation behavior of composite soft clay ground using both physical model tests under an axial-symmetry condition and finite element simulations using the PLAXIS 2D program. It was determined that the final settlement and the rate of consolidation of the composite ground depended on the stress state. For an applied stress that is much lower than the failure stress, the final settlement of the composite ground was lower, and the consolidation was rapid. When the soil–cement column failed, the stress on the column suddenly decreased (due to strain-softening); meanwhile, the stress on the soil increased to maintain the force equilibrium. Consequently, the excess pore pressure in the surrounding clay increased immediately. The cracked soil–cement column acted as a drain, which accelerated the dissipation of the excess pore pressure. The consolidation of the composite ground was mainly observed in the vertical direction and was controlled by the area ratio, which is the ratio of the diameter of the soil–cement column to the diameter of the composite ground, a. The stress on the column was shown to be low for a composite ground with a high value of a, which resulted in less settlement and fast consolidation. For a long soil–cement column, the excess pore pressures in the surrounding clay and the column were essentially the same at a given consolidation time throughout the improvement depth. It is proposed that the soil–cement column and surrounding clay form a compressible ground, and the consolidation occurs in the vertical direction. The composite coefficient of consolidation (cv(com)) that was obtained from the physical model test on the composite ground can be used to approximate the rate of consolidation. This approximation was validated via a finite element simulation. The proposed method is highly useful to geotechnical engineers because of its simplicity and reliable prediction.  相似文献   

2.
To investigate the realistic ground behavior during tunneling, a new device has been developed. With the new device, model tests of tunnel excavation considering an existing tunnel and an existing building were carried out. Non-linear finite element analyses corresponding to the model tests were also conducted using FEMtij-2D software where an elastoplastic subloading t ij model was used to describe the mechanical behavior of soil. Earth pressure distribution around the tunnels and ground movements during tunnel excavation depend on the distance and position between the twin tunnels. There is a significant effect of tunneling on the existing foundation of building even in the case where the tunnel is constructed in deep underground. The numerical analyses capture well the results of the model tests.  相似文献   

3.
Time-variant reliability analysis for a typical unsaturated soil slope is performed. Eight rainfall conditions are considered, and three slope models are set up for studying the influence of shear strength parameters, hydraulic conductivity parameters, rainfall intensity and duration on the reliability of the soil slope. Sensitivity analysis shows that when the saturated hydraulic conductivity (k s) is very small, the variation of hydraulic conductivity has little effect on the reliability index (β). For saving the computation effort, only the shear strength parameters are needed in performing the reliability analysis in this condition. With the increase of k s, the importance of hydraulic conductivity becomes large. The reliability index of the soil slope is changing with time (t), and the shape of β–t curves for different slope model is quite different for they depend on the value of k s. When k s is very small, β keeps decreasing for all the 18 simulation days. With the increase of k s, β decreases to its minimum value at about the cessation day of rainfall events, and it then increases gradually due to the redistribution of suction in the soil slope.  相似文献   

4.
In this study, an investigation has been performed on a small-scaled laboratory model and its numerical model by the code of PLAXIS to see the effect of stone columns (SCs) placed vertically in a soft soil slope in terms of slope stability, bearing capacity, and settlements. Also, several hypothetical cases have been examined by the code. Effect of s/D ratios (distance between the vertical axes of SCs/diameter of SCs) was also investigated on slope stability, ultimate bearing capacity, and settlement of a footing rested on top of the slope on the laboratory model. Firstly, ultimate bearing capacity and settlement properties of soil were determined for unreinforced soil that is no SCs were considered. Then, some values of soil were determined after the installation of stone columns with various ratios of s/D. The ratios of s/D were 2, 3, 3.5, and 4. The tests carried out on the laboratory model were simulated and numerically analyzed in two dimensions under plain-strain conditions by Mohr?CCoulomb model. In the analyses, PLAXIS computer code, which is based on finite elements method, has been employed. Then, a parametric investigation was carried out to see the effect of SCs on the stability of the slope. In the parametric investigation, several hypothetical cases that were one layer of soil and two layers of soil with the presence of water in the reservoir side of the slopes were examined. The analyses in the investigation were performed by the PLAXIS code for various slope angles ??, ratios of c/(??H), and ratios of s/D. From the test results of the laboratory model, and the results obtained from the numerical analyses, it was observed that the bearing capacity of the footing constructed on the top of the slope in soft soil was increased; settlements were decreased after the improvement with SCs. From the analyses performed, it was found that the SCs increased the stability of slope 1.18- to 1.62-fold as a relative effect of different parameters.  相似文献   

5.
Random finite element method (RFEM) provides a rigorous tool to incorporate spatial variability of soil properties into reliability analysis and risk assessment of slope stability. However, it suffers from a common criticism of requiring extensive computational efforts and a lack of efficiency, particularly at small probability levels (e.g., slope failure probability P f ?<?0.001). To address this problem, this study integrates RFEM with an advanced Monte Carlo Simulation (MCS) method called “Subset Simulation (SS)” to develop an efficient RFEM (i.e., SS-based RFEM) for reliability analysis and risk assessment of soil slopes. The proposed SS-based RFEM expresses the overall risk of slope failure as a weighed aggregation of slope failure risk at different probability levels and quantifies the relative contributions of slope failure risk at different probability levels to the overall risk of slope failure. Equations are derived for integrating SS with RFEM to evaluate the probability (P f ) and risk (R) of slope failure. These equations are illustrated using a soil slope example. It is shown that the P f and R are evaluated properly using the proposed approach. Compared with the original RFEM with direct MCS, the SS-based RFEM improves, significantly, the computational efficiency of evaluating P f and R. This enhances the applications of RFEM in the reliability analysis and risk assessment of slope stability. With the aid of improved computational efficiency, a sensitivity study is also performed to explore effects of vertical spatial variability of soil properties on R. It is found that the vertical spatial variability affects the slope failure risk significantly.  相似文献   

6.
The excess pore water pressure distribution (u) induced by the penetration of a piezocone into clay and its dissipation behaviour have been investigated by laboratory model tests, theoretical analysis and numerical simulation. Based on the results of the tests and the analysis, a semi-theoretical method has been proposed to predict the piezocone penetration-induced pore pressure distribution in the radial direction from the shoulder of the cone. The method can consider the effect of the undrained shear strength (su), over-consolidation ratio (OCR) and rigidity index (Ir) of the soil. With a reliably predicted initial distribution of u and the measured curve of dissipation of pore water pressure at the shoulder of the cone (u2), the coefficient of consolidation of the soil in the horizontal direction (ch) can be back-fitted by analysis of the pore pressure dissipation. Comparing the back-fitted values of ch with the values directly estimated by a previously proposed method indicates that the previously proposed method can be used reliably to estimate ch values from non-standard dissipation curves (where u2 increases initially and then dissipates with time).  相似文献   

7.
This study includes the results of a set of numerical simulations carried out for sands containing plastic/non-plastic fines, and silts with relative densities of approximately 30?40% under different surcharges on the shallow foundation using FLAC 2D. Each model was subjected to three ground motion events, obtained by scaling the amplitude of the El Centro (1940), Kobe (1995) and Kocaeli (1999) Q12earthquakes. Dynamic behaviour of loose deposits underlying shallow foundations is evaluated through fully coupled nonlinear effective stress dynamic analyses. Effects of nonlinear soil structure interaction (SSI) were also considered by using interface elements. This parametric study evaluates the effects of soil type, structure weight, liquefiable soil layer thickness, event parameters (e.g., moment magnitude of earthquake (M w ), peak ground acceleration PGA, PGV/PGA ratio and the duration of strong motion (D 5?95) and their interactions on the seismic responses. Investigation on the effects of these parameters and their complex interactions can be a valuable tool to gain new insights for improved seismic design and construction.  相似文献   

8.
Flow slides run-out prediction using a sliding-consolidation model   总被引:1,自引:1,他引:0  
The estimation of maximum travel distance of flow slides is an important topic to assess the consequence of natural disasters caused by landslides. During debris transportation, dissipation rules of pore-water pressure determine movement properties of flow slides. Based on 1-D Terzaghi consolidation theory, expressions of excess pore-water pressure with three cases of initial conditions are deduced and are programmed using Mathematica® language. Furthermore, the factors affecting the distribution of pore-water pressure are studied using nondimensional method interactively, such as z/h, u b /u a , and T v , which are fairly significant to investigate soil consolidation during the movement of flow slides. On the basis of the sliding-consolidation model first provided as reported by Hutchinson (Can. Geotech. J. 23(2):115-126, 1986), equations of pore-water pressure, velocity, and travel distance of flow slides are obtained and the physical quantities are coded as mathematical functions using Mathematica® language characterized by its user-friendly interfaces to study run-out properties of flow slides very easily. The program can be used to compute velocity of flow slide, time, and pore-water pressure at a certain position, and thus judge automatically when and where flow slide will stop on slopes with different slope angles, solving the computing difficulties encountered during the Hutchinson's model application, especially in the last decades when computing technique with computers did not develop so rapidly as at present. At last, back analysis for properties of the 1966 flow slide at Aberfan, South Wales is done to test the model and the program, whose results are compared with those as reported by Hutchinson (Can. Geotech. J. 23(2):115-126, 1986). The results show that the program developed by the authors makes the application of Hutchinson's model more correct and easier.  相似文献   

9.
By using the lower-bound finite element limit analysis, the stability of a long unsupported circular tunnel has been examined with an inclusion of seismic body forces. The numerical results have been presented in terms of a non-dimensional stability number (γH/c) which is plotted as a function of horizontal seismic earth pressure coefficient (k h) for different combinations of H/D and ?; where (1) H is the depth of the crest of the tunnel from ground surface, (2) D is the diameter of the tunnel, (3) k h is the earthquake acceleration coefficient and (4) γ, c and ? define unit weight, cohesion and internal friction angle of soil mass, respectively. The stability numbers have been found to decrease continuously with an increase in k h. With an inclusion of k h, the plastic zone around the periphery of the tunnel becomes asymmetric. As compared to the results reported in the literature, the present analysis provides a little lower estimate of the stability numbers. The numerical results obtained would be useful for examining the stability of unsupported tunnel under seismic forces.  相似文献   

10.
Soil layering has a pivotal role on the behavior and propagation of seismic waves, hence the ground response during seismic loading. Parametric study to estimate the effect of soil layering on ground response parameters is of prime importance considering the engineering significance of structure founded in seismic zone; nonetheless, it is yet to be well understood. The objective of this study was to investigate the effect of soil layering and soil properties on the ground response parameters. One-dimensional linear ground response analysis was conducted with variation in soil layer parameters including impedance ratio (?? z ), layer thickness (d r ), and damping ratio (D). The acceleration time history of the Bhuj Earthquake (M w ?=?7.7), India, was used in the analysis. The results obtained from the analysis were presented as variation of ground response parameters such as spectral acceleration (SA), amplification ratio (M) with the soil layer parameters. Results showed higher values of SA at lower D and then decreased with increase in D, that in fact depict the resistance offered to the particle oscillation at comparatively higher values of D. Similarly, variation in SA and M was very less or negligible when the ?? z was varied from 1 to 3 and the d r equal to 0.2, while for d r greater than 0.2 the variation increased with ?? z and d r . The outcome from the parametric study presented in this paper clearly demonstrates the significance of ?? z , D, and d r of the soil layers on the ground response parameters.  相似文献   

11.
New Approach for Estimation of Static and Seismic Active Earth Pressure   总被引:1,自引:1,他引:1  
To estimate static and seismic active earth pressure (Pad) on a rigid retaining wall, numerical analyses using different step sizes have been carried out in this paper, based on the modified Culmann line method by considering Coulomb’s planar rupture surface. Equivalent pseudo-static seismic forces are considered in the analysis. A new concept of modified unit weight by considering ground surcharge is introduced under static and seismic conditions. By numerical analysis, area of soil (A) has been estimated to obtain the ratio of A/A0 where A0 is θh2, θ is the angle between retaining structure and ground surface and h is the vertical height of the wall. This ratio remains constant for a particular type of soil and has been used to estimate the maximum active earth pressure using force diagram. Results are provided in tabular form for easy calculation of the coefficient of static and seismic active earth pressure. Present results by considering the new technique, compares well with the results obtained by earlier researchers.  相似文献   

12.
A cross-correlation analysis is conducted to determine the impacts of the heterogeneity of hydraulic conductivity Ks, soil cohesion c′ and soil friction angle (tan φ′) on the uncertainty of slope stability in time and space during rainfall. We find the relative importance of tan φ′ and c′ depends on the effective stress. While the sensitivity of the stability to the variability of Ks is small, the large coefficient of variation of Ks may exacerbate the variability of pore-water pressure. Therefore, characterizing the heterogeneity of hydraulic properties and pore-water distribution in the field is critical to the stability analysis.  相似文献   

13.
Australia is a relatively stable continental region but not tectonically inert, having geological conditions that are susceptible to liquefaction when subjected to earthquake ground motion. Liquefaction hazard assessment for Australia was conducted because no Australian liquefaction maps that are based on modern AI techniques are currently available. In this study, several conditioning factors including Shear wave velocity (Vs30), clay content, soil water content, soil bulk density, soil thickness, soil pH, distance from river, slope and elevation were considered to estimate the liquefaction potential index (LPI). By considering the Probabilistic Seismic Hazard Assessment (PSHA) technique, peak ground acceleration (PGA) was derived for 50 yrs period (500 and 2500 yrs return period) in Australia. Firstly, liquefaction hazard index (LHI) (effects based on the size and depth of the liquefiable areas) was estimated by considering the LPI along with the 2% and 10% exceedance probability of earthquake hazard. Secondly, ground acceleration data from the Geoscience Australia projecting 2% and 10% exceedance rate of PGA for 50 yrs were used in this study to produce earthquake induced soil liquefaction hazard maps. Thirdly, deep neural networks (DNNs) were also exerted to estimate liquefaction hazard that can be reported as liquefaction hazard base maps for Australia with an accuracy of 94% and 93%, respectively. As per the results, very-high liquefaction hazard can be observed in Western and Southern Australia including some parts of Victoria. This research is the first ever country-scale study to be considered for soil liquefaction hazard in Australia using geospatial information in association with PSHA and deep learning techniques. This study used an earthquake design magnitude threshold of Mw 6 using the source model characterization. The resulting maps present the earthquake-triggered liquefaction hazard and are intending to establish a conceptual structure to guide more detailed investigations as may be required in the future. The limitations of deep learning models are complex and require huge data, knowledge on topology, parameters, and training method whereas PSHA follows few assumptions. The advantages deal with the reusability of model codes and its transferability to other similar study areas. This research aims to support stakeholders’ on decision making for infrastructure investment, emergency planning and prioritisation of post-earthquake reconstruction projects.  相似文献   

14.
This paper presents an elastic continuum model using an extended nonlinear Davies and Budhu equations, which enables the nonlinear behavior of the soil around the long elastic pile to be modeled using a simple expression of pile-head stiffness method. The calculated results were validated with the measured full-scale dynamic field tests data conducted in Auckland residual clay. An idealized soil profile and soil stiffness under small strain (i.e. shear modulus, G s and shear wave velocity, V s of the soil) determined from in situ testing was used to model the single pile tests results. The predictions of these extended equations are also confirmed by using the three-dimensional finite-element OpenSeesPL (Lu et al. in OpenSeesPL 3D lateral pile-ground interaction: user manual, University of California, San Diego, 2010). A soil stiffness reduction factor, G s /G s,max of 0.36 was introduced to the proposed method and model. It was found to give a reasonable prediction for a single pile subjected to dynamic lateral loading. The reduction in soil stiffness found from the experiment arises from the cumulative effects of pile–soil separation as well as a change in the soil properties subjected to cyclic load. In summary, if the proposed method and model are accurately verified and properly used, then they are capable of producing realistic predictions. Both models provide good modelling tools to replicate the full-scale dynamic test results.  相似文献   

15.
Analytical solutions for the steady‐state response of an infinite beam resting on a visco‐elastic foundation and subjected to a concentrated load moving with a constant velocity are developed in this paper. The beam responses investigated are deflection, bending moment, shear force and contact pressure. The mechanical resistance of the foundation is modeled using two parameters ks and ts — ks accounts for soil resistance due to compressive strains in the soil and ts accounts for the resistance due to shear strains. Since this model represents the ground behavior more accurately than the Winkler spring model, the developed solutions produce beam responses that are closer to reality than those obtained using the existing solutions for Winkler model. The dynamic beam responses depend on the damping present in the system and on the velocity of the moving load. Based on the study, dynamic amplification curves are developed for beam deflection. Such amplification curves for deflection, bending moment, shear force and contact pressure can be developed for any beam‐foundation system and can be used in design. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
By applying the lower bound finite element limit analysis in conjunction with non-linear optimisation, the bearing capacity factors, Nc, Nq and Nγ, due to the components of cohesion, surcharge and unit weight, respectively, have been estimated for a horizontal strip footing placed along a sloping ground surface. The variation of Nc, Nq and Nγ with changes in slope angle (β) for different soil friction angle (φ) have been computed for smooth as well as rough strip footings. The analysis reveals that along a sloping ground surface, in addition to Nγ, the factors Nc and Nq also vary considerably with changes in footing roughness. Compared to the smooth footing, the extent of the plastic zone around the footing becomes greater for the rough footing. The results obtained from the analysis are found to compare well with those previously reported in literature.  相似文献   

17.
Soil n-alkane δD vs. altitude gradients along Mount Gongga, China   总被引:1,自引:0,他引:1  
The altitude effect on the isotopic composition of precipitation and its application to paleoelevation reconstruction using authigenic or pedogenic minerals have been intensively studied. However, there are still no studies on variations in biomarker δD along altitude transects to investigate its potential as a paleoelevation indicator, although it has been observed that δD of higher plant lipid may record changes in precipitation δD (δDp). Here, we present δD values of higher plant-derived C27, C29, and C31n-alkanes from surface soil along the eastern slope of Mount Gongga, China with great changes in physical variables and vegetation over a range from 1000 to 4000 m above sea level. The weighted-mean δD values of these n-alkanes (δDwax) show significant linear correlations with predicted δDp values (R2 = 0.76) with an apparent isotopic enrichment (εwax-p) of −137 ± 9‰, indicating that soil δDwax values track overall δDp variation along the entire altitudinal transect. Leaf δDwax is also highly correlated with mountain altitude by a significant quadratic relationship (R2 = 0.80). Evapotranspiration is found declining with altitude, potentially lowering δDwax values at higher elevations. However, this evapotranspiration effect is believed to be largely compensated by the opposing effect of vegetation changes, resulting in less varied εwax-p values over the slope transect. This study therefore confirms the potential of using leaf δDwax to infer paleoelevations, and more generally, to infer the δD of precipitation.  相似文献   

18.
This paper proposes a hydro-geomechanical finite element model to reproduce the kinematic behaviour of large slow landslides. The interaction between solid skeleton and pore fluids is modelled with a time dependent up w formulation and a groundwater model that takes into account recorded daily rainfall intensity. A viscoplastic constitutive model based on Perzyna’s theory is applied to reproduce soil viscous behaviour and the delayed creep deformation. The proposed model is applied to Portalet landslide (Central Spanish Pyrenees). This is an active paleo-landslide that has been reactivated by the construction of a parking area at the toe of the slope. The stability analysis reveals that, after the constructive solutions were undertaken, the slope is in a limit equilibrium situation. Nevertheless, time-dependent analysis reproduces the nearly constant strain rate (secondary creep) and the acceleration/deceleration of the moving mass due to hydrological changes. Overall, the model reproduces a 2-m displacement in the past 8  years that coincides with in situ monitoring data. The proposed model is useful for short- and mid-term predictions of secondary creep. However, long-time predictions remain uncertain, stability depends strongly on the position of the water table depth and new failures during tertiary creep due to soil temporal microstructural degradation are difficult to calibrate.  相似文献   

19.
The Kualiangzi landslide was triggered by heavy rainfalls in the “red beds” area of Sichuan Basin in southwestern China. Differing from other bedrock landslides, the movement of the Kualiangzi landslide was controlled by the subvertical cracks and a subhorizontal bedding plane (dip angle < 10°). The ingress of rainwater in the cracks formed a unique groundwater environment in the slope. Field measurement for rainfall, groundwater movement, and slope displacement has been made for the Kualiangzi landslide since 2013. The field monitoring system consists of two rainfall gauges, seven piezometers, five water-level gauges, and two GPS data loggers. The equipments are embedded near a longitudinal section of the landslide, where severe deformation has been observed in the past 3 years. The groundwater responses to four heavy rainfall events were analyzed between June 16 and July 24 in 2013 coincided with the flood season in Sichuan. Results showed that both of the water level and the pore-water pressure increased after each rainfall event with delay in the response time with respect to the precipitation. The maximum time lag reached 35 h occurred in a heavy rainfall event with cumulative precipitation of 127 mm; such lag effect was significantly weakened in the subsequent heavy rainfall events. In each presented rainfall event, longer infiltration period in the bedrock in the upper slope increased the response time of groundwater, compared to that of in the gravels in the lower slope. A translational landslide conceptual model was built for the Kualiangzi landslide, and the time lag was attributed to the gradual formation of the uplift pressure on the slip surface and the softening of soils at the slip surface. Another important observation is the effect on the slope movement which was caused by the water level (H w) in the transverse tension trough developed at the rear edge of the landslide. Significant negative correlation was found for H w and the slope stability factor (F s), in particular for the last two heavy rainfall events, of which the drastic increase of water level caused significant deterioration in the slope stability. The rapid drop (Δ?=?22.5 kPa) of pore-water pressure in the deep bedrock within 1 h and the large increase (Δ?=?87.3 mm) of surficial displacement were both monitored in the same period. In the end, a four-level early warning system is established through utilizing H w and the displacement rate D r as the warning indicators. When the large deformation occurred in flood season, the habitants at the leading edge of the landslide can be evacuated in time.  相似文献   

20.
The curve number (CN) is a hydrologic parameter used to describe the stormwater runoff potential for drainage areas, and it is a function of land use, soil type, and soil moisture. This study was conducted to estimate the potential runoff coefficient (PRC) using geographic information system (GIS) based on the area’s hydrologic soil group, land use, and slope and to determine the runoff volume. The soil map for the study area was developed using GPS data carried on to identify the soil texture to be used in building a soil hydrological groups map. Unsupervised and supervised classifications were done to Landsat 5/7 TM/ETM image to generate land-use and land-cover map. This map was reclassified into four main classes (forest, grass and shrub, cropland, and bare soil). Slope map for Al-Baha was generated from a 30-m digital elevation model. The GIS technique was used to combine the previous three maps into one map to generate PRC map. Annual runoff depth is derived based on the annual rainfall surplus and runoff coefficient per pixel using raster calculator tool in ArcGIS. An indication that in the absence of reliable ground measurements of rainfall product, it can satisfactorily be applied to estimate the spatial rainfall distribution based on values of R and R 2 (0.9998) obtained. Annual runoff generation from the study area ranged from 0 to 82 % of the total rainfall. Rainfall distribution in the study area shows the wise use of identifying suitable sites for rainwater harvesting, where most of the constructed dams are located in the higher rainfall areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号